cregit-Linux how code gets into the kernel

Release 4.11 arch/x86/include/uapi/asm/bootparam.h

#ifndef _ASM_X86_BOOTPARAM_H

#define _ASM_X86_BOOTPARAM_H

/* setup_data types */

#define SETUP_NONE			0

#define SETUP_E820_EXT			1

#define SETUP_DTB			2

#define SETUP_PCI			3

#define SETUP_EFI			4

#define SETUP_APPLE_PROPERTIES		5

/* ram_size flags */

#define RAMDISK_IMAGE_START_MASK	0x07FF

#define RAMDISK_PROMPT_FLAG		0x8000

#define RAMDISK_LOAD_FLAG		0x4000

/* loadflags */

#define LOADED_HIGH	(1<<0)

#define KASLR_FLAG	(1<<1)

#define QUIET_FLAG	(1<<5)

#define KEEP_SEGMENTS	(1<<6)

#define CAN_USE_HEAP	(1<<7)

/* xloadflags */

#define XLF_KERNEL_64			(1<<0)

#define XLF_CAN_BE_LOADED_ABOVE_4G	(1<<1)

#define XLF_EFI_HANDOVER_32		(1<<2)

#define XLF_EFI_HANDOVER_64		(1<<3)

#define XLF_EFI_KEXEC			(1<<4)

#ifndef __ASSEMBLY__

#include <linux/types.h>
#include <linux/screen_info.h>
#include <linux/apm_bios.h>
#include <linux/edd.h>
#include <asm/e820.h>
#include <asm/ist.h>
#include <video/edid.h>

/* extensible setup data list node */

struct setup_data {
	
__u64 next;
	
__u32 type;
	
__u32 len;
	
__u8 data[0];
};


struct setup_header {
	
__u8	setup_sects;
	
__u16	root_flags;
	
__u32	syssize;
	
__u16	ram_size;
	
__u16	vid_mode;
	
__u16	root_dev;
	
__u16	boot_flag;
	
__u16	jump;
	
__u32	header;
	
__u16	version;
	
__u32	realmode_swtch;
	
__u16	start_sys_seg;
	
__u16	kernel_version;
	
__u8	type_of_loader;
	
__u8	loadflags;
	
__u16	setup_move_size;
	
__u32	code32_start;
	
__u32	ramdisk_image;
	
__u32	ramdisk_size;
	
__u32	bootsect_kludge;
	
__u16	heap_end_ptr;
	
__u8	ext_loader_ver;
	
__u8	ext_loader_type;
	
__u32	cmd_line_ptr;
	
__u32	initrd_addr_max;
	
__u32	kernel_alignment;
	
__u8	relocatable_kernel;
	
__u8	min_alignment;
	
__u16	xloadflags;
	
__u32	cmdline_size;
	
__u32	hardware_subarch;
	
__u64	hardware_subarch_data;
	
__u32	payload_offset;
	
__u32	payload_length;
	
__u64	setup_data;
	
__u64	pref_address;
	
__u32	init_size;
	
__u32	handover_offset;
} __attribute__((packed));


struct sys_desc_table {
	
__u16 length;
	
__u8  table[14];
};

/* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */

struct olpc_ofw_header {
	
__u32 ofw_magic;	/* OFW signature */
	
__u32 ofw_version;
	
__u32 cif_handler;	/* callback into OFW */
	
__u32 irq_desc_table;
} __attribute__((packed));


struct efi_info {
	
__u32 efi_loader_signature;
	
__u32 efi_systab;
	
__u32 efi_memdesc_size;
	
__u32 efi_memdesc_version;
	
__u32 efi_memmap;
	
__u32 efi_memmap_size;
	
__u32 efi_systab_hi;
	
__u32 efi_memmap_hi;
};

/* The so-called "zeropage" */

struct boot_params {
	
struct screen_info screen_info;			/* 0x000 */
	
struct apm_bios_info apm_bios_info;		/* 0x040 */
	
__u8  _pad2[4];					/* 0x054 */
	
__u64  tboot_addr;				/* 0x058 */
	
struct ist_info ist_info;			/* 0x060 */
	
__u8  _pad3[16];				/* 0x070 */
	
__u8  hd0_info[16];	/* obsolete! */		/* 0x080 */
	
__u8  hd1_info[16];	/* obsolete! */		/* 0x090 */
	
struct sys_desc_table sys_desc_table; /* obsolete! */	/* 0x0a0 */
	
struct olpc_ofw_header olpc_ofw_header;		/* 0x0b0 */
	
__u32 ext_ramdisk_image;			/* 0x0c0 */
	
__u32 ext_ramdisk_size;				/* 0x0c4 */
	
__u32 ext_cmd_line_ptr;				/* 0x0c8 */
	
__u8  _pad4[116];				/* 0x0cc */
	
struct edid_info edid_info;			/* 0x140 */
	
struct efi_info efi_info;			/* 0x1c0 */
	
__u32 alt_mem_k;				/* 0x1e0 */
	
__u32 scratch;		/* Scratch field! */	/* 0x1e4 */
	
__u8  e820_entries;				/* 0x1e8 */
	
__u8  eddbuf_entries;				/* 0x1e9 */
	
__u8  edd_mbr_sig_buf_entries;			/* 0x1ea */
	
__u8  kbd_status;				/* 0x1eb */
	
__u8  secure_boot;				/* 0x1ec */
	
__u8  _pad5[2];					/* 0x1ed */
	/*
         * The sentinel is set to a nonzero value (0xff) in header.S.
         *
         * A bootloader is supposed to only take setup_header and put
         * it into a clean boot_params buffer. If it turns out that
         * it is clumsy or too generous with the buffer, it most
         * probably will pick up the sentinel variable too. The fact
         * that this variable then is still 0xff will let kernel
         * know that some variables in boot_params are invalid and
         * kernel should zero out certain portions of boot_params.
         */
	
__u8  sentinel;					/* 0x1ef */
	
__u8  _pad6[1];					/* 0x1f0 */
	
struct setup_header hdr;    /* setup header */	/* 0x1f1 */
	
__u8  _pad7[0x290-0x1f1-sizeof(struct setup_header)];
	
__u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX];	/* 0x290 */
	
struct e820entry e820_map[E820MAX];		/* 0x2d0 */
	
__u8  _pad8[48];				/* 0xcd0 */
	
struct edd_info eddbuf[EDDMAXNR];		/* 0xd00 */
	
__u8  _pad9[276];				/* 0xeec */
} __attribute__((packed));

/**
 * enum x86_hardware_subarch - x86 hardware subarchitecture
 *
 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86
 * boot protocol 2.07 to help distinguish and support custom x86 boot
 * sequences. This enum represents accepted values for the x86
 * hardware_subarch.  Custom x86 boot sequences (not X86_SUBARCH_PC) do not
 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the
 * hardware_subarch can be used on the Linux entry path to revector to a
 * subarchitecture stub when needed. This subarchitecture stub can be used to
 * set up Linux boot parameters or for special care to account for nonstandard
 * handling of page tables.
 *
 * These enums should only ever be used by x86 code, and the code that uses
 * it should be well contained and compartamentalized.
 *
 * KVM and Xen HVM do not have a subarch as these are expected to follow
 * standard x86 boot entries. If there is a genuine need for "hypervisor" type
 * that should be considered separately in the future. Future guest types
 * should seriously consider working with standard x86 boot stubs such as
 * the BIOS or EFI boot stubs.
 *
 * WARNING: this enum is only used for legacy hacks, for platform features that
 *          are not easily enumerated or discoverable. You should not ever use
 *          this for new features.
 *
 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
 *      PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest
 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
 *      which start at asm startup_xen() entry point and later jump to the C
 *      xen_start_kernel() entry point. Both domU and dom0 type of guests are
 *      currently supportd through this PV boot path.
 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform
 *      systems which do not have the PCI legacy interfaces.
 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC for
 *      for settop boxes and media devices, the use of a subarch for CE4100
 *      is more of a hack...
 */

enum x86_hardware_subarch {
	
X86_SUBARCH_PC = 0,
	
X86_SUBARCH_LGUEST,
	
X86_SUBARCH_XEN,
	
X86_SUBARCH_INTEL_MID,
	
X86_SUBARCH_CE4100,
	
X86_NR_SUBARCHS,
};

#endif /* __ASSEMBLY__ */

#endif /* _ASM_X86_BOOTPARAM_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin36966.37%622.22%
Rusty Russell6411.51%311.11%
Huang Ying315.58%27.41%
Andres Salomon315.58%13.70%
Jacob jun Pan142.52%13.70%
Matt Fleming91.62%27.41%
Dave Young81.44%27.41%
David Howells61.08%13.70%
Borislav Petkov50.90%27.41%
Joseph Cihula50.90%13.70%
Lukas Wunner40.72%13.70%
Joshua Cov40.72%13.70%
Thomas Gleixner20.36%13.70%
Luis R. Rodriguez20.36%13.70%
Kuppuswamy Sathyanarayanan10.18%13.70%
Paolo Pisati10.18%13.70%
Total556100.00%27100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.