cregit-Linux how code gets into the kernel

Release 4.10 fs/ext2/inode.c

Directory: fs/ext2
/*
 *  linux/fs/ext2/inode.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *      (sct@dcs.ed.ac.uk), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *      (jj@sunsite.ms.mff.cuni.cz)
 *
 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
 */

#include <linux/time.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/dax.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/fiemap.h>
#include <linux/iomap.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include "ext2.h"
#include "acl.h"
#include "xattr.h"

static int __ext2_write_inode(struct inode *inode, int do_sync);

/*
 * Test whether an inode is a fast symlink.
 */

static inline int ext2_inode_is_fast_symlink(struct inode *inode) { int ea_blocks = EXT2_I(inode)->i_file_acl ? (inode->i_sb->s_blocksize >> 9) : 0; return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); }

Contributors

PersonTokensPropCommitsCommitProp
theodore tsotheodore tso52100.00%1100.00%
Total52100.00%1100.00%

static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
static void ext2_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); ext2_truncate_blocks(inode, inode->i_size); } }

Contributors

PersonTokensPropCommitsCommitProp
nick pigginnick piggin51100.00%1100.00%
Total51100.00%1100.00%

/* * Called at the last iput() if i_nlink is zero. */
void ext2_evict_inode(struct inode * inode) { struct ext2_block_alloc_info *rsv; int want_delete = 0; if (!inode->i_nlink && !is_bad_inode(inode)) { want_delete = 1; dquot_initialize(inode); } else { dquot_drop(inode); } truncate_inode_pages_final(&inode->i_data); if (want_delete) { sb_start_intwrite(inode->i_sb); /* set dtime */ EXT2_I(inode)->i_dtime = get_seconds(); mark_inode_dirty(inode); __ext2_write_inode(inode, inode_needs_sync(inode)); /* truncate to 0 */ inode->i_size = 0; if (inode->i_blocks) ext2_truncate_blocks(inode, 0); ext2_xattr_delete_inode(inode); } invalidate_inode_buffers(inode); clear_inode(inode); ext2_discard_reservation(inode); rsv = EXT2_I(inode)->i_block_alloc_info; EXT2_I(inode)->i_block_alloc_info = NULL; if (unlikely(rsv)) kfree(rsv); if (want_delete) { ext2_free_inode(inode); sb_end_intwrite(inode->i_sb); } }

Contributors

PersonTokensPropCommitsCommitProp
al viroal viro8042.78%14.76%
pre-gitpre-git5428.88%838.10%
jan karajan kara2211.76%314.29%
christoph hellwigchristoph hellwig147.49%314.29%
mark fashehmark fasheh73.74%14.76%
nick pigginnick piggin31.60%14.76%
linus torvaldslinus torvalds31.60%14.76%
andi kleenandi kleen21.07%14.76%
andrew mortonandrew morton10.53%14.76%
johannes weinerjohannes weiner10.53%14.76%
Total187100.00%21100.00%

typedef struct { __le32 *p; __le32 key; struct buffer_head *bh; } Indirect;
static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) { p->key = *(p->p = v); p->bh = bh; }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh2564.10%116.67%
pre-gitpre-git1128.21%350.00%
linus torvaldslinus torvalds25.13%116.67%
al viroal viro12.56%116.67%
Total39100.00%6100.00%


static inline int verify_chain(Indirect *from, Indirect *to) { while (from <= to && from->key == *from->p) from++; return (from > to); }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh3792.50%125.00%
pre-gitpre-git25.00%250.00%
al viroal viro12.50%125.00%
Total40100.00%4100.00%

/** * ext2_block_to_path - parse the block number into array of offsets * @inode: inode in question (we are only interested in its superblock) * @i_block: block number to be parsed * @offsets: array to store the offsets in * @boundary: set this non-zero if the referred-to block is likely to be * followed (on disk) by an indirect block. * To store the locations of file's data ext2 uses a data structure common * for UNIX filesystems - tree of pointers anchored in the inode, with * data blocks at leaves and indirect blocks in intermediate nodes. * This function translates the block number into path in that tree - * return value is the path length and @offsets[n] is the offset of * pointer to (n+1)th node in the nth one. If @block is out of range * (negative or too large) warning is printed and zero returned. * * Note: function doesn't find node addresses, so no IO is needed. All * we need to know is the capacity of indirect blocks (taken from the * inode->i_sb). */ /* * Portability note: the last comparison (check that we fit into triple * indirect block) is spelled differently, because otherwise on an * architecture with 32-bit longs and 8Kb pages we might get into trouble * if our filesystem had 8Kb blocks. We might use long long, but that would * kill us on x86. Oh, well, at least the sign propagation does not matter - * i_block would have to be negative in the very beginning, so we would not * get there at all. */
static int ext2_block_to_path(struct inode *inode, long i_block, int offsets[4], int *boundary) { int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); const long direct_blocks = EXT2_NDIR_BLOCKS, indirect_blocks = ptrs, double_blocks = (1 << (ptrs_bits * 2)); int n = 0; int final = 0; if (i_block < 0) { ext2_msg(inode->i_sb, KERN_WARNING, "warning: %s: block < 0", __func__); } else if (i_block < direct_blocks) { offsets[n++] = i_block; final = direct_blocks; } else if ( (i_block -= direct_blocks) < indirect_blocks) { offsets[n++] = EXT2_IND_BLOCK; offsets[n++] = i_block; final = ptrs; } else if ((i_block -= indirect_blocks) < double_blocks) { offsets[n++] = EXT2_DIND_BLOCK; offsets[n++] = i_block >> ptrs_bits; offsets[n++] = i_block & (ptrs - 1); final = ptrs; } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { offsets[n++] = EXT2_TIND_BLOCK; offsets[n++] = i_block >> (ptrs_bits * 2); offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); offsets[n++] = i_block & (ptrs - 1); final = ptrs; } else { ext2_msg(inode->i_sb, KERN_WARNING, "warning: %s: block is too big", __func__); } if (boundary) *boundary = final - 1 - (i_block & (ptrs - 1)); return n; }

Contributors

PersonTokensPropCommitsCommitProp
pre-gitpre-git22670.85%861.54%
andrew mortonandrew morton3811.91%17.69%
martin blighmartin bligh3711.60%17.69%
alexey fisheralexey fisher103.13%17.69%
linus torvaldslinus torvalds51.57%17.69%
al viroal viro30.94%17.69%
Total319100.00%13100.00%

/** * ext2_get_branch - read the chain of indirect blocks leading to data * @inode: inode in question * @depth: depth of the chain (1 - direct pointer, etc.) * @offsets: offsets of pointers in inode/indirect blocks * @chain: place to store the result * @err: here we store the error value * * Function fills the array of triples <key, p, bh> and returns %NULL * if everything went OK or the pointer to the last filled triple * (incomplete one) otherwise. Upon the return chain[i].key contains * the number of (i+1)-th block in the chain (as it is stored in memory, * i.e. little-endian 32-bit), chain[i].p contains the address of that * number (it points into struct inode for i==0 and into the bh->b_data * for i>0) and chain[i].bh points to the buffer_head of i-th indirect * block for i>0 and NULL for i==0. In other words, it holds the block * numbers of the chain, addresses they were taken from (and where we can * verify that chain did not change) and buffer_heads hosting these * numbers. * * Function stops when it stumbles upon zero pointer (absent block) * (pointer to last triple returned, *@err == 0) * or when it gets an IO error reading an indirect block * (ditto, *@err == -EIO) * or when it notices that chain had been changed while it was reading * (ditto, *@err == -EAGAIN) * or when it reads all @depth-1 indirect blocks successfully and finds * the whole chain, all way to the data (returns %NULL, *err == 0). */
static Indirect *ext2_get_branch(struct inode *inode, int depth, int *offsets, Indirect chain[4], int *err) { struct super_block *sb = inode->i_sb; Indirect *p = chain; struct buffer_head *bh; *err = 0; /* i_data is not going away, no lock needed */ add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); if (!p->key) goto no_block; while (--depth) { bh = sb_bread(sb, le32_to_cpu(p->key)); if (!bh) goto failure; read_lock(&EXT2_I(inode)->i_meta_lock); if (!verify_chain(chain, p)) goto changed; add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); read_unlock(&EXT2_I(inode)->i_meta_lock); if (!p->key) goto no_block; } return NULL; changed: read_unlock(&EXT2_I(inode)->i_meta_lock); brelse(bh); *err = -EAGAIN; goto no_block; failure: *err = -EIO; no_block: return p; }

Contributors

PersonTokensPropCommitsCommitProp
pre-gitpre-git17178.08%444.44%
al viroal viro3917.81%333.33%
linus torvaldslinus torvalds94.11%222.22%
Total219100.00%9100.00%

/** * ext2_find_near - find a place for allocation with sufficient locality * @inode: owner * @ind: descriptor of indirect block. * * This function returns the preferred place for block allocation. * It is used when heuristic for sequential allocation fails. * Rules are: * + if there is a block to the left of our position - allocate near it. * + if pointer will live in indirect block - allocate near that block. * + if pointer will live in inode - allocate in the same cylinder group. * * In the latter case we colour the starting block by the callers PID to * prevent it from clashing with concurrent allocations for a different inode * in the same block group. The PID is used here so that functionally related * files will be close-by on-disk. * * Caller must make sure that @ind is valid and will stay that way. */
static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind) { struct ext2_inode_info *ei = EXT2_I(inode); __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; __le32 *p; ext2_fsblk_t bg_start; ext2_fsblk_t colour; /* Try to find previous block */ for (p = ind->p - 1; p >= start; p--) if (*p) return le32_to_cpu(*p); /* No such thing, so let's try location of indirect block */ if (ind->bh) return ind->bh->b_blocknr; /* * It is going to be referred from inode itself? OK, just put it into * the same cylinder group then. */ bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group); colour = (current->pid % 16) * (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); return bg_start + colour; }

Contributors

PersonTokensPropCommitsCommitProp
pre-gitpre-git8660.99%956.25%
andrew mortonandrew morton3222.70%16.25%
linus torvaldslinus torvalds117.80%16.25%
akinobu mitaakinobu mita74.96%212.50%
al viroal viro32.13%16.25%
lucas de marchilucas de marchi10.71%16.25%
brian gerstbrian gerst10.71%16.25%
Total141100.00%16100.00%

/** * ext2_find_goal - find a preferred place for allocation. * @inode: owner * @block: block we want * @partial: pointer to the last triple within a chain * * Returns preferred place for a block (the goal). */
static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block, Indirect *partial) { struct ext2_block_alloc_info *block_i; block_i = EXT2_I(inode)->i_block_alloc_info; /* * try the heuristic for sequential allocation, * failing that at least try to get decent locality. */ if (block_i && (block == block_i->last_alloc_logical_block + 1) && (block_i->last_alloc_physical_block != 0)) { return block_i->last_alloc_physical_block + 1; } return ext2_find_near(inode, partial); }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh5778.08%125.00%
pre-gitpre-git1520.55%250.00%
akinobu mitaakinobu mita11.37%125.00%
Total73100.00%4100.00%

/** * ext2_blks_to_allocate: Look up the block map and count the number * of direct blocks need to be allocated for the given branch. * * @branch: chain of indirect blocks * @k: number of blocks need for indirect blocks * @blks: number of data blocks to be mapped. * @blocks_to_boundary: the offset in the indirect block * * return the total number of blocks to be allocate, including the * direct and indirect blocks. */
static int ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks, int blocks_to_boundary) { unsigned long count = 0; /* * Simple case, [t,d]Indirect block(s) has not allocated yet * then it's clear blocks on that path have not allocated */ if (k > 0) { /* right now don't hanel cross boundary allocation */ if (blks < blocks_to_boundary + 1) count += blks; else count += blocks_to_boundary + 1; return count; } count++; while (count < blks && count <= blocks_to_boundary && le32_to_cpu(*(branch[0].p + count)) == 0) { count++; } return count; }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh96100.00%1100.00%
Total96100.00%1100.00%

/** * ext2_alloc_blocks: multiple allocate blocks needed for a branch * @indirect_blks: the number of blocks need to allocate for indirect * blocks * * @new_blocks: on return it will store the new block numbers for * the indirect blocks(if needed) and the first direct block, * @blks: on return it will store the total number of allocated * direct blocks */
static int ext2_alloc_blocks(struct inode *inode, ext2_fsblk_t goal, int indirect_blks, int blks, ext2_fsblk_t new_blocks[4], int *err) { int target, i; unsigned long count = 0; int index = 0; ext2_fsblk_t current_block = 0; int ret = 0; /* * Here we try to allocate the requested multiple blocks at once, * on a best-effort basis. * To build a branch, we should allocate blocks for * the indirect blocks(if not allocated yet), and at least * the first direct block of this branch. That's the * minimum number of blocks need to allocate(required) */ target = blks + indirect_blks; while (1) { count = target; /* allocating blocks for indirect blocks and direct blocks */ current_block = ext2_new_blocks(inode,goal,&count,err); if (*err) goto failed_out; target -= count; /* allocate blocks for indirect blocks */ while (index < indirect_blks && count) { new_blocks[index++] = current_block++; count--; } if (count > 0) break; } /* save the new block number for the first direct block */ new_blocks[index] = current_block; /* total number of blocks allocated for direct blocks */ ret = count; *err = 0; return ret; failed_out: for (i = 0; i <index; i++) ext2_free_blocks(inode, new_blocks[i], 1); if (index) mark_inode_dirty(inode); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh14676.84%19.09%
pre-gitpre-git2412.63%654.55%
al viroal viro178.95%218.18%
linus torvaldslinus torvalds21.05%19.09%
stone wangstone wang10.53%19.09%
Total190100.00%11100.00%

/** * ext2_alloc_branch - allocate and set up a chain of blocks. * @inode: owner * @num: depth of the chain (number of blocks to allocate) * @offsets: offsets (in the blocks) to store the pointers to next. * @branch: place to store the chain in. * * This function allocates @num blocks, zeroes out all but the last one, * links them into chain and (if we are synchronous) writes them to disk. * In other words, it prepares a branch that can be spliced onto the * inode. It stores the information about that chain in the branch[], in * the same format as ext2_get_branch() would do. We are calling it after * we had read the existing part of chain and partial points to the last * triple of that (one with zero ->key). Upon the exit we have the same * picture as after the successful ext2_get_block(), except that in one * place chain is disconnected - *branch->p is still zero (we did not * set the last link), but branch->key contains the number that should * be placed into *branch->p to fill that gap. * * If allocation fails we free all blocks we've allocated (and forget * their buffer_heads) and return the error value the from failed * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain * as described above and return 0. */
static int ext2_alloc_branch(struct inode *inode, int indirect_blks, int *blks, ext2_fsblk_t goal, int *offsets, Indirect *branch) { int blocksize = inode->i_sb->s_blocksize; int i, n = 0; int err = 0; struct buffer_head *bh; int num; ext2_fsblk_t new_blocks[4]; ext2_fsblk_t current_block; num = ext2_alloc_blocks(inode, goal, indirect_blks, *blks, new_blocks, &err); if (err) return err; branch[0].key = cpu_to_le32(new_blocks[0]); /* * metadata blocks and data blocks are allocated. */ for (n = 1; n <= indirect_blks; n++) { /* * Get buffer_head for parent block, zero it out * and set the pointer to new one, then send * parent to disk. */ bh = sb_getblk(inode->i_sb, new_blocks[n-1]); if (unlikely(!bh)) { err = -ENOMEM; goto failed; } branch[n].bh = bh; lock_buffer(bh); memset(bh->b_data, 0, blocksize); branch[n].p = (__le32 *) bh->b_data + offsets[n]; branch[n].key = cpu_to_le32(new_blocks[n]); *branch[n].p = branch[n].key; if ( n == indirect_blks) { current_block = new_blocks[n]; /* * End of chain, update the last new metablock of * the chain to point to the new allocated * data blocks numbers */ for (i=1; i < num; i++) *(branch[n].p + i) = cpu_to_le32(++current_block); } set_buffer_uptodate(bh); unlock_buffer(bh); mark_buffer_dirty_inode(bh, inode); /* We used to sync bh here if IS_SYNC(inode). * But we now rely upon generic_write_sync() * and b_inode_buffers. But not for directories. */ if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) sync_dirty_buffer(bh); } *blks = num; return err; failed: for (i = 1; i < n; i++) bforget(branch[i].bh); for (i = 0; i < indirect_blks; i++) ext2_free_blocks(inode, new_blocks[i], 1); ext2_free_blocks(inode, new_blocks[i], num); return err; }

Contributors

PersonTokensPropCommitsCommitProp
pre-gitpre-git14136.06%1254.55%
martin blighmartin bligh13434.27%14.55%
wang shilongwang shilong8321.23%14.55%
andrew mortonandrew morton205.12%313.64%
linus torvaldslinus torvalds82.05%29.09%
glauber costaglauber costa30.77%14.55%
jan karajan kara10.26%14.55%
al viroal viro10.26%14.55%
Total391100.00%22100.00%

/** * ext2_splice_branch - splice the allocated branch onto inode. * @inode: owner * @block: (logical) number of block we are adding * @where: location of missing link * @num: number of indirect blocks we are adding * @blks: number of direct blocks we are adding * * This function fills the missing link and does all housekeeping needed in * inode (->i_blocks, etc.). In case of success we end up with the full * chain to new block and return 0. */
static void ext2_splice_branch(struct inode *inode, long block, Indirect *where, int num, int blks) { int i; struct ext2_block_alloc_info *block_i; ext2_fsblk_t current_block; block_i = EXT2_I(inode)->i_block_alloc_info; /* XXX LOCKING probably should have i_meta_lock ?*/ /* That's it */ *where->p = where->key; /* * Update the host buffer_head or inode to point to more just allocated * direct blocks blocks */ if (num == 0 && blks > 1) { current_block = le32_to_cpu(where->key) + 1; for (i = 1; i < blks; i++) *(where->p + i ) = cpu_to_le32(current_block++); } /* * update the most recently allocated logical & physical block * in i_block_alloc_info, to assist find the proper goal block for next * allocation */ if (block_i) { block_i->last_alloc_logical_block = block + blks - 1; block_i->last_alloc_physical_block = le32_to_cpu(where[num].key) + blks - 1; } /* We are done with atomic stuff, now do the rest of housekeeping */ /* had we spliced it onto indirect block? */ if (where->bh) mark_buffer_dirty_inode(where->bh, inode); inode->i_ctime = current_time(inode); mark_inode_dirty(inode); }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh8951.45%18.33%
pre-gitpre-git7141.04%866.67%
linus torvaldslinus torvalds63.47%18.33%
deepa dinamanideepa dinamani42.31%18.33%
al viroal viro31.73%18.33%
Total173100.00%12100.00%

/* * Allocation strategy is simple: if we have to allocate something, we will * have to go the whole way to leaf. So let's do it before attaching anything * to tree, set linkage between the newborn blocks, write them if sync is * required, recheck the path, free and repeat if check fails, otherwise * set the last missing link (that will protect us from any truncate-generated * removals - all blocks on the path are immune now) and possibly force the * write on the parent block. * That has a nice additional property: no special recovery from the failed * allocations is needed - we simply release blocks and do not touch anything * reachable from inode. * * `handle' can be NULL if create == 0. * * return > 0, # of blocks mapped or allocated. * return = 0, if plain lookup failed. * return < 0, error case. */
static int ext2_get_blocks(struct inode *inode, sector_t iblock, unsigned long maxblocks, u32 *bno, bool *new, bool *boundary, int create) { int err; int offsets[4]; Indirect chain[4]; Indirect *partial; ext2_fsblk_t goal; int indirect_blks; int blocks_to_boundary = 0; int depth; struct ext2_inode_info *ei = EXT2_I(inode); int count = 0; ext2_fsblk_t first_block = 0; BUG_ON(maxblocks == 0); depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary); if (depth == 0) return -EIO; partial = ext2_get_branch(inode, depth, offsets, chain, &err); /* Simplest case - block found, no allocation needed */ if (!partial) { first_block = le32_to_cpu(chain[depth - 1].key); count++; /*map more blocks*/ while (count < maxblocks && count <= blocks_to_boundary) { ext2_fsblk_t blk; if (!verify_chain(chain, chain + depth - 1)) { /* * Indirect block might be removed by * truncate while we were reading it. * Handling of that case: forget what we've * got now, go to reread. */ err = -EAGAIN; count = 0; break; } blk = le32_to_cpu(*(chain[depth-1].p + count)); if (blk == first_block + count) count++; else break; } if (err != -EAGAIN) goto got_it; } /* Next simple case - plain lookup or failed read of indirect block */ if (!create || err == -EIO) goto cleanup; mutex_lock(&ei->truncate_mutex); /* * If the indirect block is missing while we are reading * the chain(ext2_get_branch() returns -EAGAIN err), or * if the chain has been changed after we grab the semaphore, * (either because another process truncated this branch, or * another get_block allocated this branch) re-grab the chain to see if * the request block has been allocated or not. * * Since we already block the truncate/other get_block * at this point, we will have the current copy of the chain when we * splice the branch into the tree. */ if (err == -EAGAIN || !verify_chain(chain, partial)) { while (partial > chain) { brelse(partial->bh); partial--; } partial = ext2_get_branch(inode, depth, offsets, chain, &err); if (!partial) { count++; mutex_unlock(&ei->truncate_mutex); if (err) goto cleanup; goto got_it; } } /* * Okay, we need to do block allocation. Lazily initialize the block * allocation info here if necessary */ if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info)) ext2_init_block_alloc_info(inode); goal = ext2_find_goal(inode, iblock, partial); /* the number of blocks need to allocate for [d,t]indirect blocks */ indirect_blks = (chain + depth) - partial - 1; /* * Next look up the indirect map to count the totoal number of * direct blocks to allocate for this branch. */ count = ext2_blks_to_allocate(partial, indirect_blks, maxblocks, blocks_to_boundary); /* * XXX ???? Block out ext2_truncate while we alter the tree */ err = ext2_alloc_branch(inode, indirect_blks, &count, goal, offsets + (partial - chain), partial); if (err) { mutex_unlock(&ei->truncate_mutex); goto cleanup; } if (IS_DAX(inode)) { /* * We must unmap blocks before zeroing so that writeback cannot * overwrite zeros with stale data from block device page cache. */ clean_bdev_aliases(inode->i_sb->s_bdev, le32_to_cpu(chain[depth-1].key), count); /* * block must be initialised before we put it in the tree * so that it's not found by another thread before it's * initialised */ err = sb_issue_zeroout(inode->i_sb, le32_to_cpu(chain[depth-1].key), count, GFP_NOFS); if (err) { mutex_unlock(&ei->truncate_mutex); goto cleanup; } } *new = true; ext2_splice_branch(inode, iblock, partial, indirect_blks, count); mutex_unlock(&ei->truncate_mutex); got_it: if (count > blocks_to_boundary) *boundary = true; err = count; /* Clean up and exit */ partial = chain + depth - 1; /* the whole chain */ cleanup: while (partial > chain) { brelse(partial->bh); partial--; } if (err > 0) *bno = le32_to_cpu(chain[depth-1].key); return err; }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh22235.81%13.57%
pre-gitpre-git17327.90%1035.71%
jan karajan kara13020.97%621.43%
carsten ottecarsten otte315.00%13.57%
arnd bergmannarnd bergmann233.71%13.57%
christoph hellwigchristoph hellwig182.90%13.57%
andrew mortonandrew morton132.10%27.14%
matthew wilcoxmatthew wilcox60.97%310.71%
ross zwislerross zwisler20.32%13.57%
linus torvaldslinus torvalds10.16%13.57%
namhyung kimnamhyung kim10.16%13.57%
Total620100.00%28100.00%


int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { unsigned max_blocks = bh_result->b_size >> inode->i_blkbits; bool new = false, boundary = false; u32 bno; int ret; ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary, create); if (ret <= 0) return ret; map_bh(bh_result, inode->i_sb, bno); bh_result->b_size = (ret << inode->i_blkbits); if (new) set_buffer_new(bh_result); if (boundary) set_buffer_boundary(bh_result); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
martin blighmartin bligh6553.28%150.00%
christoph hellwigchristoph hellwig5746.72%150.00%
Total122100.00%2100.00%

#ifdef CONFIG_FS_DAX
static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned flags, struct iomap *iomap) { unsigned int blkbits = inode->i_blkbits; unsigned long first_block = offset >> blkbits; unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits; bool new = false, boundary = false; u32 bno; int ret; ret = ext2_get_blocks(inode, first_block, max_blocks, &bno, &new, &boundary, flags & IOMAP_WRITE); if (ret < 0) return ret; iomap->flags = 0; iomap->bdev = inode->i_sb->s_bdev; iomap->offset = (u64)first_block << blkbits; if (ret == 0) { iomap->type = IOMAP_HOLE; iomap->blkno = IOMAP_NULL_BLOCK; iomap->length = 1 << blkbits; } else { iomap->type = IOMAP_MAPPED; iomap->blkno = (sector_t)bno << (blkbits - 9); iomap->length = (u64)ret << blkbits; iomap->flags |= IOMAP_F_MERGED; } if (new) iomap->flags |= IOMAP_F_NEW; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
christoph hellwigchristoph hellwig21097.22%266.67%
martin blighmartin bligh62.78%133.33%
Total216100.00%3100.00%


static int ext2_iomap_end(struct inode *inode, loff_t