Release 4.11 arch/arm/kernel/topology.c
/*
* arch/arm/kernel/topology.c
*
* Copyright (C) 2011 Linaro Limited.
* Written by: Vincent Guittot
*
* based on arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
/*
* cpu capacity scale management
*/
/*
* cpu capacity table
* This per cpu data structure describes the relative capacity of each core.
* On a heteregenous system, cores don't have the same computation capacity
* and we reflect that difference in the cpu_capacity field so the scheduler
* can take this difference into account during load balance. A per cpu
* structure is preferred because each CPU updates its own cpu_capacity field
* during the load balance except for idle cores. One idle core is selected
* to run the rebalance_domains for all idle cores and the cpu_capacity can be
* updated during this sequence.
*/
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
static DEFINE_MUTEX(cpu_scale_mutex);
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
return per_cpu(cpu_scale, cpu);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 22 | 100.00% | 2 | 100.00% |
Total | 22 | 100.00% | 2 | 100.00% |
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 20 | 86.96% | 1 | 50.00% |
Nico Pitre | 3 | 13.04% | 1 | 50.00% |
Total | 23 | 100.00% | 2 | 100.00% |
#ifdef CONFIG_PROC_SYSCTL
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
return sprintf(buf, "%lu\n",
arch_scale_cpu_capacity(NULL, cpu->dev.id));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 54 | 100.00% | 1 | 100.00% |
Total | 54 | 100.00% | 1 | 100.00% |
static ssize_t cpu_capacity_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
int this_cpu = cpu->dev.id, i;
unsigned long new_capacity;
ssize_t ret;
if (count) {
ret = kstrtoul(buf, 0, &new_capacity);
if (ret)
return ret;
if (new_capacity > SCHED_CAPACITY_SCALE)
return -EINVAL;
mutex_lock(&cpu_scale_mutex);
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
set_capacity_scale(i, new_capacity);
mutex_unlock(&cpu_scale_mutex);
}
return count;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 120 | 100.00% | 1 | 100.00% |
Total | 120 | 100.00% | 1 | 100.00% |
static DEVICE_ATTR_RW(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 57 | 100.00% | 1 | 100.00% |
Total | 57 | 100.00% | 1 | 100.00% |
subsys_initcall(register_cpu_capacity_sysctl);
#endif
#ifdef CONFIG_OF
struct cpu_efficiency {
const char *compatible;
unsigned long efficiency;
};
/*
* Table of relative efficiency of each processors
* The efficiency value must fit in 20bit and the final
* cpu_scale value must be in the range
* 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
* in order to return at most 1 when DIV_ROUND_CLOSEST
* is used to compute the capacity of a CPU.
* Processors that are not defined in the table,
* use the default SCHED_CAPACITY_SCALE value for cpu_scale.
*/
static const struct cpu_efficiency table_efficiency[] = {
{"arm,cortex-a15", 3891},
{"arm,cortex-a7", 2048},
{NULL, },
};
static unsigned long *__cpu_capacity;
#define cpu_capacity(cpu) __cpu_capacity[cpu]
static unsigned long middle_capacity = 1;
static bool cap_from_dt = true;
static u32 *raw_capacity;
static bool cap_parsing_failed;
static u32 capacity_scale;
static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
int ret = 1;
u32 cpu_capacity;
if (cap_parsing_failed)
return !ret;
ret = of_property_read_u32(cpu_node,
"capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
cap_parsing_failed = true;
return !ret;
}
}
capacity_scale = max(cpu_capacity, capacity_scale);
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
cpu_node->full_name, raw_capacity[cpu]);
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %s raw capacity\n",
cpu_node->full_name);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
kfree(raw_capacity);
}
return !ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 159 | 100.00% | 1 | 100.00% |
Total | 159 | 100.00% | 1 | 100.00% |
static void normalize_cpu_capacity(void)
{
u64 capacity;
int cpu;
if (!raw_capacity || cap_parsing_failed)
return;
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
mutex_lock(&cpu_scale_mutex);
for_each_possible_cpu(cpu) {
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
/ capacity_scale;
set_capacity_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, arch_scale_cpu_capacity(NULL, cpu));
}
mutex_unlock(&cpu_scale_mutex);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 81 | 100.00% | 2 | 100.00% |
Total | 81 | 100.00% | 2 | 100.00% |
#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static bool cap_parsing_done;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (cap_parsing_failed || cap_parsing_done)
return 0;
switch (val) {
case CPUFREQ_NOTIFY:
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit,
cpus_to_visit,
policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus) {
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
policy->cpuinfo.max_freq / 1000UL;
capacity_scale = max(raw_capacity[cpu], capacity_scale);
}
if (cpumask_empty(cpus_to_visit)) {
normalize_cpu_capacity();
kfree(raw_capacity);
pr_debug("cpu_capacity: parsing done\n");
cap_parsing_done = true;
schedule_work(&parsing_done_work);
}
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 150 | 100.00% | 1 | 100.00% |
Total | 150 | 100.00% | 1 | 100.00% |
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
if (cap_parsing_failed)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
return -ENOMEM;
}
cpumask_copy(cpus_to_visit, cpu_possible_mask);
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 55 | 100.00% | 1 | 100.00% |
Total | 55 | 100.00% | 1 | 100.00% |
core_initcall(register_cpufreq_notifier);
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 19 | 100.00% | 1 | 100.00% |
Total | 19 | 100.00% | 1 | 100.00% |
#else
static int __init free_raw_capacity(void)
{
kfree(raw_capacity);
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Juri Lelli | 17 | 100.00% | 1 | 100.00% |
Total | 17 | 100.00% | 1 | 100.00% |
core_initcall(free_raw_capacity);
#endif
/*
* Iterate all CPUs' descriptor in DT and compute the efficiency
* (as per table_efficiency). Also calculate a middle efficiency
* as close as possible to (max{eff_i} - min{eff_i}) / 2
* This is later used to scale the cpu_capacity field such that an
* 'average' CPU is of middle capacity. Also see the comments near
* table_efficiency[] and update_cpu_capacity().
*/
static void __init parse_dt_topology(void)
{
const struct cpu_efficiency *cpu_eff;
struct device_node *cn = NULL;
unsigned long min_capacity = ULONG_MAX;
unsigned long max_capacity = 0;
unsigned long capacity = 0;
int cpu = 0;
__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
GFP_NOWAIT);
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return;
}
for_each_possible_cpu(cpu) {
const u32 *rate;
int len;
/* too early to use cpu->of_node */
cn = of_get_cpu_node(cpu, NULL);
if (!cn) {
pr_err("missing device node for CPU %d\n", cpu);
continue;
}
if (parse_cpu_capacity(cn, cpu)) {
of_node_put(cn);
continue;
}
cap_from_dt = false;
for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
if (of_device_is_compatible(cn, cpu_eff->compatible))
break;
if (cpu_eff->compatible == NULL)
continue;
rate = of_get_property(cn, "clock-frequency", &len);
if (!rate || len != 4) {
pr_err("%s missing clock-frequency property\n",
cn->full_name);
continue;
}
capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
/* Save min capacity of the system */
if (capacity < min_capacity)
min_capacity = capacity;
/* Save max capacity of the system */
if (capacity > max_capacity)
max_capacity = capacity;
cpu_capacity(cpu) = capacity;
}
/* If min and max capacities are equals, we bypass the update of the
* cpu_scale because all CPUs have the same capacity. Otherwise, we
* compute a middle_capacity factor that will ensure that the capacity
* of an 'average' CPU of the system will be as close as possible to
* SCHED_CAPACITY_SCALE, which is the default value, but with the
* constraint explained near table_efficiency[].
*/
if (4*max_capacity < (3*(max_capacity + min_capacity)))
middle_capacity = (min_capacity + max_capacity)
>> (SCHED_CAPACITY_SHIFT+1);
else
middle_capacity = ((max_capacity / 3)
>> (SCHED_CAPACITY_SHIFT-1)) + 1;
if (cap_from_dt && !cap_parsing_failed)
normalize_cpu_capacity();
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 225 | 71.88% | 1 | 16.67% |
Juri Lelli | 51 | 16.29% | 1 | 16.67% |
Sudeep KarkadaNagesha | 28 | 8.95% | 1 | 16.67% |
Mark Brown | 6 | 1.92% | 2 | 33.33% |
Nico Pitre | 3 | 0.96% | 1 | 16.67% |
Total | 313 | 100.00% | 6 | 100.00% |
/*
* Look for a customed capacity of a CPU in the cpu_capacity table during the
* boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
* function returns directly for SMP system.
*/
static void update_cpu_capacity(unsigned int cpu)
{
if (!cpu_capacity(cpu) || cap_from_dt)
return;
set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
pr_info("CPU%u: update cpu_capacity %lu\n",
cpu, arch_scale_cpu_capacity(NULL, cpu));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 33 | 70.21% | 2 | 28.57% |
Sudeep KarkadaNagesha | 7 | 14.89% | 1 | 14.29% |
Nico Pitre | 3 | 6.38% | 1 | 14.29% |
Juri Lelli | 2 | 4.26% | 1 | 14.29% |
Mark Brown | 1 | 2.13% | 1 | 14.29% |
Russell King | 1 | 2.13% | 1 | 14.29% |
Total | 47 | 100.00% | 7 | 100.00% |
#else
static inline void parse_dt_topology(void) {}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 8 | 100.00% | 1 | 100.00% |
Total | 8 | 100.00% | 1 | 100.00% |
static inline void update_cpu_capacity(unsigned int cpuid) {}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 9 | 90.00% | 1 | 50.00% |
Nico Pitre | 1 | 10.00% | 1 | 50.00% |
Total | 10 | 100.00% | 2 | 100.00% |
#endif
/*
* cpu topology table
*/
struct cputopo_arm cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 20 | 100.00% | 1 | 100.00% |
Total | 20 | 100.00% | 1 | 100.00% |
/*
* The current assumption is that we can power gate each core independently.
* This will be superseded by DT binding once available.
*/
const struct cpumask *cpu_corepower_mask(int cpu)
{
return &cpu_topology[cpu].thread_sibling;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 20 | 100.00% | 1 | 100.00% |
Total | 20 | 100.00% | 1 | 100.00% |
static void update_siblings_masks(unsigned int cpuid)
{
struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->socket_id != cpu_topo->socket_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
smp_wmb();
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 118 | 99.16% | 1 | 50.00% |
Mark Brown | 1 | 0.84% | 1 | 50.00% |
Total | 119 | 100.00% | 2 | 100.00% |
/*
* store_cpu_topology is called at boot when only one cpu is running
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
* which prevents simultaneous write access to cpu_topology array
*/
void store_cpu_topology(unsigned int cpuid)
{
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
unsigned int mpidr;
/* If the cpu topology has been already set, just return */
if (cpuid_topo->core_id != -1)
return;
mpidr = read_cpuid_mpidr();
/* create cpu topology mapping */
if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
/*
* This is a multiprocessor system
* multiprocessor format & multiprocessor mode field are set
*/
if (mpidr & MPIDR_MT_BITMASK) {
/* core performance interdependency */
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
} else {
/* largely independent cores */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
} else {
/*
* This is an uniprocessor system
* we are in multiprocessor format but uniprocessor system
* or in the old uniprocessor format
*/
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = 0;
cpuid_topo->socket_id = -1;
}
update_siblings_masks(cpuid);
update_cpu_capacity(cpuid);
pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
cpuid, cpu_topology[cpuid].thread_id,
cpu_topology[cpuid].core_id,
cpu_topology[cpuid].socket_id, mpidr);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 166 | 86.01% | 3 | 50.00% |
Lorenzo Pieralisi | 25 | 12.95% | 1 | 16.67% |
Nico Pitre | 1 | 0.52% | 1 | 16.67% |
Russell King | 1 | 0.52% | 1 | 16.67% |
Total | 193 | 100.00% | 6 | 100.00% |
static inline int cpu_corepower_flags(void)
{
return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 14 | 100.00% | 1 | 100.00% |
Total | 14 | 100.00% | 1 | 100.00% |
static struct sched_domain_topology_level arm_topology[] = {
#ifdef CONFIG_SCHED_MC
{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
/*
* init_cpu_topology is called at boot when only one cpu is running
* which prevent simultaneous write access to cpu_topology array
*/
void __init init_cpu_topology(void)
{
unsigned int cpu;
/* init core mask and capacity */
for_each_possible_cpu(cpu) {
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->socket_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
}
smp_wmb();
parse_dt_topology();
/* Set scheduler topology descriptor */
set_sched_topology(arm_topology);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 79 | 97.53% | 3 | 60.00% |
Venkatraman Sathiyamoorthy | 1 | 1.23% | 1 | 20.00% |
Nico Pitre | 1 | 1.23% | 1 | 20.00% |
Total | 81 | 100.00% | 5 | 100.00% |
Overall Contributors
Person | Tokens | Prop | Commits | CommitProp |
Vincent Guittot | 890 | 47.54% | 6 | 33.33% |
Juri Lelli | 872 | 46.58% | 3 | 16.67% |
Sudeep KarkadaNagesha | 43 | 2.30% | 1 | 5.56% |
Lorenzo Pieralisi | 25 | 1.34% | 1 | 5.56% |
Nico Pitre | 16 | 0.85% | 1 | 5.56% |
Mark Brown | 12 | 0.64% | 2 | 11.11% |
Arnd Bergmann | 8 | 0.43% | 1 | 5.56% |
Ingo Molnar | 3 | 0.16% | 1 | 5.56% |
Russell King | 2 | 0.11% | 1 | 5.56% |
Venkatraman Sathiyamoorthy | 1 | 0.05% | 1 | 5.56% |
Total | 1872 | 100.00% | 18 | 100.00% |
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.