Release 4.11 drivers/edac/amd64_edac.c
#include "amd64_edac.h"
#include <asm/amd_nb.h>
static struct edac_pci_ctl_info *pci_ctl;
static int report_gart_errors;
module_param(report_gart_errors, int, 0644);
/*
* Set by command line parameter. If BIOS has enabled the ECC, this override is
* cleared to prevent re-enabling the hardware by this driver.
*/
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);
static struct msr __percpu *msrs;
/* Per-node stuff */
static struct ecc_settings **ecc_stngs;
/*
* Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
* bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
* or higher value'.
*
*FIXME: Produce a better mapping/linearisation.
*/
static const struct scrubrate {
u32 scrubval; /* bit pattern for scrub rate */
u32 bandwidth; /* bandwidth consumed (bytes/sec) */
}
scrubrates[] = {
{ 0x01, 1600000000UL},
{ 0x02, 800000000UL},
{ 0x03, 400000000UL},
{ 0x04, 200000000UL},
{ 0x05, 100000000UL},
{ 0x06, 50000000UL},
{ 0x07, 25000000UL},
{ 0x08, 12284069UL},
{ 0x09, 6274509UL},
{ 0x0A, 3121951UL},
{ 0x0B, 1560975UL},
{ 0x0C, 781440UL},
{ 0x0D, 390720UL},
{ 0x0E, 195300UL},
{ 0x0F, 97650UL},
{ 0x10, 48854UL},
{ 0x11, 24427UL},
{ 0x12, 12213UL},
{ 0x13, 6101UL},
{ 0x14, 3051UL},
{ 0x15, 1523UL},
{ 0x16, 761UL},
{ 0x00, 0UL}, /* scrubbing off */
};
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 *val, const char *func)
{
int err = 0;
err = pci_read_config_dword(pdev, offset, val);
if (err)
amd64_warn("%s: error reading F%dx%03x.\n",
func, PCI_FUNC(pdev->devfn), offset);
return err;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Borislav Petkov | 61 | 100.00% | 1 | 100.00% |
Total | 61 | 100.00% | 1 | 100.00% |
int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
u32 val, const char *func)
{
int err = 0;
err = pci_write_config_dword(pdev, offset, val);
if (err)
amd64_warn("%s: error writing to F%dx%03x.\n",
func, PCI_FUNC(pdev->devfn), offset);
return err;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Borislav Petkov | 60 | 100.00% | 1 | 100.00% |
Total | 60 | 100.00% | 1 | 100.00% |
/*
* Select DCT to which PCI cfg accesses are routed
*/
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
u32 reg = 0;
amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
reg &= (pvt->model == 0x30) ? ~3 : ~1;
reg |= dct;
amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Borislav Petkov | 49 | 79.03% | 1 | 33.33% |
Aravind Gopalakrishnan | 13 | 20.97% | 2 | 66.67% |
Total | 62 | 100.00% | 3 | 100.00% |
/*
*
* Depending on the family, F2 DCT reads need special handling:
*
* K8: has a single DCT only and no address offsets >= 0x100
*
* F10h: each DCT has its own set of regs
* DCT0 -> F2x040..
* DCT1 -> F2x140..
*
* F16h: has only 1 DCT
*
* F15h: we select which DCT we access using F1x10C[DctCfgSel]
*/
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
int offset, u32 *val)
{
switch (pvt->fam) {
case 0xf:
if (dct || offset >= 0x100)
return -EINVAL;
break;
case 0x10:
if (dct) {
/*
* Note: If ganging is enabled, barring the regs
* F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
* return 0. (cf. Section 2.8.1 F10h BKDG)
*/
if (dct_ganging_enabled(pvt))
return 0;
offset += 0x100;
}
break;
case 0x15:
/*
* F15h: F2x1xx addresses do not map explicitly to DCT1.
* We should select which DCT we access using F1x10C[DctCfgSel]
*/
dct = (dct && pvt->model == 0x30) ? 3 : dct;
f15h_select_dct(pvt, dct);
break;
case 0x16:
if (dct)
return -EINVAL;
break;
default:
break;
}
return amd64_read_pci_cfg(pvt->F2, offset, val);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Aravind Gopalakrishnan | 84 | 67.20% | 2 | 50.00% |
Borislav Petkov | 41 | 32.80% | 2 | 50.00% |
Total | 125 | 100.00% | 4 | 100.00% |
/*
* Memory scrubber control interface. For K8, memory scrubbing is handled by
* hardware and can involve L2 cache, dcache as well as the main memory. With
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
* functionality.
*
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
* bytes/sec for the setting.
*
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
* other archs, we might not have access to the caches directly.
*/
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
/*
* Fam17h supports scrub values between 0x5 and 0x14. Also, the values
* are shifted down by 0x5, so scrubval 0x5 is written to the register
* as 0x0, scrubval 0x6 as 0x1, etc.
*/
if (scrubval >= 0x5 && scrubval <= 0x14) {
scrubval -= 0x5;
pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
} else {
pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Yazen Ghannam | 74 | 100.00% | 1 | 100.00% |
Total | 74 | 100.00% | 1 | 100.00% |
/*
* Scan the scrub rate mapping table for a close or matching bandwidth value to
* issue. If requested is too big, then use last maximum value found.
*/
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
{
u32 scrubval;
int i;
/*
* map the configured rate (new_bw) to a value specific to the AMD64
* memory controller and apply to register. Search for the first
* bandwidth entry that is greater or equal than the setting requested
* and program that. If at last entry, turn off DRAM scrubbing.
*
* If no suitable bandwidth is found, turn off DRAM scrubbing entirely
* by falling back to the last element in scrubrates[].
*/
for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
/*
* skip scrub rates which aren't recommended
* (see F10 BKDG, F3x58)
*/
if (scrubrates[i].scrubval < min_rate)
continue;
if (scrubrates[i].bandwidth <= new_bw)
break;
}
scrubval = scrubrates[i].scrubval;
if (pvt->fam == 0x17) {
__f17h_set_scrubval(pvt, scrubval);
} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
f15h_select_dct(pvt, 0);
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
f15h_select_dct(pvt, 1);
pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
} else {
pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
}
if (scrubval)
return scrubrates[i].bandwidth;
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 82 | 44.81% | 1 | 12.50% |
Aravind Gopalakrishnan | 64 | 34.97% | 1 | 12.50% |
Yazen Ghannam | 18 | 9.84% | 1 | 12.50% |
Borislav Petkov | 16 | 8.74% | 4 | 50.00% |
Andrew Morton | 3 | 1.64% | 1 | 12.50% |
Total | 183 | 100.00% | 8 | 100.00% |
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x5;
if (pvt->fam == 0xf)
min_scrubrate = 0x0;
if (pvt->fam == 0x15) {
/* Erratum #505 */
if (pvt->model < 0x10)
f15h_select_dct(pvt, 0);
if (pvt->model == 0x60)
min_scrubrate = 0x6;
}
return __set_scrub_rate(pvt, bw, min_scrubrate);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Borislav Petkov | 41 | 46.59% | 7 | 70.00% |
Doug Thompson | 28 | 31.82% | 1 | 10.00% |
Aravind Gopalakrishnan | 19 | 21.59% | 2 | 20.00% |
Total | 88 | 100.00% | 10 | 100.00% |
static int get_scrub_rate(struct mem_ctl_info *mci)
{
struct amd64_pvt *pvt = mci->pvt_info;
int i, retval = -EINVAL;
u32 scrubval = 0;
switch (pvt->fam) {
case 0x15:
/* Erratum #505 */
if (pvt->model < 0x10)
f15h_select_dct(pvt, 0);
if (pvt->model == 0x60)
amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
break;
case 0x17:
amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
if (scrubval & BIT(0)) {
amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
scrubval &= 0xF;
scrubval += 0x5;
} else {
scrubval = 0;
}
break;
default:
amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
break;
}
scrubval = scrubval & 0x001F;
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
if (scrubrates[i].scrubval == scrubval) {
retval = scrubrates[i].bandwidth;
break;
}
}
return retval;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 78 | 39.20% | 1 | 7.69% |
Yazen Ghannam | 65 | 32.66% | 1 | 7.69% |
Aravind Gopalakrishnan | 28 | 14.07% | 2 | 15.38% |
Borislav Petkov | 26 | 13.07% | 8 | 61.54% |
Roel Kluin | 2 | 1.01% | 1 | 7.69% |
Total | 199 | 100.00% | 13 | 100.00% |
/*
* returns true if the SysAddr given by sys_addr matches the
* DRAM base/limit associated with node_id
*/
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
{
u64 addr;
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
* all ones if the most significant implemented address bit is 1.
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
* Application Programming.
*/
addr = sys_addr & 0x000000ffffffffffull;
return ((addr >= get_dram_base(pvt, nid)) &&
(addr <= get_dram_limit(pvt, nid)));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 34 | 65.38% | 1 | 25.00% |
Borislav Petkov | 17 | 32.69% | 2 | 50.00% |
Daniel J Blueman | 1 | 1.92% | 1 | 25.00% |
Total | 52 | 100.00% | 4 | 100.00% |
/*
* Attempt to map a SysAddr to a node. On success, return a pointer to the
* mem_ctl_info structure for the node that the SysAddr maps to.
*
* On failure, return NULL.
*/
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
u64 sys_addr)
{
struct amd64_pvt *pvt;
u8 node_id;
u32 intlv_en, bits;
/*
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
* 3.4.4.2) registers to map the SysAddr to a node ID.
*/
pvt = mci->pvt_info;
/*
* The value of this field should be the same for all DRAM Base
* registers. Therefore we arbitrarily choose to read it from the
* register for node 0.
*/
intlv_en = dram_intlv_en(pvt, 0);
if (intlv_en == 0) {
for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
if (base_limit_match(pvt, sys_addr, node_id))
goto found;
}
goto err_no_match;
}
if (unlikely((intlv_en != 0x01) &&
(intlv_en != 0x03) &&
(intlv_en != 0x07))) {
amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
return NULL;
}
bits = (((u32) sys_addr) >> 12) & intlv_en;
for (node_id = 0; ; ) {
if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
break; /* intlv_sel field matches */
if (++node_id >= DRAM_RANGES)
goto err_no_match;
}
/* sanity test for sys_addr */
if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
"range for node %d with node interleaving enabled.\n",
__func__, sys_addr, node_id);
return NULL;
}
found:
return edac_mc_find((int)node_id);
err_no_match:
edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
(unsigned long)sys_addr);
return NULL;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 205 | 87.23% | 1 | 12.50% |
Borislav Petkov | 26 | 11.06% | 5 | 62.50% |
Joe Perches | 3 | 1.28% | 1 | 12.50% |
Daniel J Blueman | 1 | 0.43% | 1 | 12.50% |
Total | 235 | 100.00% | 8 | 100.00% |
/*
* compute the CS base address of the @csrow on the DRAM controller @dct.
* For details see F2x[5C:40] in the processor's BKDG
*/
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
u64 *base, u64 *mask)
{
u64 csbase, csmask, base_bits, mask_bits;
u8 addr_shift;
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow];
base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
addr_shift = 4;
/*
* F16h and F15h, models 30h and later need two addr_shift values:
* 8 for high and 6 for low (cf. F16h BKDG).
*/
} else if (pvt->fam == 0x16 ||
(pvt->fam == 0x15 && pvt->model >= 0x30)) {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow >> 1];
*base = (csbase & GENMASK_ULL(15, 5)) << 6;
*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
*mask = ~0ULL;
/* poke holes for the csmask */
*mask &= ~((GENMASK_ULL(15, 5) << 6) |
(GENMASK_ULL(30, 19) << 8));
*mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
return;
} else {
csbase = pvt->csels[dct].csbases[csrow];
csmask = pvt->csels[dct].csmasks[csrow >> 1];
addr_shift = 8;
if (pvt->fam == 0x15)
base_bits = mask_bits =
GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
else
base_bits = mask_bits =
GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
}
*base = (csbase & base_bits) << addr_shift;
*mask = ~0ULL;
/* poke holes for the csmask */
*mask &= ~(mask_bits << addr_shift);
/* OR them in */
*mask |= (csmask & mask_bits) << addr_shift;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Borislav Petkov | 172 | 43.54% | 2 | 33.33% |
Aravind Gopalakrishnan | 141 | 35.70% | 2 | 33.33% |
Chen Gong | 42 | 10.63% | 1 | 16.67% |
Doug Thompson | 40 | 10.13% | 1 | 16.67% |
Total | 395 | 100.00% | 6 | 100.00% |
#define for_each_chip_select(i, dct, pvt) \
for (i = 0; i < pvt->csels[dct].b_cnt; i++)
#define chip_select_base(i, dct, pvt) \
pvt->csels[dct].csbases[i]
#define for_each_chip_select_mask(i, dct, pvt) \
for (i = 0; i < pvt->csels[dct].m_cnt; i++)
/*
* @input_addr is an InputAddr associated with the node given by mci. Return the
* csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
*/
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
struct amd64_pvt *pvt;
int csrow;
u64 base, mask;
pvt = mci->pvt_info;
for_each_chip_select(csrow, 0, pvt) {
if (!csrow_enabled(csrow, 0, pvt))
continue;
get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
mask = ~mask;
if ((input_addr & mask) == (base & mask)) {
edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
(unsigned long)input_addr, csrow,
pvt->mc_node_id);
return csrow;
}
}
edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
(unsigned long)input_addr, pvt->mc_node_id);
return -1;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 105 | 77.78% | 1 | 33.33% |
Borislav Petkov | 24 | 17.78% | 1 | 33.33% |
Joe Perches | 6 | 4.44% | 1 | 33.33% |
Total | 135 | 100.00% | 3 | 100.00% |
/*
* Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
* for the node represented by mci. Info is passed back in *hole_base,
* *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
* info is invalid. Info may be invalid for either of the following reasons:
*
* - The revision of the node is not E or greater. In this case, the DRAM Hole
* Address Register does not exist.
*
* - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
* indicating that its contents are not valid.
*
* The values passed back in *hole_base, *hole_offset, and *hole_size are
* complete 32-bit values despite the fact that the bitfields in the DHAR
* only represent bits 31-24 of the base and offset values.
*/
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
u64 *hole_offset, u64 *hole_size)
{
struct amd64_pvt *pvt = mci->pvt_info;
/* only revE and later have the DRAM Hole Address Register */
if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
edac_dbg(1, " revision %d for node %d does not support DHAR\n",
pvt->ext_model, pvt->mc_node_id);
return 1;
}
/* valid for Fam10h and above */
if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
return 1;
}
if (!dhar_valid(pvt)) {
edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
pvt->mc_node_id);
return 1;
}
/* This node has Memory Hoisting */
/* +------------------+--------------------+--------------------+-----
* | memory | DRAM hole | relocated |
* | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
* | | | DRAM hole |
* | | | [0x100000000, |
* | | | (0x100000000+ |
* | | | (0xffffffff-x))] |
* +------------------+--------------------+--------------------+-----
*
* Above is a diagram of physical memory showing the DRAM hole and the
* relocated addresses from the DRAM hole. As shown, the DRAM hole
* starts at address x (the base address) and extends through address
* 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
* addresses in the hole so that they start at 0x100000000.
*/
*hole_base = dhar_base(pvt);
*hole_size = (1ULL << 32) - *hole_base;
*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
: k8_dhar_offset(pvt);
edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
pvt->mc_node_id, (unsigned long)*hole_base,
(unsigned long)*hole_offset, (unsigned long)*hole_size);
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 152 | 77.95% | 1 | 14.29% |
Borislav Petkov | 31 | 15.90% | 5 | 71.43% |
Joe Perches | 12 | 6.15% | 1 | 14.29% |
Total | 195 | 100.00% | 7 | 100.00% |
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
/*
* Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
* assumed that sys_addr maps to the node given by mci.
*
* The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
* 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
* SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
* then it is also involved in translating a SysAddr to a DramAddr. Sections
* 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
* These parts of the documentation are unclear. I interpret them as follows:
*
* When node n receives a SysAddr, it processes the SysAddr as follows:
*
* 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
* Limit registers for node n. If the SysAddr is not within the range
* specified by the base and limit values, then node n ignores the Sysaddr
* (since it does not map to node n). Otherwise continue to step 2 below.
*
* 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
* disabled so skip to step 3 below. Otherwise see if the SysAddr is within
* the range of relocated addresses (starting at 0x100000000) from the DRAM
* hole. If not, skip to step 3 below. Else get the value of the
* DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
* offset defined by this value from the SysAddr.
*
* 3. Obtain the base address for node n from the DRAMBase field of the DRAM
* Base register for node n. To obtain the DramAddr, subtract the base
* address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
*/
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
struct amd64_pvt *pvt = mci->pvt_info;
u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
int ret;
dram_base = get_dram_base(pvt, pvt->mc_node_id);
ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
&hole_size);
if (!ret) {
if ((sys_addr >= (1ULL << 32)) &&
(sys_addr < ((1ULL << 32) + hole_size))) {
/* use DHAR to translate SysAddr to DramAddr */
dram_addr = sys_addr - hole_offset;
edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
(unsigned long)sys_addr,
(unsigned long)dram_addr);
return dram_addr;
}
}
/*
* Translate the SysAddr to a DramAddr as shown near the start of
* section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
* only deals with 40-bit values. Therefore we discard bits 63-40 of
* sys_addr below. If bit 39 of sys_addr is 1 then the bits we
* discard are all 1s. Otherwise the bits we discard are all 0s. See
* section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
* Programmer's Manual Volume 1 Application Programming.
*/
dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)dram_addr);
return dram_addr;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 136 | 81.93% | 1 | 16.67% |
Borislav Petkov | 19 | 11.45% | 3 | 50.00% |
Joe Perches | 8 | 4.82% | 1 | 16.67% |
Chen Gong | 3 | 1.81% | 1 | 16.67% |
Total | 166 | 100.00% | 6 | 100.00% |
/*
* @intlv_en is the value of the IntlvEn field from a DRAM Base register
* (section 3.4.4.1). Return the number of bits from a SysAddr that are used
* for node interleaving.
*/
static int num_node_interleave_bits(unsigned intlv_en)
{
static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
int n;
BUG_ON(intlv_en > 7);
n = intlv_shift_table[intlv_en];
return n;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 53 | 100.00% | 1 | 100.00% |
Total | 53 | 100.00% | 1 | 100.00% |
/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
struct amd64_pvt *pvt;
int intlv_shift;
u64 input_addr;
pvt = mci->pvt_info;
/*
* See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
* concerning translating a DramAddr to an InputAddr.
*/
intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
(dram_addr & 0xfff);
edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
intlv_shift, (unsigned long)dram_addr,
(unsigned long)input_addr);
return input_addr;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 78 | 85.71% | 1 | 20.00% |
Borislav Petkov | 7 | 7.69% | 2 | 40.00% |
Chen Gong | 3 | 3.30% | 1 | 20.00% |
Joe Perches | 3 | 3.30% | 1 | 20.00% |
Total | 91 | 100.00% | 5 | 100.00% |
/*
* Translate the SysAddr represented by @sys_addr to an InputAddr. It is
* assumed that @sys_addr maps to the node given by mci.
*/
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
u64 input_addr;
input_addr =
dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
(unsigned long)sys_addr, (unsigned long)input_addr);
return input_addr;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 49 | 92.45% | 1 | 33.33% |
Joe Perches | 3 | 5.66% | 1 | 33.33% |
Masanari Iida | 1 | 1.89% | 1 | 33.33% |
Total | 53 | 100.00% | 3 | 100.00% |
/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
struct err_info *err)
{
err->page = (u32) (error_address >> PAGE_SHIFT);
err->offset = ((u32) error_address) & ~PAGE_MASK;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 35 | 83.33% | 1 | 50.00% |
Borislav Petkov | 7 | 16.67% | 1 | 50.00% |
Total | 42 | 100.00% | 2 | 100.00% |
/*
* @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
* Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
* of a node that detected an ECC memory error. mci represents the node that
* the error address maps to (possibly different from the node that detected
* the error). Return the number of the csrow that sys_addr maps to, or -1 on
* error.
*/
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
int csrow;
csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
if (csrow == -1)
amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
"address 0x%lx\n", (unsigned long)sys_addr);
return csrow;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Doug Thompson | 54 | 98.18% | 1 | 50.00% |
Borislav Petkov | 1 | 1.82% | 1 | 50.00% |
Total | 55 | 100.00% | 2 | 100.00% |
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
/*
* Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
* are ECC capable.
*/
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
{
unsigned long edac_cap = EDAC_FLAG_NONE;
u8 bit;
if (pvt->umc) {
u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
for (i = 0; i < NUM_UMCS; i++) {
if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
continue;
umc_en_mask |= BIT(i);
/* UMC Configuration bit 12 (DimmEccEn) */
if (pvt->umc[i].umc_cfg & BIT(12))
dimm_ecc_en_mask |= BIT(i);
}
if (umc_en_mask == dimm_ecc_en_mask)
edac_cap = EDAC_FLAG_SECDED;
} else {
bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
? 19
: 17;
if (pvt->dclr0 & BIT(bit))
edac_cap = EDAC_FLAG_SECDED;
}
return edac_cap;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Yazen Ghannam | 98 | 63.64% | 1 | 14.29% |
Doug Thompson | 45 | 29.22% | 1 | 14.29% |
Borislav Petkov | 7 | 4.55% | 4 | 57.14% |
Dan Carpenter | 4 | 2.60% | 1 | 14.29% |
Total | 154 | 100.00% | 7 | 100.00% |
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
{
edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
if (pvt->dram_type == MEM_LRDDR3) {
u32 dcsm = pvt->csels[chan].csmasks[0];
/*
* It's assumed all LRDIMMs in a DCT are going to be of
* same 'type' until proven otherwise. So, use a cs
* value of '0' here to get dcsm value.
*/
edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
}
edac_dbg(1, "All DIMMs support ECC:%s\n",
(dclr & BIT(19)) ? "yes" : "no");
edac_dbg(1, " PAR/ERR parity: %s\n",
(dclr & BIT(8)) ? "enabled" : "disabled");
if (pvt->fam == 0x10)
edac_dbg(1, " DCT 128bit mode width: %s\n",
(dclr & BIT(11)) ? "128b" : "64b");
edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
(dclr & BIT(12)) ? "yes" : "no",
(dclr & BIT(13)) ? "yes" : "no",
(dclr & BIT(14)) ? "yes" : "no",
(