cregit-Linux how code gets into the kernel

Release 4.11 arch/x86/include/asm/fpu/types.h

/*
 * FPU data structures:
 */
#ifndef _ASM_X86_FPU_H

#define _ASM_X86_FPU_H

/*
 * The legacy x87 FPU state format, as saved by FSAVE and
 * restored by the FRSTOR instructions:
 */

struct fregs_state {
	
u32			cwd;	/* FPU Control Word             */
	
u32			swd;	/* FPU Status Word              */
	
u32			twd;	/* FPU Tag Word                 */
	
u32			fip;	/* FPU IP Offset                */
	
u32			fcs;	/* FPU IP Selector              */
	
u32			foo;	/* FPU Operand Pointer Offset   */
	
u32			fos;	/* FPU Operand Pointer Selector */

	/* 8*10 bytes for each FP-reg = 80 bytes:                       */
	
u32			st_space[20];

	/* Software status information [not touched by FSAVE]:          */
	
u32			status;
};

/*
 * The legacy fx SSE/MMX FPU state format, as saved by FXSAVE and
 * restored by the FXRSTOR instructions. It's similar to the FSAVE
 * format, but differs in some areas, plus has extensions at
 * the end for the XMM registers.
 */

struct fxregs_state {
	
u16			cwd; /* Control Word                 */
	
u16			swd; /* Status Word                  */
	
u16			twd; /* Tag Word                     */
	
u16			fop; /* Last Instruction Opcode              */
	union {
		struct {
			
u64	rip; /* Instruction Pointer          */
			
u64	rdp; /* Data Pointer                 */
		};
		struct {
			
u32	fip; /* FPU IP Offset                        */
			
u32	fcs; /* FPU IP Selector                      */
			
u32	foo; /* FPU Operand Offset           */
			
u32	fos; /* FPU Operand Selector         */
		};
	};
	
u32			mxcsr;		/* MXCSR Register State */
	
u32			mxcsr_mask;	/* MXCSR Mask           */

	/* 8*16 bytes for each FP-reg = 128 bytes:                      */
	
u32			st_space[32];

	/* 16*16 bytes for each XMM-reg = 256 bytes:                    */
	
u32			xmm_space[64];

	
u32			padding[12];

	union {
		
u32		padding1[12];
		
u32		sw_reserved[12];
	};

} __attribute__((aligned(16)));

/* Default value for fxregs_state.mxcsr: */

#define MXCSR_DEFAULT		0x1f80

/*
 * Software based FPU emulation state. This is arbitrary really,
 * it matches the x87 format to make it easier to understand:
 */

struct swregs_state {
	
u32			cwd;
	
u32			swd;
	
u32			twd;
	
u32			fip;
	
u32			fcs;
	
u32			foo;
	
u32			fos;
	/* 8*10 bytes for each FP-reg = 80 bytes: */
	
u32			st_space[20];
	
u8			ftop;
	
u8			changed;
	
u8			lookahead;
	
u8			no_update;
	
u8			rm;
	
u8			alimit;
	
struct math_emu_info	*info;
	
u32			entry_eip;
};

/*
 * List of XSAVE features Linux knows about:
 */

enum xfeature {
	
XFEATURE_FP,
	
XFEATURE_SSE,
	/*
         * Values above here are "legacy states".
         * Those below are "extended states".
         */
	
XFEATURE_YMM,
	
XFEATURE_BNDREGS,
	
XFEATURE_BNDCSR,
	
XFEATURE_OPMASK,
	
XFEATURE_ZMM_Hi256,
	
XFEATURE_Hi16_ZMM,
	
XFEATURE_PT_UNIMPLEMENTED_SO_FAR,
	
XFEATURE_PKRU,

	
XFEATURE_MAX,
};


#define XFEATURE_MASK_FP		(1 << XFEATURE_FP)

#define XFEATURE_MASK_SSE		(1 << XFEATURE_SSE)

#define XFEATURE_MASK_YMM		(1 << XFEATURE_YMM)

#define XFEATURE_MASK_BNDREGS		(1 << XFEATURE_BNDREGS)

#define XFEATURE_MASK_BNDCSR		(1 << XFEATURE_BNDCSR)

#define XFEATURE_MASK_OPMASK		(1 << XFEATURE_OPMASK)

#define XFEATURE_MASK_ZMM_Hi256		(1 << XFEATURE_ZMM_Hi256)

#define XFEATURE_MASK_Hi16_ZMM		(1 << XFEATURE_Hi16_ZMM)

#define XFEATURE_MASK_PT		(1 << XFEATURE_PT_UNIMPLEMENTED_SO_FAR)

#define XFEATURE_MASK_PKRU		(1 << XFEATURE_PKRU)


#define XFEATURE_MASK_FPSSE		(XFEATURE_MASK_FP | XFEATURE_MASK_SSE)

#define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK \
                                         | XFEATURE_MASK_ZMM_Hi256 \
                                         | XFEATURE_MASK_Hi16_ZMM)


#define FIRST_EXTENDED_XFEATURE	XFEATURE_YMM


struct reg_128_bit {
	
u8      regbytes[128/8];
};

struct reg_256_bit {
	
u8	regbytes[256/8];
};

struct reg_512_bit {
	
u8	regbytes[512/8];
};

/*
 * State component 2:
 *
 * There are 16x 256-bit AVX registers named YMM0-YMM15.
 * The low 128 bits are aliased to the 16 SSE registers (XMM0-XMM15)
 * and are stored in 'struct fxregs_state::xmm_space[]' in the
 * "legacy" area.
 *
 * The high 128 bits are stored here.
 */

struct ymmh_struct {
	
struct reg_128_bit              hi_ymm[16];
} 
__packed;

/* Intel MPX support: */


struct mpx_bndreg {
	
u64				lower_bound;
	
u64				upper_bound;
} 
__packed;
/*
 * State component 3 is used for the 4 128-bit bounds registers
 */

struct mpx_bndreg_state {
	
struct mpx_bndreg		bndreg[4];
} 
__packed;

/*
 * State component 4 is used for the 64-bit user-mode MPX
 * configuration register BNDCFGU and the 64-bit MPX status
 * register BNDSTATUS.  We call the pair "BNDCSR".
 */

struct mpx_bndcsr {
	
u64				bndcfgu;
	
u64				bndstatus;
} 
__packed;

/*
 * The BNDCSR state is padded out to be 64-bytes in size.
 */

struct mpx_bndcsr_state {
	union {
		
struct mpx_bndcsr		bndcsr;
		
u8				pad_to_64_bytes[64];
	};
} 
__packed;

/* AVX-512 Components: */

/*
 * State component 5 is used for the 8 64-bit opmask registers
 * k0-k7 (opmask state).
 */

struct avx_512_opmask_state {
	
u64				opmask_reg[8];
} 
__packed;

/*
 * State component 6 is used for the upper 256 bits of the
 * registers ZMM0-ZMM15. These 16 256-bit values are denoted
 * ZMM0_H-ZMM15_H (ZMM_Hi256 state).
 */

struct avx_512_zmm_uppers_state {
	
struct reg_256_bit		zmm_upper[16];
} 
__packed;

/*
 * State component 7 is used for the 16 512-bit registers
 * ZMM16-ZMM31 (Hi16_ZMM state).
 */

struct avx_512_hi16_state {
	
struct reg_512_bit		hi16_zmm[16];
} 
__packed;

/*
 * State component 9: 32-bit PKRU register.  The state is
 * 8 bytes long but only 4 bytes is used currently.
 */

struct pkru_state {
	
u32				pkru;
	
u32				pad;
} 
__packed;


struct xstate_header {
	
u64				xfeatures;
	
u64				xcomp_bv;
	
u64				reserved[6];
} __attribute__((packed));

/*
 * xstate_header.xcomp_bv[63] indicates that the extended_state_area
 * is in compacted format.
 */

#define XCOMP_BV_COMPACTED_FORMAT ((u64)1 << 63)

/*
 * This is our most modern FPU state format, as saved by the XSAVE
 * and restored by the XRSTOR instructions.
 *
 * It consists of a legacy fxregs portion, an xstate header and
 * subsequent areas as defined by the xstate header.  Not all CPUs
 * support all the extensions, so the size of the extended area
 * can vary quite a bit between CPUs.
 */

struct xregs_state {
	
struct fxregs_state		i387;
	
struct xstate_header		header;
	
u8				extended_state_area[0];
} __attribute__ ((packed, aligned (64)));

/*
 * This is a union of all the possible FPU state formats
 * put together, so that we can pick the right one runtime.
 *
 * The size of the structure is determined by the largest
 * member - which is the xsave area.  The padding is there
 * to ensure that statically-allocated task_structs (just
 * the init_task today) have enough space.
 */

union fpregs_state {
	
struct fregs_state		fsave;
	
struct fxregs_state		fxsave;
	
struct swregs_state		soft;
	
struct xregs_state		xsave;
	
u8 __padding[PAGE_SIZE];
};

/*
 * Highest level per task FPU state data structure that
 * contains the FPU register state plus various FPU
 * state fields:
 */

struct fpu {
	/*
         * @last_cpu:
         *
         * Records the last CPU on which this context was loaded into
         * FPU registers. (In the lazy-restore case we might be
         * able to reuse FPU registers across multiple context switches
         * this way, if no intermediate task used the FPU.)
         *
         * A value of -1 is used to indicate that the FPU state in context
         * memory is newer than the FPU state in registers, and that the
         * FPU state should be reloaded next time the task is run.
         */
	
unsigned int			last_cpu;

	/*
         * @fpstate_active:
         *
         * This flag indicates whether this context is active: if the task
         * is not running then we can restore from this context, if the task
         * is running then we should save into this context.
         */
	
unsigned char			fpstate_active;

	/*
         * @fpregs_active:
         *
         * This flag determines whether a given context is actively
         * loaded into the FPU's registers and that those registers
         * represent the task's current FPU state.
         *
         * Note the interaction with fpstate_active:
         *
         *   # task does not use the FPU:
         *   fpstate_active == 0
         *
         *   # task uses the FPU and regs are active:
         *   fpstate_active == 1 && fpregs_active == 1
         *
         *   # the regs are inactive but still match fpstate:
         *   fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
         *
         * The third state is what we use for the lazy restore optimization
         * on lazy-switching CPUs.
         */
	
unsigned char			fpregs_active;

	/*
         * @state:
         *
         * In-memory copy of all FPU registers that we save/restore
         * over context switches. If the task is using the FPU then
         * the registers in the FPU are more recent than this state
         * copy. If the task context-switches away then they get
         * saved here and represent the FPU state.
         */
	
union fpregs_state		state;
	/*
         * WARNING: 'state' is dynamically-sized.  Do not put
         * anything after it here.
         */
};

#endif /* _ASM_X86_FPU_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Ingo Molnar39566.50%1145.83%
Dave Hansen18931.82%1041.67%
Yu-cheng Yu91.52%28.33%
Andrew Lutomirski10.17%14.17%
Total594100.00%24100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.