cregit-Linux how code gets into the kernel

Release 4.11 drivers/cpuidle/coupled.c

Directory: drivers/cpuidle
/*
 * coupled.c - helper functions to enter the same idle state on multiple cpus
 *
 * Copyright (c) 2011 Google, Inc.
 *
 * Author: Colin Cross <ccross@android.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/kernel.h>
#include <linux/cpu.h>
#include <linux/cpuidle.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include "cpuidle.h"

/**
 * DOC: Coupled cpuidle states
 *
 * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
 * cpus cannot be independently powered down, either due to
 * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
 * power down), or due to HW bugs (on OMAP4460, a cpu powering up
 * will corrupt the gic state unless the other cpu runs a work
 * around).  Each cpu has a power state that it can enter without
 * coordinating with the other cpu (usually Wait For Interrupt, or
 * WFI), and one or more "coupled" power states that affect blocks
 * shared between the cpus (L2 cache, interrupt controller, and
 * sometimes the whole SoC).  Entering a coupled power state must
 * be tightly controlled on both cpus.
 *
 * This file implements a solution, where each cpu will wait in the
 * WFI state until all cpus are ready to enter a coupled state, at
 * which point the coupled state function will be called on all
 * cpus at approximately the same time.
 *
 * Once all cpus are ready to enter idle, they are woken by an smp
 * cross call.  At this point, there is a chance that one of the
 * cpus will find work to do, and choose not to enter idle.  A
 * final pass is needed to guarantee that all cpus will call the
 * power state enter function at the same time.  During this pass,
 * each cpu will increment the ready counter, and continue once the
 * ready counter matches the number of online coupled cpus.  If any
 * cpu exits idle, the other cpus will decrement their counter and
 * retry.
 *
 * requested_state stores the deepest coupled idle state each cpu
 * is ready for.  It is assumed that the states are indexed from
 * shallowest (highest power, lowest exit latency) to deepest
 * (lowest power, highest exit latency).  The requested_state
 * variable is not locked.  It is only written from the cpu that
 * it stores (or by the on/offlining cpu if that cpu is offline),
 * and only read after all the cpus are ready for the coupled idle
 * state are are no longer updating it.
 *
 * Three atomic counters are used.  alive_count tracks the number
 * of cpus in the coupled set that are currently or soon will be
 * online.  waiting_count tracks the number of cpus that are in
 * the waiting loop, in the ready loop, or in the coupled idle state.
 * ready_count tracks the number of cpus that are in the ready loop
 * or in the coupled idle state.
 *
 * To use coupled cpuidle states, a cpuidle driver must:
 *
 *    Set struct cpuidle_device.coupled_cpus to the mask of all
 *    coupled cpus, usually the same as cpu_possible_mask if all cpus
 *    are part of the same cluster.  The coupled_cpus mask must be
 *    set in the struct cpuidle_device for each cpu.
 *
 *    Set struct cpuidle_device.safe_state to a state that is not a
 *    coupled state.  This is usually WFI.
 *
 *    Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
 *    state that affects multiple cpus.
 *
 *    Provide a struct cpuidle_state.enter function for each state
 *    that affects multiple cpus.  This function is guaranteed to be
 *    called on all cpus at approximately the same time.  The driver
 *    should ensure that the cpus all abort together if any cpu tries
 *    to abort once the function is called.  The function should return
 *    with interrupts still disabled.
 */

/**
 * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
 * @coupled_cpus: mask of cpus that are part of the coupled set
 * @requested_state: array of requested states for cpus in the coupled set
 * @ready_waiting_counts: combined count of cpus  in ready or waiting loops
 * @online_count: count of cpus that are online
 * @refcnt: reference count of cpuidle devices that are using this struct
 * @prevent: flag to prevent coupled idle while a cpu is hotplugging
 */

struct cpuidle_coupled {
	
cpumask_t coupled_cpus;
	
int requested_state[NR_CPUS];
	
atomic_t ready_waiting_counts;
	
atomic_t abort_barrier;
	
int online_count;
	
int refcnt;
	
int prevent;
};


#define WAITING_BITS 16

#define MAX_WAITING_CPUS (1 << WAITING_BITS)

#define WAITING_MASK (MAX_WAITING_CPUS - 1)

#define READY_MASK (~WAITING_MASK)


#define CPUIDLE_COUPLED_NOT_IDLE	(-1)

static DEFINE_PER_CPU(struct call_single_data, cpuidle_coupled_poke_cb);

/*
 * The cpuidle_coupled_poke_pending mask is used to avoid calling
 * __smp_call_function_single with the per cpu call_single_data struct already
 * in use.  This prevents a deadlock where two cpus are waiting for each others
 * call_single_data struct to be available
 */

static cpumask_t cpuidle_coupled_poke_pending;

/*
 * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked
 * once to minimize entering the ready loop with a poke pending, which would
 * require aborting and retrying.
 */

static cpumask_t cpuidle_coupled_poked;

/**
 * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
 * @dev: cpuidle_device of the calling cpu
 * @a:   atomic variable to hold the barrier
 *
 * No caller to this function will return from this function until all online
 * cpus in the same coupled group have called this function.  Once any caller
 * has returned from this function, the barrier is immediately available for
 * reuse.
 *
 * The atomic variable must be initialized to 0 before any cpu calls
 * this function, will be reset to 0 before any cpu returns from this function.
 *
 * Must only be called from within a coupled idle state handler
 * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
 *
 * Provides full smp barrier semantics before and after calling.
 */

void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a) { int n = dev->coupled->online_count; smp_mb__before_atomic(); atomic_inc(a); while (atomic_read(a) < n) cpu_relax(); if (atomic_inc_return(a) == n * 2) { atomic_set(a, 0); return; } while (atomic_read(a) > n) cpu_relax(); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross7598.68%150.00%
Peter Zijlstra11.32%150.00%
Total76100.00%2100.00%

/** * cpuidle_state_is_coupled - check if a state is part of a coupled set * @drv: struct cpuidle_driver for the platform * @state: index of the target state in drv->states * * Returns true if the target state is coupled with cpus besides this one */
bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state) { return drv->states[state].flags & CPUIDLE_FLAG_COUPLED; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross25100.00%1100.00%
Total25100.00%1100.00%

/** * cpuidle_coupled_state_verify - check if the coupled states are correctly set. * @drv: struct cpuidle_driver for the platform * * Returns 0 for valid state values, a negative error code otherwise: * * -EINVAL if any coupled state(safe_state_index) is wrongly set. */
int cpuidle_coupled_state_verify(struct cpuidle_driver *drv) { int i; for (i = drv->state_count - 1; i >= 0; i--) { if (cpuidle_state_is_coupled(drv, i) && (drv->safe_state_index == i || drv->safe_state_index < 0 || drv->safe_state_index >= drv->state_count)) return -EINVAL; } return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Xunlei Pang70100.00%1100.00%
Total70100.00%1100.00%

/** * cpuidle_coupled_set_ready - mark a cpu as ready * @coupled: the struct coupled that contains the current cpu */
static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled) { atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross22100.00%1100.00%
Total22100.00%1100.00%

/** * cpuidle_coupled_set_not_ready - mark a cpu as not ready * @coupled: the struct coupled that contains the current cpu * * Decrements the ready counter, unless the ready (and thus the waiting) counter * is equal to the number of online cpus. Prevents a race where one cpu * decrements the waiting counter and then re-increments it just before another * cpu has decremented its ready counter, leading to the ready counter going * down from the number of online cpus without going through the coupled idle * state. * * Returns 0 if the counter was decremented successfully, -EINVAL if the ready * counter was equal to the number of online cpus. */
static inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled) { int all; int ret; all = coupled->online_count | (coupled->online_count << WAITING_BITS); ret = atomic_add_unless(&coupled->ready_waiting_counts, -MAX_WAITING_CPUS, all); return ret ? 0 : -EINVAL; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross5498.18%150.00%
Sivaram Nair11.82%150.00%
Total55100.00%2100.00%

/** * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready * @coupled: the struct coupled that contains the current cpu * * Returns true if all of the cpus in a coupled set are out of the ready loop. */
static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled) { int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; return r == 0; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross30100.00%1100.00%
Total30100.00%1100.00%

/** * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready * @coupled: the struct coupled that contains the current cpu * * Returns true if all cpus coupled to this target state are in the ready loop */
static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled) { int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS; return r == coupled->online_count; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross32100.00%1100.00%
Total32100.00%1100.00%

/** * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting * @coupled: the struct coupled that contains the current cpu * * Returns true if all cpus coupled to this target state are in the wait loop */
static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled) { int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; return w == coupled->online_count; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross32100.00%1100.00%
Total32100.00%1100.00%

/** * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting * @coupled: the struct coupled that contains the current cpu * * Returns true if all of the cpus in a coupled set are out of the waiting loop. */
static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled) { int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK; return w == 0; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross30100.00%1100.00%
Total30100.00%1100.00%

/** * cpuidle_coupled_get_state - determine the deepest idle state * @dev: struct cpuidle_device for this cpu * @coupled: the struct coupled that contains the current cpu * * Returns the deepest idle state that all coupled cpus can enter */
static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev, struct cpuidle_coupled *coupled) { int i; int state = INT_MAX; /* * Read barrier ensures that read of requested_state is ordered after * reads of ready_count. Matches the write barriers * cpuidle_set_state_waiting. */ smp_rmb(); for_each_cpu(i, &coupled->coupled_cpus) if (cpu_online(i) && coupled->requested_state[i] < state) state = coupled->requested_state[i]; return state; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross6196.83%150.00%
Rusty Russell23.17%150.00%
Total63100.00%2100.00%


static void cpuidle_coupled_handle_poke(void *info) { int cpu = (unsigned long)info; cpumask_set_cpu(cpu, &cpuidle_coupled_poked); cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross35100.00%2100.00%
Total35100.00%2100.00%

/** * cpuidle_coupled_poke - wake up a cpu that may be waiting * @cpu: target cpu * * Ensures that the target cpu exits it's waiting idle state (if it is in it) * and will see updates to waiting_count before it re-enters it's waiting idle * state. * * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu * either has or will soon have a pending IPI that will wake it out of idle, * or it is currently processing the IPI and is not in idle. */
static void cpuidle_coupled_poke(int cpu) { struct call_single_data *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu); if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending)) smp_call_function_single_async(cpu, csd); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross3997.50%266.67%
Frédéric Weisbecker12.50%133.33%
Total40100.00%3100.00%

/** * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting * @dev: struct cpuidle_device for this cpu * @coupled: the struct coupled that contains the current cpu * * Calls cpuidle_coupled_poke on all other online cpus. */
static void cpuidle_coupled_poke_others(int this_cpu, struct cpuidle_coupled *coupled) { int cpu; for_each_cpu(cpu, &coupled->coupled_cpus) if (cpu != this_cpu && cpu_online(cpu)) cpuidle_coupled_poke(cpu); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross3794.87%150.00%
Rusty Russell25.13%150.00%
Total39100.00%2100.00%

/** * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop * @dev: struct cpuidle_device for this cpu * @coupled: the struct coupled that contains the current cpu * @next_state: the index in drv->states of the requested state for this cpu * * Updates the requested idle state for the specified cpuidle device. * Returns the number of waiting cpus. */
static int cpuidle_coupled_set_waiting(int cpu, struct cpuidle_coupled *coupled, int next_state) { coupled->requested_state[cpu] = next_state; /* * The atomic_inc_return provides a write barrier to order the write * to requested_state with the later write that increments ready_count. */ return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross38100.00%2100.00%
Total38100.00%2100.00%

/** * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop * @dev: struct cpuidle_device for this cpu * @coupled: the struct coupled that contains the current cpu * * Removes the requested idle state for the specified cpuidle device. */
static void cpuidle_coupled_set_not_waiting(int cpu, struct cpuidle_coupled *coupled) { /* * Decrementing waiting count can race with incrementing it in * cpuidle_coupled_set_waiting, but that's OK. Worst case, some * cpus will increment ready_count and then spin until they * notice that this cpu has cleared it's requested_state. */ atomic_dec(&coupled->ready_waiting_counts); coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross32100.00%1100.00%
Total32100.00%1100.00%

/** * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop * @cpu: the current cpu * @coupled: the struct coupled that contains the current cpu * * Marks this cpu as no longer in the ready and waiting loops. Decrements * the waiting count first to prevent another cpu looping back in and seeing * this cpu as waiting just before it exits idle. */
static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled) { cpuidle_coupled_set_not_waiting(cpu, coupled); atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross31100.00%1100.00%
Total31100.00%1100.00%

/** * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed * @cpu - this cpu * * Turns on interrupts and spins until any outstanding poke interrupts have * been processed and the poke bit has been cleared. * * Other interrupts may also be processed while interrupts are enabled, so * need_resched() must be tested after this function returns to make sure * the interrupt didn't schedule work that should take the cpu out of idle. * * Returns 0 if no poke was pending, 1 if a poke was cleared. */
static int cpuidle_coupled_clear_pokes(int cpu) { if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) return 0; local_irq_enable(); while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending)) cpu_relax(); local_irq_disable(); return 1; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross45100.00%3100.00%
Total45100.00%3100.00%


static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled) { cpumask_t cpus; int ret; cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus); ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross47100.00%1100.00%
Total47100.00%1100.00%

/** * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus * @dev: struct cpuidle_device for the current cpu * @drv: struct cpuidle_driver for the platform * @next_state: index of the requested state in drv->states * * Coordinate with coupled cpus to enter the target state. This is a two * stage process. In the first stage, the cpus are operating independently, * and may call into cpuidle_enter_state_coupled at completely different times. * To save as much power as possible, the first cpus to call this function will * go to an intermediate state (the cpuidle_device's safe state), and wait for * all the other cpus to call this function. Once all coupled cpus are idle, * the second stage will start. Each coupled cpu will spin until all cpus have * guaranteed that they will call the target_state. * * This function must be called with interrupts disabled. It may enable * interrupts while preparing for idle, and it will always return with * interrupts enabled. */
int cpuidle_enter_state_coupled(struct cpuidle_device *dev, struct cpuidle_driver *drv, int next_state) { int entered_state = -1; struct cpuidle_coupled *coupled = dev->coupled; int w; if (!coupled) return -EINVAL; while (coupled->prevent) { cpuidle_coupled_clear_pokes(dev->cpu); if (need_resched()) { local_irq_enable(); return entered_state; } entered_state = cpuidle_enter_state(dev, drv, drv->safe_state_index); local_irq_disable(); } /* Read barrier ensures online_count is read after prevent is cleared */ smp_rmb(); reset: cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked); w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state); /* * If this is the last cpu to enter the waiting state, poke * all the other cpus out of their waiting state so they can * enter a deeper state. This can race with one of the cpus * exiting the waiting state due to an interrupt and * decrementing waiting_count, see comment below. */ if (w == coupled->online_count) { cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked); cpuidle_coupled_poke_others(dev->cpu, coupled); } retry: /* * Wait for all coupled cpus to be idle, using the deepest state * allowed for a single cpu. If this was not the poking cpu, wait * for at least one poke before leaving to avoid a race where * two cpus could arrive at the waiting loop at the same time, * but the first of the two to arrive could skip the loop without * processing the pokes from the last to arrive. */ while (!cpuidle_coupled_cpus_waiting(coupled) || !cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) { if (cpuidle_coupled_clear_pokes(dev->cpu)) continue; if (need_resched()) { cpuidle_coupled_set_not_waiting(dev->cpu, coupled); goto out; } if (coupled->prevent) { cpuidle_coupled_set_not_waiting(dev->cpu, coupled); goto out; } entered_state = cpuidle_enter_state(dev, drv, drv->safe_state_index); local_irq_disable(); } cpuidle_coupled_clear_pokes(dev->cpu); if (need_resched()) { cpuidle_coupled_set_not_waiting(dev->cpu, coupled); goto out; } /* * Make sure final poke status for this cpu is visible before setting * cpu as ready. */ smp_wmb(); /* * All coupled cpus are probably idle. There is a small chance that * one of the other cpus just became active. Increment the ready count, * and spin until all coupled cpus have incremented the counter. Once a * cpu has incremented the ready counter, it cannot abort idle and must * spin until either all cpus have incremented the ready counter, or * another cpu leaves idle and decrements the waiting counter. */ cpuidle_coupled_set_ready(coupled); while (!cpuidle_coupled_cpus_ready(coupled)) { /* Check if any other cpus bailed out of idle. */ if (!cpuidle_coupled_cpus_waiting(coupled)) if (!cpuidle_coupled_set_not_ready(coupled)) goto retry; cpu_relax(); } /* * Make sure read of all cpus ready is done before reading pending pokes */ smp_rmb(); /* * There is a small chance that a cpu left and reentered idle after this * cpu saw that all cpus were waiting. The cpu that reentered idle will * have sent this cpu a poke, which will still be pending after the * ready loop. The pending interrupt may be lost by the interrupt * controller when entering the deep idle state. It's not possible to * clear a pending interrupt without turning interrupts on and handling * it, and it's too late to turn on interrupts here, so reset the * coupled idle state of all cpus and retry. */ if (cpuidle_coupled_any_pokes_pending(coupled)) { cpuidle_coupled_set_done(dev->cpu, coupled); /* Wait for all cpus to see the pending pokes */ cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier); goto reset; } /* all cpus have acked the coupled state */ next_state = cpuidle_coupled_get_state(dev, coupled); entered_state = cpuidle_enter_state(dev, drv, next_state); cpuidle_coupled_set_done(dev->cpu, coupled); out: /* * Normal cpuidle states are expected to return with irqs enabled. * That leads to an inefficiency where a cpu receiving an interrupt * that brings it out of idle will process that interrupt before * exiting the idle enter function and decrementing ready_count. All * other cpus will need to spin waiting for the cpu that is processing * the interrupt. If the driver returns with interrupts disabled, * all other cpus will loop back into the safe idle state instead of * spinning, saving power. * * Calling local_irq_enable here allows coupled states to return with * interrupts disabled, but won't cause problems for drivers that * exit with interrupts enabled. */ local_irq_enable(); /* * Wait until all coupled cpus have exited idle. There is no risk that * a cpu exits and re-enters the ready state because this cpu has * already decremented its waiting_count. */ while (!cpuidle_coupled_no_cpus_ready(coupled)) cpu_relax(); return entered_state; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross39299.49%480.00%
Xunlei Pang20.51%120.00%
Total394100.00%5100.00%


static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled) { cpumask_t cpus; cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus); coupled->online_count = cpumask_weight(&cpus); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross37100.00%1100.00%
Total37100.00%1100.00%

/** * cpuidle_coupled_register_device - register a coupled cpuidle device * @dev: struct cpuidle_device for the current cpu * * Called from cpuidle_register_device to handle coupled idle init. Finds the * cpuidle_coupled struct for this set of coupled cpus, or creates one if none * exists yet. */
int cpuidle_coupled_register_device(struct cpuidle_device *dev) { int cpu; struct cpuidle_device *other_dev; struct call_single_data *csd; struct cpuidle_coupled *coupled; if (cpumask_empty(&dev->coupled_cpus)) return 0; for_each_cpu(cpu, &dev->coupled_cpus) { other_dev = per_cpu(cpuidle_devices, cpu); if (other_dev && other_dev->coupled) { coupled = other_dev->coupled; goto have_coupled; } } /* No existing coupled info found, create a new one */ coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL); if (!coupled) return -ENOMEM; coupled->coupled_cpus = dev->coupled_cpus; have_coupled: dev->coupled = coupled; if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus))) coupled->prevent++; cpuidle_coupled_update_online_cpus(coupled); coupled->refcnt++; csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu); csd->func = cpuidle_coupled_handle_poke; csd->info = (void *)(unsigned long)dev->cpu; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross18598.93%266.67%
Rusty Russell21.07%133.33%
Total187100.00%3100.00%

/** * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device * @dev: struct cpuidle_device for the current cpu * * Called from cpuidle_unregister_device to tear down coupled idle. Removes the * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if * this was the last cpu in the set. */
void cpuidle_coupled_unregister_device(struct cpuidle_device *dev) { struct cpuidle_coupled *coupled = dev->coupled; if (cpumask_empty(&dev->coupled_cpus)) return; if (--coupled->refcnt) kfree(coupled); dev->coupled = NULL; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross48100.00%1100.00%
Total48100.00%1100.00%

/** * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state * @coupled: the struct coupled that contains the cpu that is changing state * * Disables coupled cpuidle on a coupled set of cpus. Used to ensure that * cpu_online_mask doesn't change while cpus are coordinating coupled idle. */
static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled) { int cpu = get_cpu(); /* Force all cpus out of the waiting loop. */ coupled->prevent++; cpuidle_coupled_poke_others(cpu, coupled); put_cpu(); while (!cpuidle_coupled_no_cpus_waiting(coupled)) cpu_relax(); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross44100.00%1100.00%
Total44100.00%1100.00%

/** * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state * @coupled: the struct coupled that contains the cpu that is changing state * * Enables coupled cpuidle on a coupled set of cpus. Used to ensure that * cpu_online_mask doesn't change while cpus are coordinating coupled idle. */
static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled) { int cpu = get_cpu(); /* * Write barrier ensures readers see the new online_count when they * see prevent == 0. */ smp_wmb(); coupled->prevent--; /* Force cpus out of the prevent loop. */ cpuidle_coupled_poke_others(cpu, coupled); put_cpu(); }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross37100.00%1100.00%
Total37100.00%1100.00%


static int coupled_cpu_online(unsigned int cpu) { struct cpuidle_device *dev; mutex_lock(&cpuidle_lock); dev = per_cpu(cpuidle_devices, cpu); if (dev && dev->coupled) { cpuidle_coupled_update_online_cpus(dev->coupled); cpuidle_coupled_allow_idle(dev->coupled); } mutex_unlock(&cpuidle_lock); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Colin Cross5790.48%133.33%
Sebastian Andrzej Siewior57.94%133.33%
Jon Medhurst (Tixy)11.59%133.33%
Total63100.00%3100.00%


static int coupled_cpu_up_prepare(unsigned int cpu) { struct cpuidle_device *dev; mutex_lock(&cpuidle_lock); dev = per_cpu(cpuidle_devices, cpu); if (dev && dev->coupled) cpuidle_coupled_prevent_idle(dev->coupled); mutex_unlock(&cpuidle_lock); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Sebastian Andrzej Siewior5194.44%150.00%
Colin Cross35.56%150.00%
Total54100.00%2100.00%


static int __init cpuidle_coupled_init(void) { int ret; ret = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE, "cpuidle/coupled:prepare", coupled_cpu_up_prepare, coupled_cpu_online); if (ret) return ret; ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpuidle/coupled:online", coupled_cpu_online, coupled_cpu_up_prepare); if (ret < 0) cpuhp_remove_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Sebastian Andrzej Siewior4677.97%150.00%
Colin Cross1322.03%150.00%
Total59100.00%2100.00%

core_initcall(cpuidle_coupled_init);

Overall Contributors

PersonTokensPropCommitsCommitProp
Colin Cross159989.53%533.33%
Sebastian Andrzej Siewior1025.71%16.67%
Xunlei Pang744.14%320.00%
Rusty Russell60.34%16.67%
Sivaram Nair10.06%16.67%
Jon Medhurst (Tixy)10.06%16.67%
Frédéric Weisbecker10.06%16.67%
Peter Zijlstra10.06%16.67%
Viresh Kumar10.06%16.67%
Total1786100.00%15100.00%
Directory: drivers/cpuidle
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.