cregit-Linux how code gets into the kernel

Release 4.11 arch/powerpc/include/asm/ppc_asm.h

/*
 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
 */
#ifndef _ASM_POWERPC_PPC_ASM_H

#define _ASM_POWERPC_PPC_ASM_H

#include <linux/stringify.h>
#include <asm/asm-compat.h>
#include <asm/processor.h>
#include <asm/ppc-opcode.h>
#include <asm/firmware.h>

#ifdef __ASSEMBLY__


#define SZL			(BITS_PER_LONG/8)

/*
 * Stuff for accurate CPU time accounting.
 * These macros handle transitions between user and system state
 * in exception entry and exit and accumulate time to the
 * user_time and system_time fields in the paca.
 */

#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE

#define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb)

#define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb)

#define ACCOUNT_STOLEN_TIME
#else

#define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb)				\
	MFTB(ra);			/* get timebase */		\
        PPC_LL  rb, ACCOUNT_STARTTIME_USER(ptr);                        \
        PPC_STL ra, ACCOUNT_STARTTIME(ptr);                             \
        subf    rb,rb,ra;		/* subtract start value */	\
        PPC_LL  ra, ACCOUNT_USER_TIME(ptr);                             \
        add     ra,ra,rb;		/* add on to user time */	\
        PPC_STL ra, ACCOUNT_USER_TIME(ptr);                             \

#define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb)                              \
        MFTB(ra);			/* get timebase */		\
        PPC_LL  rb, ACCOUNT_STARTTIME(ptr);                             \
        PPC_STL ra, ACCOUNT_STARTTIME_USER(ptr);                        \
        subf    rb,rb,ra;		/* subtract start value */	\
        PPC_LL  ra, ACCOUNT_SYSTEM_TIME(ptr);                           \
        add     ra,ra,rb;		/* add on to system time */	\
        PPC_STL ra, ACCOUNT_SYSTEM_TIME(ptr)

#ifdef CONFIG_PPC_SPLPAR

#define ACCOUNT_STOLEN_TIME						\
BEGIN_FW_FTR_SECTION;                                                   \
        beq     33f;                                                    \
	/* from user - see if there are any DTL entries to process */	\
        ld      r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
        ld      r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
        addi    r10,r10,LPPACA_DTLIDX;                                  \
        LDX_BE  r10,0,r10;		/* get log write index */	\
        cmpd    cr1,r11,r10;                                            \
        beq+    cr1,33f;                                                \
        bl      accumulate_stolen_time;                         \
        ld      r12,_MSR(r1);                                           \
        andi.   r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
33:                                                                     \
END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)

#else  /* CONFIG_PPC_SPLPAR */

#define ACCOUNT_STOLEN_TIME

#endif /* CONFIG_PPC_SPLPAR */

#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */

/*
 * Macros for storing registers into and loading registers from
 * exception frames.
 */
#ifdef __powerpc64__

#define SAVE_GPR(n, base)	std     n,GPR0+8*(n)(base)

#define REST_GPR(n, base)	ld      n,GPR0+8*(n)(base)

#define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)

#define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
#else

#define SAVE_GPR(n, base)	stw     n,GPR0+4*(n)(base)

#define REST_GPR(n, base)	lwz     n,GPR0+4*(n)(base)

#define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
                                SAVE_10GPRS(22, base)

#define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
                                REST_10GPRS(22, base)
#endif


#define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)

#define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)

#define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)

#define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)

#define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)

#define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)

#define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)

#define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)


#define SAVE_FPR(n, base)	stfd    n,8*TS_FPRWIDTH*(n)(base)

#define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)

#define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)

#define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)

#define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)

#define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)

#define REST_FPR(n, base)	lfd     n,8*TS_FPRWIDTH*(n)(base)

#define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)

#define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)

#define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)

#define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)

#define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)


#define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b

#define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)

#define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)

#define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)

#define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)

#define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)

#define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b

#define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)

#define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)

#define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)

#define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)

#define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)

#ifdef __BIG_ENDIAN__

#define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)

#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
#else

#define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);           \
                                        STXVD2X(n,b,base);      \
                                        XXSWAPD(n,n)


#define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);       \
                                        XXSWAPD(n,n)
#endif
/* Save the lower 32 VSRs in the thread VSR region */

#define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)

#define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)

#define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)

#define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)

#define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)

#define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)

#define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)

#define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)

#define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)

#define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)

#define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)

#define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)

/*
 * b = base register for addressing, o = base offset from register of 1st EVR
 * n = first EVR, s = scratch
 */

#define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)

#define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)

#define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)

#define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)

#define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)

#define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)

#define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n

#define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)

#define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)

#define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)

#define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)

#define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)

/* Macros to adjust thread priority for hardware multithreading */

#define HMT_VERY_LOW	or      31,31,31        # very low priority

#define HMT_LOW		or      1,1,1

#define HMT_MEDIUM_LOW  or      6,6,6           # medium low priority

#define HMT_MEDIUM	or      2,2,2

#define HMT_MEDIUM_HIGH or      5,5,5           # medium high priority

#define HMT_HIGH	or      3,3,3

#define HMT_EXTRA_HIGH	or      7,7,7           # power7 only

#ifdef CONFIG_PPC64

#define ULONG_SIZE 	8
#else

#define ULONG_SIZE	4
#endif

#define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))

#define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)

#ifdef __KERNEL__
#ifdef CONFIG_PPC64


#define STACKFRAMESIZE 256

#define __STK_REG(i)   (112 + ((i)-14)*8)

#define STK_REG(i)     __STK_REG(__REG_##i)

#ifdef PPC64_ELF_ABI_v2

#define STK_GOT		24

#define __STK_PARAM(i)	(32 + ((i)-3)*8)
#else

#define STK_GOT		40

#define __STK_PARAM(i)	(48 + ((i)-3)*8)
#endif

#define STK_PARAM(i)	__STK_PARAM(__REG_##i)

#ifdef PPC64_ELF_ABI_v2


#define _GLOBAL(name) \
	.align 2 ; \
        .type name,@function; \
        .globl name; \
name:


#define _GLOBAL_TOC(name) \
	.align 2 ; \
        .type name,@function; \
        .globl name; \
name: \
0:      addis r2,r12,(.TOC.-0b)@ha; \
        addi r2,r2,(.TOC.-0b)@l; \
        .localentry name,.-name


#define DOTSYM(a)	a

#else


#define XGLUE(a,b) a##b

#define GLUE(a,b) XGLUE(a,b)


#define _GLOBAL(name) \
	.align 2 ; \
        .globl name; \
        .globl GLUE(.,name); \
        .pushsection ".opd","aw"; \
name: \
        .quad GLUE(.,name); \
        .quad .TOC.@tocbase; \
        .quad 0; \
        .popsection; \
        .type GLUE(.,name),@function; \
GLUE(.,name):


#define _GLOBAL_TOC(name) _GLOBAL(name)


#define DOTSYM(a)	GLUE(.,a)

#endif

#else /* 32-bit */


#define _ENTRY(n)	\
	.globl n;       \
n:


#define _GLOBAL(n)	\
	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
        .globl n;       \
n:


#define _GLOBAL_TOC(name) _GLOBAL(name)

#endif

/*
 * __kprobes (the C annotation) puts the symbol into the .kprobes.text
 * section, which gets emitted at the end of regular text.
 *
 * _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
 * a blacklist. The former is for core kprobe functions/data, the
 * latter is for those that incdentially must be excluded from probing
 * and allows them to be linked at more optimal location within text.
 */
#ifdef CONFIG_KPROBES

#define _ASM_NOKPROBE_SYMBOL(entry)			\
	.pushsection "_kprobe_blacklist","aw";          \
        PPC_LONG (entry) ;                              \
        .popsection
#else

#define _ASM_NOKPROBE_SYMBOL(entry)
#endif


#define FUNC_START(name)	_GLOBAL(name)

#define FUNC_END(name)

/* 
 * LOAD_REG_IMMEDIATE(rn, expr)
 *   Loads the value of the constant expression 'expr' into register 'rn'
 *   using immediate instructions only.  Use this when it's important not
 *   to reference other data (i.e. on ppc64 when the TOC pointer is not
 *   valid) and when 'expr' is a constant or absolute address.
 *
 * LOAD_REG_ADDR(rn, name)
 *   Loads the address of label 'name' into register 'rn'.  Use this when
 *   you don't particularly need immediate instructions only, but you need
 *   the whole address in one register (e.g. it's a structure address and
 *   you want to access various offsets within it).  On ppc32 this is
 *   identical to LOAD_REG_IMMEDIATE.
 *
 * LOAD_REG_ADDR_PIC(rn, name)
 *   Loads the address of label 'name' into register 'run'. Use this when
 *   the kernel doesn't run at the linked or relocated address. Please
 *   note that this macro will clobber the lr register.
 *
 * LOAD_REG_ADDRBASE(rn, name)
 * ADDROFF(name)
 *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
 *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
 *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
 *   in size, so is suitable for use directly as an offset in load and store
 *   instructions.  Use this when loading/storing a single word or less as:
 *      LOAD_REG_ADDRBASE(rX, name)
 *      ld      rY,ADDROFF(name)(rX)
 */

/* Be careful, this will clobber the lr register. */

#define LOAD_REG_ADDR_PIC(reg, name)		\
	bl      0f;                             \
0:      mflr    reg;                            \
        addis   reg,reg,(name - 0b)@ha;         \
        addi    reg,reg,(name - 0b)@l;

#ifdef __powerpc64__
#ifdef HAVE_AS_ATHIGH

#define __AS_ATHIGH high
#else

#define __AS_ATHIGH h
#endif

#define LOAD_REG_IMMEDIATE(reg,expr)		\
	lis     reg,(expr)@highest;             \
        ori     reg,reg,(expr)@higher;  \
        rldicr  reg,reg,32,31;          \
        oris    reg,reg,(expr)@__AS_ATHIGH;     \
        ori     reg,reg,(expr)@l;


#define LOAD_REG_ADDR(reg,name)			\
	ld      reg,name@got(r2)


#define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)

#define ADDROFF(name)			0

/* offsets for stack frame layout */

#define LRSAVE	16

#else /* 32-bit */


#define LOAD_REG_IMMEDIATE(reg,expr)		\
	lis     reg,(expr)@ha;          \
        addi    reg,reg,(expr)@l;


#define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)


#define LOAD_REG_ADDRBASE(reg, name)	lis     reg,name@ha

#define ADDROFF(name)			name@l

/* offsets for stack frame layout */

#define LRSAVE	4

#endif

/* various errata or part fixups */
#ifdef CONFIG_PPC601_SYNC_FIX

#define SYNC				\
BEGIN_FTR_SECTION                       \
        sync;                           \
        isync;                          \
END_FTR_SECTION_IFSET(CPU_FTR_601)

#define SYNC_601			\
BEGIN_FTR_SECTION                       \
        sync;                           \
END_FTR_SECTION_IFSET(CPU_FTR_601)

#define ISYNC_601			\
BEGIN_FTR_SECTION                       \
        isync;                          \
END_FTR_SECTION_IFSET(CPU_FTR_601)
#else

#define	SYNC

#define SYNC_601

#define ISYNC_601
#endif

#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)

#define MFTB(dest)			\
90:     mfspr dest, SPRN_TBRL;          \
BEGIN_FTR_SECTION_NESTED(96);           \
        cmpwi dest,0;                   \
        beq-  90b;                      \
END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
#elif defined(CONFIG_8xx)

#define MFTB(dest)			mftb dest
#else

#define MFTB(dest)			mfspr dest, SPRN_TBRL
#endif

#ifndef CONFIG_SMP

#define TLBSYNC
#else /* CONFIG_SMP */
/* tlbsync is not implemented on 601 */

#define TLBSYNC				\
BEGIN_FTR_SECTION                       \
        tlbsync;                        \
        sync;                           \
END_FTR_SECTION_IFCLR(CPU_FTR_601)
#endif

#ifdef CONFIG_PPC64

#define MTOCRF(FXM, RS)			\
	BEGIN_FTR_SECTION_NESTED(848);  \
        mtcrf   (FXM), RS;              \
        FTR_SECTION_ELSE_NESTED(848);   \
        mtocrf (FXM), RS;               \
        ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
#endif

/*
 * This instruction is not implemented on the PPC 603 or 601; however, on
 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
 * All of these instructions exist in the 8xx, they have magical powers,
 * and they must be used.
 */

#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)

#define tlbia					\
	li      r4,1024;                        \
        mtctr   r4;                             \
        lis     r4,KERNELBASE@h;                \
        .machine push;                          \
        .machine "power4";                      \
0:      tlbie   r4;                             \
        .machine pop;                           \
        addi    r4,r4,0x1000;                   \
        bdnz    0b
#endif


#ifdef CONFIG_IBM440EP_ERR42

#define PPC440EP_ERR42 isync
#else

#define PPC440EP_ERR42
#endif

/* The following stops all load and store data streams associated with stream
 * ID (ie. streams created explicitly).  The embedded and server mnemonics for
 * dcbt are different so we use machine "power4" here explicitly.
 */

#define DCBT_STOP_ALL_STREAM_IDS(scratch)	\
.machine push ;                                 \
.machine "power4" ;                             \
       lis     scratch,0x60000000@h;            \
       dcbt    r0,scratch,0b01010;              \
.machine pop

/*
 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
 * keep the address intact to be compatible with code shared with
 * 32-bit classic.
 *
 * On the other hand, I find it useful to have them behave as expected
 * by their name (ie always do the addition) on 64-bit BookE
 */
#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)

#define toreal(rd)

#define fromreal(rd)

/*
 * We use addis to ensure compatibility with the "classic" ppc versions of
 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
 * converting the address in r0, and so this version has to do that too
 * (i.e. set register rd to 0 when rs == 0).
 */

#define tophys(rd,rs)				\
	addis   rd,rs,0


#define tovirt(rd,rs)				\
	addis   rd,rs,0

#elif defined(CONFIG_PPC64)

#define toreal(rd)		
/* we can access c000... in real mode */

#define fromreal(rd)


#define tophys(rd,rs)                           \
	clrldi  rd,rs,2


#define tovirt(rd,rs)                           \
	rotldi  rd,rs,16;                       \
        ori     rd,rd,((KERNELBASE>>48)&0xFFFF);\
        rotldi  rd,rd,48
#else
/*
 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
 * physical base address of RAM at compile time.
 */

#define toreal(rd)	tophys(rd,rd)

#define fromreal(rd)	tovirt(rd,rd)


#define tophys(rd,rs)				\
0:      addis   rd,rs,-PAGE_OFFSET@h;           \
        .section ".vtop_fixup","aw";            \
        .align  1;                              \
        .long   0b;                             \
        .previous


#define tovirt(rd,rs)				\
0:      addis   rd,rs,PAGE_OFFSET@h;            \
        .section ".ptov_fixup","aw";            \
        .align  1;                              \
        .long   0b;                             \
        .previous
#endif

#ifdef CONFIG_PPC_BOOK3S_64

#define RFI		rfid

#define MTMSRD(r)	mtmsrd  r

#define MTMSR_EERI(reg)	mtmsrd  reg,1
#else
#ifndef CONFIG_40x

#define	RFI		rfi
#else

#define RFI		rfi; b .	
/* Prevent prefetch past rfi */
#endif

#define MTMSRD(r)	mtmsr   r

#define MTMSR_EERI(reg)	mtmsr   reg
#endif

#endif /* __KERNEL__ */

/* The boring bits... */

/* Condition Register Bit Fields */


#define	cr0	0

#define	cr1	1

#define	cr2	2

#define	cr3	3

#define	cr4	4

#define	cr5	5

#define	cr6	6

#define	cr7	7


/*
 * General Purpose Registers (GPRs)
 *
 * The lower case r0-r31 should be used in preference to the upper
 * case R0-R31 as they provide more error checking in the assembler.
 * Use R0-31 only when really nessesary.
 */


#define	r0	%r0

#define	r1	%r1

#define	r2	%r2

#define	r3	%r3

#define	r4	%r4

#define	r5	%r5

#define	r6	%r6

#define	r7	%r7

#define	r8	%r8

#define	r9	%r9

#define	r10	%r10

#define	r11	%r11

#define	r12	%r12

#define	r13	%r13

#define	r14	%r14

#define	r15	%r15

#define	r16	%r16

#define	r17	%r17

#define	r18	%r18

#define	r19	%r19

#define	r20	%r20

#define	r21	%r21

#define	r22	%r22

#define	r23	%r23

#define	r24	%r24

#define	r25	%r25

#define	r26	%r26

#define	r27	%r27

#define	r28	%r28

#define	r29	%r29

#define	r30	%r30

#define	r31	%r31


/* Floating Point Registers (FPRs) */


#define	fr0	0

#define	fr1	1

#define	fr2	2

#define	fr3	3

#define	fr4	4

#define	fr5	5

#define	fr6	6

#define	fr7	7

#define	fr8	8

#define	fr9	9

#define	fr10	10

#define	fr11	11

#define	fr12	12

#define	fr13	13

#define	fr14	14

#define	fr15	15

#define	fr16	16

#define	fr17	17

#define	fr18	18

#define	fr19	19

#define	fr20	20

#define	fr21	21

#define	fr22	22

#define	fr23	23

#define	fr24	24

#define	fr25	25

#define	fr26	26

#define	fr27	27

#define	fr28	28

#define	fr29	29

#define	fr30	30

#define	fr31	31

/* AltiVec Registers (VPRs) */


#define	v0	0

#define	v1	1

#define	v2	2

#define	v3	3

#define	v4	4

#define	v5	5

#define	v6	6

#define	v7	7

#define	v8	8

#define	v9	9

#define	v10	10

#define	v11	11

#define	v12	12

#define	v13	13

#define	v14	14

#define	v15	15

#define	v16	16

#define	v17	17

#define	v18	18

#define	v19	19

#define	v20	20

#define	v21	21

#define	v22	22

#define	v23	23

#define	v24	24

#define	v25	25

#define	v26	26

#define	v27	27

#define	v28	28

#define	v29	29

#define	v30	30

#define	v31	31

/* VSX Registers (VSRs) */


#define	vs0	0

#define	vs1	1

#define	vs2	2

#define	vs3	3

#define	vs4	4

#define	vs5	5

#define	vs6	6

#define	vs7	7

#define	vs8	8

#define	vs9	9

#define	vs10	10

#define	vs11	11

#define	vs12	12

#define	vs13	13

#define	vs14	14

#define	vs15	15

#define	vs16	16

#define	vs17	17

#define	vs18	18

#define	vs19	19

#define	vs20	20

#define	vs21	21

#define	vs22	22

#define	vs23	23

#define	vs24	24

#define	vs25	25

#define	vs26	26

#define	vs27	27

#define	vs28	28

#define	vs29	29

#define	vs30	30

#define	vs31	31

#define	vs32	32

#define	vs33	33

#define	vs34	34

#define	vs35	35

#define	vs36	36

#define	vs37	37

#define	vs38	38

#define	vs39	39

#define	vs40	40

#define	vs41	41

#define	vs42	42

#define	vs43	43

#define	vs44	44

#define	vs45	45

#define	vs46	46

#define	vs47	47

#define	vs48	48

#define	vs49	49

#define	vs50	50

#define	vs51	51

#define	vs52	52

#define	vs53	53

#define	vs54	54

#define	vs55	55

#define	vs56	56

#define	vs57	57

#define	vs58	58

#define	vs59	59

#define	vs60	60

#define	vs61	61

#define	vs62	62

#define	vs63	63

/* SPE Registers (EVPRs) */


#define	evr0	0

#define	evr1	1

#define	evr2	2

#define	evr3	3

#define	evr4	4

#define	evr5	5

#define	evr6	6

#define	evr7	7

#define	evr8	8

#define	evr9	9

#define	evr10	10

#define	evr11	11

#define	evr12	12

#define	evr13	13

#define	evr14	14

#define	evr15	15

#define	evr16	16

#define	evr17	17

#define	evr18	18

#define	evr19	19

#define	evr20	20

#define	evr21	21

#define	evr22	22

#define	evr23	23

#define	evr24	24

#define	evr25	25

#define	evr26	26

#define	evr27	27

#define	evr28	28

#define	evr29	29

#define	evr30	30

#define	evr31	31

/* some stab codes */

#define N_FUN	36

#define N_RSYM	64

#define N_SLINE	68

#define N_SO	100

/*
 * Create an endian fixup trampoline
 *
 * This starts with a "tdi 0,0,0x48" instruction which is
 * essentially a "trap never", and thus akin to a nop.
 *
 * The opcode for this instruction read with the wrong endian
 * however results in a b . + 8
 *
 * So essentially we use that trick to execute the following
 * trampoline in "reverse endian" if we are running with the
 * MSR_LE bit set the "wrong" way for whatever endianness the
 * kernel is built for.
 */

#ifdef CONFIG_PPC_BOOK3E

#define FIXUP_ENDIAN
#else

#define FIXUP_ENDIAN						   \
	tdi   0,0,0x48;	  /* Reverse endian of b . + 8            */ \
        b     $+36;	  /* Skip trampoline if endian is good    */ \
        .long 0x05009f42; /* bcl 20,31,$+4                        */ \
        .long 0xa602487d; /* mflr r10                             */ \
        .long 0x1c004a39; /* addi r10,r10,28                      */ \
        .long 0xa600607d; /* mfmsr r11                            */ \
        .long 0x01006b69; /* xori r11,r11,1                       */ \
        .long 0xa6035a7d; /* mtsrr0 r10                           */ \
        .long 0xa6037b7d; /* mtsrr1 r11                           */ \
        .long 0x2400004c  /* rfid                         */
#endif /* !CONFIG_PPC_BOOK3E */

#endif /*  __ASSEMBLY__ */

/*
 * Helper macro for exception table entries
 */

#define EX_TABLE(_fault, _target)		\
	stringify_in_c(.section __ex_table,"a";)\
        stringify_in_c(.balign 4;)              \
        stringify_in_c(.long (_fault) - . ;)    \
        stringify_in_c(.long (_target) - . ;)   \
        stringify_in_c(.previous)

#endif /* _ASM_POWERPC_PPC_ASM_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Michael Neuling81033.55%912.86%
Paul Mackerras41417.15%811.43%
Kumar Gala35714.79%45.71%
Linus Torvalds (pre-git)32513.46%34.29%
Anton Blanchard2349.69%1217.14%
Benjamin Herrenschmidt763.15%710.00%
Scott Wood612.53%34.29%
Nicholas Piggin301.24%45.71%
Christophe Leroy251.04%22.86%
Guenter Roeck160.66%11.43%
David Gibson120.50%34.29%
Michael Ellerman120.50%34.29%
Kevin Hao120.50%11.43%
Linus Torvalds100.41%34.29%
Alexander Graf70.29%11.43%
Stephen Rothwell70.29%22.86%
Dale Farnsworth20.08%11.43%
Frédéric Weisbecker20.08%11.43%
Haren Myneni10.04%11.43%
Russell Currey10.04%11.43%
Total2414100.00%70100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.