cregit-Linux how code gets into the kernel

Release 4.11 crypto/vmac.c

Directory: crypto
/*
 * Modified to interface to the Linux kernel
 * Copyright (c) 2009, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 */

/* --------------------------------------------------------------------------
 * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
 * This implementation is herby placed in the public domain.
 * The authors offers no warranty. Use at your own risk.
 * Please send bug reports to the authors.
 * Last modified: 17 APR 08, 1700 PDT
 * ----------------------------------------------------------------------- */

#include <linux/init.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <asm/byteorder.h>
#include <crypto/scatterwalk.h>
#include <crypto/vmac.h>
#include <crypto/internal/hash.h>

/*
 * Constants and masks
 */

#define UINT64_C(x) x##ULL

static const u64 p64   = UINT64_C(0xfffffffffffffeff);	
/* 2^64 - 257 prime  */

static const u64 m62   = UINT64_C(0x3fffffffffffffff);	
/* 62-bit mask       */

static const u64 m63   = UINT64_C(0x7fffffffffffffff);	
/* 63-bit mask       */

static const u64 m64   = UINT64_C(0xffffffffffffffff);	
/* 64-bit mask       */

static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);	
/* Poly key mask     */


#define pe64_to_cpup le64_to_cpup		
/* Prefer little endian */

#ifdef __LITTLE_ENDIAN

#define INDEX_HIGH 1

#define INDEX_LOW 0
#else

#define INDEX_HIGH 0

#define INDEX_LOW 1
#endif

/*
 * The following routines are used in this implementation. They are
 * written via macros to simulate zero-overhead call-by-reference.
 *
 * MUL64: 64x64->128-bit multiplication
 * PMUL64: assumes top bits cleared on inputs
 * ADD128: 128x128->128-bit addition
 */


#define ADD128(rh, rl, ih, il)						\
	do {                                                            \
                u64 _il = (il);                                         \
                (rl) += (_il);                                          \
                if ((rl) < (_il))                                       \
                        (rh)++;                                         \
                (rh) += (ih);                                           \
        } while (0)


#define MUL32(i1, i2)	((u64)(u32)(i1)*(u32)(i2))


#define PMUL64(rh, rl, i1, i2)	/* Assumes m doesn't overflow */	\
	do {                                                            \
                u64 _i1 = (i1), _i2 = (i2);                             \
                u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
                rh = MUL32(_i1>>32, _i2>>32);                           \
                rl = MUL32(_i1, _i2);                                   \
                ADD128(rh, rl, (m >> 32), (m << 32));                   \
        } while (0)


#define MUL64(rh, rl, i1, i2)						\
	do {                                                            \
                u64 _i1 = (i1), _i2 = (i2);                             \
                u64 m1 = MUL32(_i1, _i2>>32);                           \
                u64 m2 = MUL32(_i1>>32, _i2);                           \
                rh = MUL32(_i1>>32, _i2>>32);                           \
                rl = MUL32(_i1, _i2);                                   \
                ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
                ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
        } while (0)

/*
 * For highest performance the L1 NH and L2 polynomial hashes should be
 * carefully implemented to take advantage of one's target architecture.
 * Here these two hash functions are defined multiple time; once for
 * 64-bit architectures, once for 32-bit SSE2 architectures, and once
 * for the rest (32-bit) architectures.
 * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
 * Optionally, nh_vmac_nhbytes can be defined (for multiples of
 * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
 * NH computations at once).
 */

#ifdef CONFIG_64BIT


#define nh_16(mp, kp, nw, rh, rl)					\
	do {                                                            \
                int i; u64 th, tl;                                      \
                rh = rl = 0;                                            \
                for (i = 0; i < nw; i += 2) {                           \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
                        ADD128(rh, rl, th, tl);                         \
                }                                                       \
        } while (0)


#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)				\
	do {                                                            \
                int i; u64 th, tl;                                      \
                rh1 = rl1 = rh = rl = 0;                                \
                for (i = 0; i < nw; i += 2) {                           \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
                        ADD128(rh1, rl1, th, tl);                       \
                }                                                       \
        } while (0)

#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */

#define nh_vmac_nhbytes(mp, kp, nw, rh, rl)				\
	do {                                                            \
                int i; u64 th, tl;                                      \
                rh = rl = 0;                                            \
                for (i = 0; i < nw; i += 8) {                           \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
                        ADD128(rh, rl, th, tl);                         \
                }                                                       \
        } while (0)


#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)			\
	do {                                                            \
                int i; u64 th, tl;                                      \
                rh1 = rl1 = rh = rl = 0;                                \
                for (i = 0; i < nw; i += 8) {                           \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
                                pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
                        ADD128(rh1, rl1, th, tl);                       \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
                                pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
                                pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
                        ADD128(rh1, rl1, th, tl);                       \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
                                pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
                                pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
                        ADD128(rh1, rl1, th, tl);                       \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
                                pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
                        ADD128(rh, rl, th, tl);                         \
                        MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
                                pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
                        ADD128(rh1, rl1, th, tl);                       \
                }                                                       \
        } while (0)
#endif


#define poly_step(ah, al, kh, kl, mh, ml)				\
	do {                                                            \
                u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
		/* compute ab*cd, put bd into result registers */	\
                PMUL64(t3h, t3l, al, kh);                               \
                PMUL64(t2h, t2l, ah, kl);                               \
                PMUL64(t1h, t1l, ah, 2*kh);                             \
                PMUL64(ah, al, al, kl);                                 \
		/* add 2 * ac to result */				\
                ADD128(ah, al, t1h, t1l);                               \
		/* add together ad + bc */				\
                ADD128(t2h, t2l, t3h, t3l);                             \
		/* now (ah,al), (t2l,2*t2h) need summing */		\
		/* first add the high registers, carrying into t2h */	\
                ADD128(t2h, ah, z, t2l);                                \
		/* double t2h and add top bit of ah */			\
                t2h = 2 * t2h + (ah >> 63);                             \
                ah &= m63;                                              \
		/* now add the low registers */				\
                ADD128(ah, al, mh, ml);                                 \
                ADD128(ah, al, z, t2h);                                 \
        } while (0)

#else /* ! CONFIG_64BIT */

#ifndef nh_16

#define nh_16(mp, kp, nw, rh, rl)					\
	do {                                                            \
                u64 t1, t2, m1, m2, t;                                  \
                int i;                                                  \
                rh = rl = t = 0;                                        \
                for (i = 0; i < nw; i += 2)  {                          \
                        t1 = pe64_to_cpup(mp+i) + kp[i];                \
                        t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
                        m2 = MUL32(t1 >> 32, t2);                       \
                        m1 = MUL32(t1, t2 >> 32);                       \
                        ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
                                MUL32(t1, t2));                         \
                        rh += (u64)(u32)(m1 >> 32)                      \
                                + (u32)(m2 >> 32);                      \
                        t += (u64)(u32)m1 + (u32)m2;                    \
                }                                                       \
                ADD128(rh, rl, (t >> 32), (t << 32));                   \
        } while (0)
#endif


static void poly_step_func(u64 *ahi, u64 *alo, const u64 *kh, const u64 *kl, const u64 *mh, const u64 *ml) { #define a0 (*(((u32 *)alo)+INDEX_LOW)) #define a1 (*(((u32 *)alo)+INDEX_HIGH)) #define a2 (*(((u32 *)ahi)+INDEX_LOW)) #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) #define k0 (*(((u32 *)kl)+INDEX_LOW)) #define k1 (*(((u32 *)kl)+INDEX_HIGH)) #define k2 (*(((u32 *)kh)+INDEX_LOW)) #define k3 (*(((u32 *)kh)+INDEX_HIGH)) u64 p, q, t; u32 t2; p = MUL32(a3, k3); p += p; p += *(u64 *)mh; p += MUL32(a0, k2); p += MUL32(a1, k1); p += MUL32(a2, k0); t = (u32)(p); p >>= 32; p += MUL32(a0, k3); p += MUL32(a1, k2); p += MUL32(a2, k1); p += MUL32(a3, k0); t |= ((u64)((u32)p & 0x7fffffff)) << 32; p >>= 31; p += (u64)(((u32 *)ml)[INDEX_LOW]); p += MUL32(a0, k0); q = MUL32(a1, k3); q += MUL32(a2, k2); q += MUL32(a3, k1); q += q; p += q; t2 = (u32)(p); p >>= 32; p += (u64)(((u32 *)ml)[INDEX_HIGH]); p += MUL32(a0, k1); p += MUL32(a1, k0); q = MUL32(a2, k3); q += MUL32(a3, k2); q += q; p += q; *(u64 *)(alo) = (p << 32) | t2; p >>= 32; *(u64 *)(ahi) = p + t; #undef a0 #undef a1 #undef a2 #undef a3 #undef k0 #undef k1 #undef k2 #undef k3 }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang391100.00%1100.00%
Total391100.00%1100.00%

#define poly_step(ah, al, kh, kl, mh, ml) \ poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) #endif /* end of specialized NH and poly definitions */ /* At least nh_16 is defined. Defined others as needed here */ #ifndef nh_16_2 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ do { \ nh_16(mp, kp, nw, rh, rl); \ nh_16(mp, ((kp)+2), nw, rh2, rl2); \ } while (0) #endif #ifndef nh_vmac_nhbytes #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ nh_16(mp, kp, nw, rh, rl) #endif #ifndef nh_vmac_nhbytes_2 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ do { \ nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ } while (0) #endif
static void vhash_abort(struct vmac_ctx *ctx) { ctx->polytmp[0] = ctx->polykey[0] ; ctx->polytmp[1] = ctx->polykey[1] ; ctx->first_block_processed = 0; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang45100.00%1100.00%
Total45100.00%1100.00%


static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) { u64 rh, rl, t, z = 0; /* fully reduce (p1,p2)+(len,0) mod p127 */ t = p1 >> 63; p1 &= m63; ADD128(p1, p2, len, t); /* At this point, (p1,p2) is at most 2^127+(len<<64) */ t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); ADD128(p1, p2, z, t); p1 &= m63; /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ t = p1 + (p2 >> 32); t += (t >> 32); t += (u32)t > 0xfffffffeu; p1 += (t >> 32); p2 += (p1 << 32); /* compute (p1+k1)%p64 and (p2+k2)%p64 */ p1 += k1; p1 += (0 - (p1 < k1)) & 257; p2 += k2; p2 += (0 - (p2 < k2)) & 257; /* compute (p1+k1)*(p2+k2)%p64 */ MUL64(rh, rl, p1, p2); t = rh >> 56; ADD128(t, rl, z, rh); rh <<= 8; ADD128(t, rl, z, rh); t += t << 8; rl += t; rl += (0 - (rl < t)) & 257; rl += (0 - (rl > p64-1)) & 257; return rl; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang260100.00%1100.00%
Total260100.00%1100.00%


static void vhash_update(const unsigned char *m, unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ struct vmac_ctx *ctx) { u64 rh, rl, *mptr; const u64 *kptr = (u64 *)ctx->nhkey; int i; u64 ch, cl; u64 pkh = ctx->polykey[0]; u64 pkl = ctx->polykey[1]; if (!mbytes) return; BUG_ON(mbytes % VMAC_NHBYTES); mptr = (u64 *)m; i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ ch = ctx->polytmp[0]; cl = ctx->polytmp[1]; if (!ctx->first_block_processed) { ctx->first_block_processed = 1; nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); rh &= m62; ADD128(ch, cl, rh, rl); mptr += (VMAC_NHBYTES/sizeof(u64)); i--; } while (i--) { nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); rh &= m62; poly_step(ch, cl, pkh, pkl, rh, rl); mptr += (VMAC_NHBYTES/sizeof(u64)); } ctx->polytmp[0] = ch; ctx->polytmp[1] = cl; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang23394.72%150.00%
Salman Qazi135.28%150.00%
Total246100.00%2100.00%


static u64 vhash(unsigned char m[], unsigned int mbytes, u64 *tagl, struct vmac_ctx *ctx) { u64 rh, rl, *mptr; const u64 *kptr = (u64 *)ctx->nhkey; int i, remaining; u64 ch, cl; u64 pkh = ctx->polykey[0]; u64 pkl = ctx->polykey[1]; mptr = (u64 *)m; i = mbytes / VMAC_NHBYTES; remaining = mbytes % VMAC_NHBYTES; if (ctx->first_block_processed) { ch = ctx->polytmp[0]; cl = ctx->polytmp[1]; } else if (i) { nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); ch &= m62; ADD128(ch, cl, pkh, pkl); mptr += (VMAC_NHBYTES/sizeof(u64)); i--; } else if (remaining) { nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); ch &= m62; ADD128(ch, cl, pkh, pkl); mptr += (VMAC_NHBYTES/sizeof(u64)); goto do_l3; } else {/* Empty String */ ch = pkh; cl = pkl; goto do_l3; } while (i--) { nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); rh &= m62; poly_step(ch, cl, pkh, pkl, rh, rl); mptr += (VMAC_NHBYTES/sizeof(u64)); } if (remaining) { nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); rh &= m62; poly_step(ch, cl, pkh, pkl, rh, rl); } do_l3: vhash_abort(ctx); remaining *= 8; return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang381100.00%1100.00%
Total381100.00%1100.00%


static u64 vmac(unsigned char m[], unsigned int mbytes, const unsigned char n[16], u64 *tagl, struct vmac_ctx_t *ctx) { u64 *in_n, *out_p; u64 p, h; int i; in_n = ctx->__vmac_ctx.cached_nonce; out_p = ctx->__vmac_ctx.cached_aes; i = n[15] & 1; if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { in_n[0] = *(u64 *)(n); in_n[1] = *(u64 *)(n+8); ((unsigned char *)in_n)[15] &= 0xFE; crypto_cipher_encrypt_one(ctx->child, (unsigned char *)out_p, (unsigned char *)in_n); ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); } p = be64_to_cpup(out_p + i); h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); return le64_to_cpu(p + h); }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang23399.57%266.67%
Salman Qazi10.43%133.33%
Total234100.00%3100.00%


static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) { u64 in[2] = {0}, out[2]; unsigned i; int err = 0; err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); if (err) return err; /* Fill nh key */ ((unsigned char *)in)[0] = 0x80; for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { crypto_cipher_encrypt_one(ctx->child, (unsigned char *)out, (unsigned char *)in); ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); ((unsigned char *)in)[15] += 1; } /* Fill poly key */ ((unsigned char *)in)[0] = 0xC0; in[1] = 0; for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { crypto_cipher_encrypt_one(ctx->child, (unsigned char *)out, (unsigned char *)in); ctx->__vmac_ctx.polytmp[i] = ctx->__vmac_ctx.polykey[i] = be64_to_cpup(out) & mpoly; ctx->__vmac_ctx.polytmp[i+1] = ctx->__vmac_ctx.polykey[i+1] = be64_to_cpup(out+1) & mpoly; ((unsigned char *)in)[15] += 1; } /* Fill ip key */ ((unsigned char *)in)[0] = 0xE0; in[1] = 0; for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { do { crypto_cipher_encrypt_one(ctx->child, (unsigned char *)out, (unsigned char *)in); ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); ((unsigned char *)in)[15] += 1; } while (ctx->__vmac_ctx.l3key[i] >= p64 || ctx->__vmac_ctx.l3key[i+1] >= p64); } /* Invalidate nonce/aes cache and reset other elements */ ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ ctx->__vmac_ctx.first_block_processed = 0; return err; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang491100.00%1100.00%
Total491100.00%1100.00%


static int vmac_setkey(struct crypto_shash *parent, const u8 *key, unsigned int keylen) { struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); if (keylen != VMAC_KEY_LEN) { crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } return vmac_set_key((u8 *)key, ctx); }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang61100.00%1100.00%
Total61100.00%1100.00%


static int vmac_init(struct shash_desc *pdesc) { return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang14100.00%1100.00%
Total14100.00%1100.00%


static int vmac_update(struct shash_desc *pdesc, const u8 *p, unsigned int len) { struct crypto_shash *parent = pdesc->tfm; struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); int expand; int min; expand = VMAC_NHBYTES - ctx->partial_size > 0 ? VMAC_NHBYTES - ctx->partial_size : 0; min = len < expand ? len : expand; memcpy(ctx->partial + ctx->partial_size, p, min); ctx->partial_size += min; if (len < expand) return 0; vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx); ctx->partial_size = 0; len -= expand; p += expand; if (len % VMAC_NHBYTES) { memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), len % VMAC_NHBYTES); ctx->partial_size = len % VMAC_NHBYTES; } vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Salman Qazi13371.12%150.00%
Shane Wang5428.88%150.00%
Total187100.00%2100.00%


static int vmac_final(struct shash_desc *pdesc, u8 *out) { struct crypto_shash *parent = pdesc->tfm; struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); vmac_t mac; u8 nonce[16] = {}; /* vmac() ends up accessing outside the array bounds that * we specify. In appears to access up to the next 2-word * boundary. We'll just be uber cautious and zero the * unwritten bytes in the buffer. */ if (ctx->partial_size) { memset(ctx->partial + ctx->partial_size, 0, VMAC_NHBYTES - ctx->partial_size); } mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); memcpy(out, &mac, sizeof(vmac_t)); memzero_explicit(&mac, sizeof(vmac_t)); memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); ctx->partial_size = 0; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang10070.92%133.33%
Salman Qazi4028.37%133.33%
Daniel Borkmann10.71%133.33%
Total141100.00%3100.00%


static int vmac_init_tfm(struct crypto_tfm *tfm) { struct crypto_cipher *cipher; struct crypto_instance *inst = (void *)tfm->__crt_alg; struct crypto_spawn *spawn = crypto_instance_ctx(inst); struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Shane Wang78100.00%1100.00%
Total78100.00%1100.00%


static void vmac_exit_tfm(struct crypto_tfm *tfm) { struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher