cregit-Linux how code gets into the kernel

Release 4.11 arch/powerpc/include/asm/mmu-8xx.h

#ifndef _ASM_POWERPC_MMU_8XX_H_

#define _ASM_POWERPC_MMU_8XX_H_
/*
 * PPC8xx support
 */

/* Control/status registers for the MPC8xx.
 * A write operation to these registers causes serialized access.
 * During software tablewalk, the registers used perform mask/shift-add
 * operations when written/read.  A TLB entry is created when the Mx_RPN
 * is written, and the contents of several registers are used to
 * create the entry.
 */

#define SPRN_MI_CTR	784	
/* Instruction TLB control register */

#define MI_GPM		0x80000000	
/* Set domain manager mode */

#define MI_PPM		0x40000000	
/* Set subpage protection */

#define MI_CIDEF	0x20000000	
/* Set cache inhibit when MMU dis */

#define MI_RSV4I	0x08000000	
/* Reserve 4 TLB entries */

#define MI_PPCS		0x02000000	
/* Use MI_RPN prob/priv state */

#define MI_IDXMASK	0x00001f00	
/* TLB index to be loaded */

#define MI_RESETVAL	0x00000000	
/* Value of register at reset */

/* These are the Ks and Kp from the PowerPC books.  For proper operation,
 * Ks = 0, Kp = 1.
 */

#define SPRN_MI_AP	786

#define MI_Ks		0x80000000	
/* Should not be set */

#define MI_Kp		0x40000000	
/* Should always be set */

/*
 * All pages' PP exec bits are set to 000, which means Execute for Supervisor
 * and no Execute for User.
 * Then we use the APG to say whether accesses are according to Page rules,
 * "all Supervisor" rules (Exec for all) and "all User" rules (Exec for noone)
 * Therefore, we define 4 APG groups. msb is _PAGE_EXEC, lsb is _PAGE_USER
 * 0 (00) => Not User, no exec => 11 (all accesses performed as user)
 * 1 (01) => User but no exec => 11 (all accesses performed as user)
 * 2 (10) => Not User, exec => 01 (rights according to page definition)
 * 3 (11) => User, exec => 00 (all accesses performed as supervisor)
 */

#define MI_APG_INIT	0xf4ffffff

/* The effective page number register.  When read, contains the information
 * about the last instruction TLB miss.  When MI_RPN is written, bits in
 * this register are used to create the TLB entry.
 */

#define SPRN_MI_EPN	787

#define MI_EPNMASK	0xfffff000	
/* Effective page number for entry */

#define MI_EVALID	0x00000200	
/* Entry is valid */

#define MI_ASIDMASK	0x0000000f	
/* ASID match value */
					/* Reset value is undefined */

/* A "level 1" or "segment" or whatever you want to call it register.
 * For the instruction TLB, it contains bits that get loaded into the
 * TLB entry when the MI_RPN is written.
 */

#define SPRN_MI_TWC	789

#define MI_APG		0x000001e0	
/* Access protection group (0) */

#define MI_GUARDED	0x00000010	
/* Guarded storage */

#define MI_PSMASK	0x0000000c	
/* Mask of page size bits */

#define MI_PS8MEG	0x0000000c	
/* 8M page size */

#define MI_PS512K	0x00000004	
/* 512K page size */

#define MI_PS4K_16K	0x00000000	
/* 4K or 16K page size */

#define MI_SVALID	0x00000001	
/* Segment entry is valid */
					/* Reset value is undefined */

/* Real page number.  Defined by the pte.  Writing this register
 * causes a TLB entry to be created for the instruction TLB, using
 * additional information from the MI_EPN, and MI_TWC registers.
 */

#define SPRN_MI_RPN	790

#define MI_SPS16K	0x00000008	
/* Small page size (0 = 4k, 1 = 16k) */

/* Define an RPN value for mapping kernel memory to large virtual
 * pages for boot initialization.  This has real page number of 0,
 * large page size, shared page, cache enabled, and valid.
 * Also mark all subpages valid and write access.
 */

#define MI_BOOTINIT	0x000001fd


#define SPRN_MD_CTR	792	
/* Data TLB control register */

#define MD_GPM		0x80000000	
/* Set domain manager mode */

#define MD_PPM		0x40000000	
/* Set subpage protection */

#define MD_CIDEF	0x20000000	
/* Set cache inhibit when MMU dis */

#define MD_WTDEF	0x10000000	
/* Set writethrough when MMU dis */

#define MD_RSV4I	0x08000000	
/* Reserve 4 TLB entries */

#define MD_TWAM		0x04000000	
/* Use 4K page hardware assist */

#define MD_PPCS		0x02000000	
/* Use MI_RPN prob/priv state */

#define MD_IDXMASK	0x00001f00	
/* TLB index to be loaded */

#define MD_RESETVAL	0x04000000	
/* Value of register at reset */


#define SPRN_M_CASID	793	
/* Address space ID (context) to match */

#define MC_ASIDMASK	0x0000000f	
/* Bits used for ASID value */


/* These are the Ks and Kp from the PowerPC books.  For proper operation,
 * Ks = 0, Kp = 1.
 */

#define SPRN_MD_AP	794

#define MD_Ks		0x80000000	
/* Should not be set */

#define MD_Kp		0x40000000	
/* Should always be set */

/*
 * All pages' PP data bits are set to either 000 or 011, which means
 * respectively RW for Supervisor and no access for User, or RO for
 * Supervisor and no access for user.
 * Then we use the APG to say whether accesses are according to Page rules or
 * "all Supervisor" rules (Access to all)
 * Therefore, we define 2 APG groups. lsb is _PAGE_USER
 * 0 => No user => 01 (all accesses performed according to page definition)
 * 1 => User => 00 (all accesses performed as supervisor
 *                                 according to page definition)
 */

#define MD_APG_INIT	0x4fffffff

/* The effective page number register.  When read, contains the information
 * about the last instruction TLB miss.  When MD_RPN is written, bits in
 * this register are used to create the TLB entry.
 */

#define SPRN_MD_EPN	795

#define MD_EPNMASK	0xfffff000	
/* Effective page number for entry */

#define MD_EVALID	0x00000200	
/* Entry is valid */

#define MD_ASIDMASK	0x0000000f	
/* ASID match value */
					/* Reset value is undefined */

/* The pointer to the base address of the first level page table.
 * During a software tablewalk, reading this register provides the address
 * of the entry associated with MD_EPN.
 */

#define SPRN_M_TWB	796

#define	M_L1TB		0xfffff000	
/* Level 1 table base address */

#define M_L1INDX	0x00000ffc	
/* Level 1 index, when read */
					/* Reset value is undefined */

/* A "level 1" or "segment" or whatever you want to call it register.
 * For the data TLB, it contains bits that get loaded into the TLB entry
 * when the MD_RPN is written.  It is also provides the hardware assist
 * for finding the PTE address during software tablewalk.
 */

#define SPRN_MD_TWC	797

#define MD_L2TB		0xfffff000	
/* Level 2 table base address */

#define MD_L2INDX	0xfffffe00	
/* Level 2 index (*pte), when read */

#define MD_APG		0x000001e0	
/* Access protection group (0) */

#define MD_GUARDED	0x00000010	
/* Guarded storage */

#define MD_PSMASK	0x0000000c	
/* Mask of page size bits */

#define MD_PS8MEG	0x0000000c	
/* 8M page size */

#define MD_PS512K	0x00000004	
/* 512K page size */

#define MD_PS4K_16K	0x00000000	
/* 4K or 16K page size */

#define MD_WT		0x00000002	
/* Use writethrough page attribute */

#define MD_SVALID	0x00000001	
/* Segment entry is valid */
					/* Reset value is undefined */


/* Real page number.  Defined by the pte.  Writing this register
 * causes a TLB entry to be created for the data TLB, using
 * additional information from the MD_EPN, and MD_TWC registers.
 */

#define SPRN_MD_RPN	798

#define MD_SPS16K	0x00000008	
/* Small page size (0 = 4k, 1 = 16k) */

/* This is a temporary storage register that could be used to save
 * a processor working register during a tablewalk.
 */

#define SPRN_M_TW	799

#ifndef __ASSEMBLY__
typedef struct {
	
unsigned int id;
	
unsigned int active;
	
unsigned long vdso_base;
} 
mm_context_t;


#define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000)

#define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE))

/* Page size definitions, common between 32 and 64-bit
 *
 *    shift : is the "PAGE_SHIFT" value for that page size
 *    penc  : is the pte encoding mask
 *
 */

struct mmu_psize_def {
	
unsigned int	shift;	/* number of bits */
	
unsigned int	enc;	/* PTE encoding */
	
unsigned int    ind;    /* Corresponding indirect page size shift */
	
unsigned int	flags;

#define MMU_PAGE_SIZE_DIRECT	0x1	/* Supported as a direct size */

#define MMU_PAGE_SIZE_INDIRECT	0x2	/* Supported as an indirect size */
};

extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];


static inline int shift_to_mmu_psize(unsigned int shift) { int psize; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) if (mmu_psize_defs[psize].shift == shift) return psize; return -1; }

Contributors

PersonTokensPropCommitsCommitProp
Christophe Leroy45100.00%1100.00%
Total45100.00%1100.00%


static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) { if (mmu_psize_defs[mmu_psize].shift) return mmu_psize_defs[mmu_psize].shift; BUG(); }

Contributors

PersonTokensPropCommitsCommitProp
Christophe Leroy32100.00%1100.00%
Total32100.00%1100.00%

#endif /* !__ASSEMBLY__ */ #if defined(CONFIG_PPC_4K_PAGES) #define mmu_virtual_psize MMU_PAGE_4K #elif defined(CONFIG_PPC_16K_PAGES) #define mmu_virtual_psize MMU_PAGE_16K #else #error "Unsupported PAGE_SIZE" #endif #define mmu_linear_psize MMU_PAGE_8M #endif /* _ASM_POWERPC_MMU_8XX_H_ */

Overall Contributors

PersonTokensPropCommitsCommitProp
David Gibson33564.55%111.11%
Christophe Leroy17132.95%666.67%
Benjamin Herrenschmidt132.50%222.22%
Total519100.00%9100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.