cregit-Linux how code gets into the kernel

Release 4.11 drivers/edac/i7300_edac.c

Directory: drivers/edac
/*
 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2010 by:
 *       Mauro Carvalho Chehab
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
 *      http://www.intel.com/Assets/PDF/datasheet/318082.pdf
 *
 * TODO: The chipset allow checking for PCI Express errors also. Currently,
 *       the driver covers only memory error errors
 *
 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>

#include "edac_module.h"

/*
 * Alter this version for the I7300 module when modifications are made
 */

#define I7300_REVISION    " Ver: 1.0.0"


#define EDAC_MOD_STR      "i7300_edac"


#define i7300_printk(level, fmt, arg...) \
	edac_printk(level, "i7300", fmt, ##arg)


#define i7300_mc_printk(mci, level, fmt, arg...) \
	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)

/***********************************************
 * i7300 Limit constants Structs and static vars
 ***********************************************/

/*
 * Memory topology is organized as:
 *      Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
 *      Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
 * Each channel can have to 8 DIMM sets (called as SLOTS)
 * Slots should generally be filled in pairs
 *      Except on Single Channel mode of operation
 *              just slot 0/channel0 filled on this mode
 *      On normal operation mode, the two channels on a branch should be
 *              filled together for the same SLOT#
 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
 *              channels on both branches should be filled
 */

/* Limits for i7300 */

#define MAX_SLOTS		8

#define MAX_BRANCHES		2

#define MAX_CH_PER_BRANCH	2

#define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)

#define MAX_MIR			3


#define to_channel(ch, branch)	((((branch)) << 1) | (ch))


#define to_csrow(slot, ch, branch)					\
		(to_channel(ch, branch) | ((slot) << 2))

/* Device name and register DID (Device ID) */

struct i7300_dev_info {
	
const char *ctl_name;	/* name for this device */
	
u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */

static const struct i7300_dev_info i7300_devs[] = {
	{
		.ctl_name = "I7300",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
        },
};


struct i7300_dimm_info {
	
int megabytes;		/* size, 0 means not present  */
};

/* driver private data structure */

struct i7300_pvt {
	
struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
	
struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
	
struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
	
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */

	
u16 tolm;				/* top of low memory */
	
u64 ambase;				/* AMB BAR */

	
u32 mc_settings;			/* Report several settings */
	
u32 mc_settings_a;

	
u16 mir[MAX_MIR];			/* Memory Interleave Reg*/

	
u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
	
u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */

	/* DIMM information matrix, allocating architecture maximums */
	
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];

	/* Temporary buffer for use when preparing error messages */
	
char *tmp_prt_buffer;
};

/* FIXME: Why do we need to have this static? */

static struct edac_pci_ctl_info *i7300_pci;

/***************************************************
 * i7300 Register definitions for memory enumeration
 ***************************************************/

/*
 * Device 16,
 * Function 0: System Address (not documented)
 * Function 1: Memory Branch Map, Control, Errors Register
 */

	/* OFFSETS for Function 0 */

#define AMBASE			0x48 
/* AMB Mem Mapped Reg Region Base */

#define MAXCH			0x56 
/* Max Channel Number */

#define MAXDIMMPERCH		0x57 
/* Max DIMM PER Channel Number */

	/* OFFSETS for Function 1 */

#define MC_SETTINGS		0x40
  
#define IS_MIRRORED(mc)		((mc) & (1 << 16))
  
#define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
  
#define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
  
#define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))


#define MC_SETTINGS_A		0x58
  
#define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))


#define TOLM			0x6C


#define MIR0			0x80

#define MIR1			0x84

#define MIR2			0x88

/*
 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
 * seems that we cannot use this information directly for the same usage.
 * Each memory slot may have up to 2 AMB interfaces, one for income and another
 * for outcome interface to the next slot.
 * For now, the driver just stores the AMB present registers, but rely only at
 * the MTR info to detect memory.
 * Datasheet is also not clear about how to map each AMBPRESENT registers to
 * one of the 4 available channels.
 */

#define AMBPRESENT_0	0x64

#define AMBPRESENT_1	0x66


static const u16 mtr_regs[MAX_SLOTS] = {
	0x80, 0x84, 0x88, 0x8c,
	0x82, 0x86, 0x8a, 0x8e
};

/*
 * Defines to extract the vaious fields from the
 *      MTRx - Memory Technology Registers
 */

#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))

#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))

#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)

#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)

#define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)

#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)

#define MTR_DRAM_BANKS_ADDR_BITS	2

#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)

#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)

#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

/************************************************
 * i7300 Register definitions for error detection
 ************************************************/

/*
 * Device 16.1: FBD Error Registers
 */

#define FERR_FAT_FBD	0x98

static const char *ferr_fat_fbd_name[] = {
	[22] = "Non-Redundant Fast Reset Timeout",
	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
	[1]  = "Memory or FBD configuration CRC read error",
	[0]  = "Memory Write error on non-redundant retry or "
	       "FBD configuration Write error on retry",
};

#define GET_FBD_FAT_IDX(fbderr)	(((fbderr) >> 28) & 3)

#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))


#define FERR_NF_FBD	0xa0

static const char *ferr_nf_fbd_name[] = {
	[24] = "DIMM-Spare Copy Completed",
	[23] = "DIMM-Spare Copy Initiated",
	[22] = "Redundant Fast Reset Timeout",
	[21] = "Memory Write error on redundant retry",
	[18] = "SPD protocol Error",
	[17] = "FBD Northbound parity error on FBD Sync Status",
	[16] = "Correctable Patrol Data ECC",
	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
	[14] = "Correctable Mirrored Demand Data ECC",
	[13] = "Correctable Non-Mirrored Demand Data ECC",
	[11] = "Memory or FBD configuration CRC read error",
	[10] = "FBD Configuration Write error on first attempt",
	[9]  = "Memory Write error on first attempt",
	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	[4]  = "Aliased Uncorrectable Patrol Data ECC",
	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	[0]  = "Uncorrectable Data ECC on Replay",
};

#define GET_FBD_NF_IDX(fbderr)	(((fbderr) >> 28) & 3)

#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
                              (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
                              (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
                              (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
                              (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
                              (1 << 1)  | (1 << 0))


#define EMASK_FBD	0xa8

#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
                            (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
                            (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
                            (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
                            (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
                            (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
                            (1 << 1)  | (1 << 0))

/*
 * Device 16.2: Global Error Registers
 */


#define FERR_GLOBAL_HI	0x48

static const char *ferr_global_hi_name[] = {
	[3] = "FSB 3 Fatal Error",
	[2] = "FSB 2 Fatal Error",
	[1] = "FSB 1 Fatal Error",
	[0] = "FSB 0 Fatal Error",
};

#define ferr_global_hi_is_fatal(errno)	1


#define FERR_GLOBAL_LO	0x40

static const char *ferr_global_lo_name[] = {
	[31] = "Internal MCH Fatal Error",
	[30] = "Intel QuickData Technology Device Fatal Error",
	[29] = "FSB1 Fatal Error",
	[28] = "FSB0 Fatal Error",
	[27] = "FBD Channel 3 Fatal Error",
	[26] = "FBD Channel 2 Fatal Error",
	[25] = "FBD Channel 1 Fatal Error",
	[24] = "FBD Channel 0 Fatal Error",
	[23] = "PCI Express Device 7Fatal Error",
	[22] = "PCI Express Device 6 Fatal Error",
	[21] = "PCI Express Device 5 Fatal Error",
	[20] = "PCI Express Device 4 Fatal Error",
	[19] = "PCI Express Device 3 Fatal Error",
	[18] = "PCI Express Device 2 Fatal Error",
	[17] = "PCI Express Device 1 Fatal Error",
	[16] = "ESI Fatal Error",
	[15] = "Internal MCH Non-Fatal Error",
	[14] = "Intel QuickData Technology Device Non Fatal Error",
	[13] = "FSB1 Non-Fatal Error",
	[12] = "FSB 0 Non-Fatal Error",
	[11] = "FBD Channel 3 Non-Fatal Error",
	[10] = "FBD Channel 2 Non-Fatal Error",
	[9]  = "FBD Channel 1 Non-Fatal Error",
	[8]  = "FBD Channel 0 Non-Fatal Error",
	[7]  = "PCI Express Device 7 Non-Fatal Error",
	[6]  = "PCI Express Device 6 Non-Fatal Error",
	[5]  = "PCI Express Device 5 Non-Fatal Error",
	[4]  = "PCI Express Device 4 Non-Fatal Error",
	[3]  = "PCI Express Device 3 Non-Fatal Error",
	[2]  = "PCI Express Device 2 Non-Fatal Error",
	[1]  = "PCI Express Device 1 Non-Fatal Error",
	[0]  = "ESI Non-Fatal Error",
};

#define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)


#define NRECMEMA	0xbe
  
#define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
  
#define NRECMEMA_RANK(v)	(((v) >> 8) & 15)


#define NRECMEMB	0xc0
  
#define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
  
#define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
  
#define NRECMEMB_RAS(v)	((v) & 0xffff)


#define REDMEMA		0xdc


#define REDMEMB		0x7c


#define RECMEMA		0xe0
  
#define RECMEMA_BANK(v)	(((v) >> 12) & 7)
  
#define RECMEMA_RANK(v)	(((v) >> 8) & 15)


#define RECMEMB		0xe4
  
#define RECMEMB_IS_WR(v)	((v) & (1 << 31))
  
#define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
  
#define RECMEMB_RAS(v)	((v) & 0xffff)

/********************************************
 * i7300 Functions related to error detection
 ********************************************/

/**
 * get_err_from_table() - Gets the error message from a table
 * @table:      table name (array of char *)
 * @size:       number of elements at the table
 * @pos:        position of the element to be returned
 *
 * This is a small routine that gets the pos-th element of a table. If the
 * element doesn't exist (or it is empty), it returns "reserved".
 * Instead of calling it directly, the better is to call via the macro
 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
 * ARRAY_SIZE() macro
 */

static const char *get_err_from_table(const char *table[], int size, int pos) { if (unlikely(pos >= size)) return "Reserved"; if (unlikely(!table[pos])) return "Reserved"; return table[pos]; }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab52100.00%3100.00%
Total52100.00%3100.00%

#define GET_ERR_FROM_TABLE(table, pos) \ get_err_from_table(table, ARRAY_SIZE(table), pos) /** * i7300_process_error_global() - Retrieve the hardware error information from * the hardware global error registers and * sends it to dmesg * @mci: struct mem_ctl_info pointer */
static void i7300_process_error_global(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; u32 errnum, error_reg; unsigned long errors; const char *specific; bool is_fatal; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, &error_reg); if (unlikely(error_reg)) { errors = error_reg; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_global_hi_name)); specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum); is_fatal = ferr_global_hi_is_fatal(errnum); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, error_reg); goto error_global; } pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, &error_reg); if (unlikely(error_reg)) { errors = error_reg; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_global_lo_name)); specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum); is_fatal = ferr_global_lo_is_fatal(errnum); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, error_reg); goto error_global; } return; error_global: i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n", is_fatal ? "Fatal" : "NOT fatal", specific); }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab198100.00%5100.00%
Total198100.00%5100.00%

/** * i7300_process_fbd_error() - Retrieve the hardware error information from * the FBD error registers and sends it via * EDAC error API calls * @mci: struct mem_ctl_info pointer */
static void i7300_process_fbd_error(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; u32 errnum, value, error_reg; u16 val16; unsigned branch, channel, bank, rank, cas, ras; u32 syndrome; unsigned long errors; const char *specific; bool is_wr; pvt = mci->pvt_info; /* read in the 1st FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, &error_reg); if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) { errors = error_reg & FERR_FAT_FBD_ERR_MASK ; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_fat_fbd_name)); specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum); branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0; pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, NRECMEMA, &val16); bank = NRECMEMA_BANK(val16); rank = NRECMEMA_RANK(val16); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, NRECMEMB, &value); is_wr = NRECMEMB_IS_WR(value); cas = NRECMEMB_CAS(value); ras = NRECMEMB_RAS(value); /* Clean the error register */ pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, error_reg); snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))", bank, ras, cas, errors, specific); edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0, branch, -1, rank, is_wr ? "Write error" : "Read error", pvt->tmp_prt_buffer); } /* read in the 1st NON-FATAL error register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, &error_reg); if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) { errors = error_reg & FERR_NF_FBD_ERR_MASK; errnum = find_first_bit(&errors, ARRAY_SIZE(ferr_nf_fbd_name)); specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum); branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0; pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, REDMEMA, &syndrome); pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, RECMEMA, &val16); bank = RECMEMA_BANK(val16); rank = RECMEMA_RANK(val16); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, RECMEMB, &value); is_wr = RECMEMB_IS_WR(value); cas = RECMEMB_CAS(value); ras = RECMEMB_RAS(value); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, REDMEMB, &value); channel = (branch << 1); /* Second channel ? */ channel += !!(value & BIT(17)); /* Clear the error bit */ pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, error_reg); /* Form out message */ snprintf(pvt->tmp_prt_buffer, PAGE_SIZE, "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))", bank, ras, cas, errors, specific); edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, syndrome, branch >> 1, channel % 2, rank, is_wr ? "Write error" : "Read error", pvt->tmp_prt_buffer); } return; }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab48197.57%777.78%
Borislav Petkov112.23%111.11%
Jean Delvare10.20%111.11%
Total493100.00%9100.00%

/** * i7300_check_error() - Calls the error checking subroutines * @mci: struct mem_ctl_info pointer */
static void i7300_check_error(struct mem_ctl_info *mci) { i7300_process_error_global(mci); i7300_process_fbd_error(mci); }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab21100.00%4100.00%
Total21100.00%4100.00%

; /** * i7300_clear_error() - Clears the error registers * @mci: struct mem_ctl_info pointer */
static void i7300_clear_error(struct mem_ctl_info *mci) { struct i7300_pvt *pvt = mci->pvt_info; u32 value; /* * All error values are RWC - we need to read and write 1 to the * bit that we want to cleanup */ /* Clear global error registers */ pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, &value); pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_HI, value); pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, &value); pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs, FERR_GLOBAL_LO, value); /* Clear FBD error registers */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, &value); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_FAT_FBD, value); pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, &value); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, FERR_NF_FBD, value); }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab118100.00%2100.00%
Total118100.00%2100.00%

/** * i7300_enable_error_reporting() - Enable the memory reporting logic at the * hardware * @mci: struct mem_ctl_info pointer */
static void i7300_enable_error_reporting(struct mem_ctl_info *mci) { struct i7300_pvt *pvt = mci->pvt_info; u32 fbd_error_mask; /* Read the FBD Error Mask Register */ pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD, &fbd_error_mask); /* Enable with a '0' */ fbd_error_mask &= ~(EMASK_FBD_ERR_MASK); pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map, EMASK_FBD, fbd_error_mask); }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab55100.00%2100.00%
Total55100.00%2100.00%

/************************************************ * i7300 Functions related to memory enumberation ************************************************/ /** * decode_mtr() - Decodes the MTR descriptor, filling the edac structs * @pvt: pointer to the private data struct used by i7300 driver * @slot: DIMM slot (0 to 7) * @ch: Channel number within the branch (0 or 1) * @branch: Branch number (0 or 1) * @dinfo: Pointer to DIMM info where dimm size is stored * @p_csrow: Pointer to the struct csrow_info that corresponds to that element */
static int decode_mtr(struct i7300_pvt *pvt, int slot, int ch, int branch, struct i7300_dimm_info *dinfo, struct dimm_info *dimm) { int mtr, ans, addrBits, channel; channel = to_channel(ch, branch); mtr = pvt->mtr[slot][branch]; ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0; edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n", slot, channel, ans ? "" : "NOT "); /* Determine if there is a DIMM present in this DIMM slot */ if (!ans) return 0; /* Start with the number of bits for a Bank * on the DRAM */ addrBits = MTR_DRAM_BANKS_ADDR_BITS; /* Add thenumber of ROW bits */ addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr); /* add the number of COLUMN bits */ addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr); /* add the number of RANK bits */ addrBits += MTR_DIMM_RANKS(mtr); addrBits += 6; /* add 64 bits per DIMM */ addrBits -= 20; /* divide by 2^^20 */ addrBits -= 3; /* 8 bits per bytes */ dinfo->megabytes = 1 << addrBits; edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr)); edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n", MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled"); edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr)); edac_dbg(2, "\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single"); edac_dbg(2, "\t\tNUMROW: %s\n", MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" : MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" : MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" : "65,536 - 16 rows"); edac_dbg(2, "\t\tNUMCOL: %s\n", MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" : MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" : MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" : "reserved"); edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes); /* * The type of error detection actually depends of the * mode of operation. When it is just one single memory chip, at * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code. * In normal or mirrored mode, it uses Lockstep mode, * with the possibility of using an extended algorithm for x8 memories * See datasheet Sections 7.3.6 to 7.3.8 */ dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes); dimm->grain = 8; dimm->mtype = MEM_FB_DDR2; if (IS_SINGLE_MODE(pvt->mc_settings_a)) { dimm->edac_mode = EDAC_SECDED; edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n"); } else { edac_dbg(2, "\t\tECC code is on Lockstep mode\n"); if (MTR_DRAM_WIDTH(mtr) == 8) dimm->edac_mode = EDAC_S8ECD8ED; else dimm->edac_mode = EDAC_S4ECD4ED; } /* ask what device type on this row */ if (MTR_DRAM_WIDTH(mtr) == 8) { edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n", IS_SCRBALGO_ENHANCED(pvt->mc_settings) ? "enhanced" : "normal"); dimm->dtype = DEV_X8; } else dimm->dtype = DEV_X4; return mtr; }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab33079.71%777.78%
Joe Perches8420.29%222.22%
Total414100.00%9100.00%

/** * print_dimm_size() - Prints dump of the memory organization * @pvt: pointer to the private data struct used by i7300 driver * * Useful for debug. If debug is disabled, this routine do nothing */
static void print_dimm_size(struct i7300_pvt *pvt) { #ifdef CONFIG_EDAC_DEBUG struct i7300_dimm_info *dinfo; char *p; int space, n; int channel, slot; space = PAGE_SIZE; p = pvt->tmp_prt_buffer; n = snprintf(p, space, " "); p += n; space -= n; for (channel = 0; channel < MAX_CHANNELS; channel++) { n = snprintf(p, space, "channel %d | ", channel); p += n; space -= n; } edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; n = snprintf(p, space, "-------------------------------" "------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; for (slot = 0; slot < MAX_SLOTS; slot++) { n = snprintf(p, space, "csrow/SLOT %d ", slot); p += n; space -= n; for (channel = 0; channel < MAX_CHANNELS; channel++) { dinfo = &pvt->dimm_info[slot][channel]; n = snprintf(p, space, "%4d MB | ", dinfo->megabytes); p += n; space -= n; } edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; } n = snprintf(p, space, "-------------------------------" "------------------------------"); p += n; space -= n; edac_dbg(2, "%s\n", pvt->tmp_prt_buffer); p = pvt->tmp_prt_buffer; space = PAGE_SIZE; #endif }

Contributors

PersonTokensPropCommitsCommitProp
Mauro Carvalho Chehab29996.14%375.00%
Joe Perches123.86%125.00%
Total311100.00%4100.00%

/** * i7300_init_csrows() - Initialize the 'csrows' table within * the mci control structure with the * addressing of memory. * @mci: struct mem_ctl_info pointer */
static int i7300_init_csrows(struct mem_ctl_info *mci) { struct i7300_pvt *pvt; struct i7300_dimm_info *dinfo; int rc = -ENODEV; int mtr; int ch, branch, slot, channel, max_channel, max_branch; struct dimm_info *dimm; pvt = mci->pvt_info; edac_dbg(2, "Memory Technology Registers:\n"); if (IS_SINGLE_MODE(pvt->mc_settings_a)) { max_branch = 1; max_channel = 1; } else { max_branch = MAX_BRANCHES; max_channel = MAX_CH_PER_BRANCH; } /* Get the AMB present registers for the four channels */ for (branch = 0; branch < max_branch; branch++) { /* Read and dump branch 0's MTRs */ channel = to_channel(0, branch); pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_0, &pvt->ambpresent[channel]); edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n", channel, pvt->ambpresent[channel]); if (max_channel == 1) continue; channel = to_channel(1, branch); pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch], AMBPRESENT_1, &pvt->ambpresent[channel