cregit-Linux how code gets into the kernel

Release 4.11 drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h

/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include <asm/div64.h>


#define SHIFT_AMOUNT 16 
/* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */


#define PRECISION 5 
/* Change this value to change the number of decimal places in the final output - 5 is a good default */


#define SHIFTED_2 (2 << SHIFT_AMOUNT)

#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 
/* 32767 - Might change in the future */

/* -------------------------------------------------------------------------------
 * NEW TYPE - fINT
 * -------------------------------------------------------------------------------
 * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
 * fInt A;
 * A.full => The full number as it is. Generally not easy to read
 * A.partial.real => Only the integer portion
 * A.partial.decimal => Only the fractional portion
 */

typedef union _fInt {
    
int full;
    
struct _partial {
        
unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
        
int real: 32 - SHIFT_AMOUNT;
    } 
partial;
} 
fInt;

/* -------------------------------------------------------------------------------
 * Function Declarations
 *  -------------------------------------------------------------------------------
 */
static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */

static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */

static int uAbs(int);                                     /* Returns the Absolute value of the Int */
static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */

static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */

static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */

/* Fuse decoding functions
 * -------------------------------------------------------------------------------------
 */
static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);

/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
 * -------------------------------------------------------------------------------------
 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
 */
static fInt Divide (int, int);                            /* Divide two INTs and return result as FINT */
static fInt fNegate(fInt);

static int uGetScaledDecimal (fInt);                      /* Internal function */
static int GetReal (fInt A);                              /* Internal function */

/* -------------------------------------------------------------------------------------
 * TROUBLESHOOTING INFORMATION
 * -------------------------------------------------------------------------------------
 * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
 * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
 * 3) fMultiply - OutputOutOfRangeException:
 * 4) fGetSquare - OutputOutOfRangeException:
 * 5) fDivide - DivideByZeroException
 * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
 */

/* -------------------------------------------------------------------------------------
 * START OF CODE
 * -------------------------------------------------------------------------------------
 */

static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ { uint32_t i; bool bNegated = false; fInt fPositiveOne = ConvertToFraction(1); fInt fZERO = ConvertToFraction(0); fInt lower_bound = Divide(78, 10000); fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ fInt error_term; static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; if (GreaterThan(fZERO, exponent)) { exponent = fNegate(exponent); bNegated = true; } while (GreaterThan(exponent, lower_bound)) { for (i = 0; i < 11; i++) { if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); } } } error_term = fAdd(fPositiveOne, exponent); solution = fMultiply(solution, error_term); if (bNegated) solution = fDivide(fPositiveOne, solution); return solution; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang24798.02%133.33%
Nils Wallménius51.98%266.67%
Total252100.00%3100.00%


static fInt fNaturalLog(fInt value) { uint32_t i; fInt upper_bound = Divide(8, 1000); fInt fNegativeOne = ConvertToFraction(-1); fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ fInt error_term; static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { for (i = 0; i < 10; i++) { if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { value = fDivide(value, GetScaledFraction(k_array[i], 10000)); solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); } } } error_term = fAdd(fNegativeOne, value); return (fAdd(solution, error_term)); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang20197.57%133.33%
Nils Wallménius52.43%266.67%
Total206100.00%3100.00%


static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fInt f_decoded_value; f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); f_decoded_value = fMultiply(f_decoded_value, f_range); f_decoded_value = fAdd(f_decoded_value, f_min); return f_decoded_value; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang7598.68%150.00%
Nils Wallménius11.32%150.00%
Total76100.00%2100.00%


static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); fInt f_CONSTANT1 = ConvertToFraction(1); fInt f_decoded_value; f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); f_decoded_value = fNaturalLog(f_decoded_value); f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); f_decoded_value = fAdd(f_decoded_value, f_average); return f_decoded_value; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang10999.09%150.00%
Nils Wallménius10.91%150.00%
Total110100.00%2100.00%


static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) { fInt fLeakage; fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); fLeakage = fDivide(fLeakage, f_bit_max_value); fLeakage = fExponential(fLeakage); fLeakage = fMultiply(fLeakage, f_min); return fLeakage; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang7798.72%150.00%
Nils Wallménius11.28%150.00%
Total78100.00%2100.00%


static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ { fInt temp; if (X <= MAX) temp.full = (X << SHIFT_AMOUNT); else temp.full = 0; return temp; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang3897.44%150.00%
Nils Wallménius12.56%150.00%
Total39100.00%2100.00%


static fInt fNegate(fInt X) { fInt CONSTANT_NEGONE = ConvertToFraction(-1); return (fMultiply(X, CONSTANT_NEGONE)); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2796.43%150.00%
Nils Wallménius13.57%150.00%
Total28100.00%2100.00%


static fInt Convert_ULONG_ToFraction(uint32_t X) { fInt temp; if (X <= MAX) temp.full = (X << SHIFT_AMOUNT); else temp.full = 0; return temp; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang3797.37%150.00%
Nils Wallménius12.63%150.00%
Total38100.00%2100.00%


static fInt GetScaledFraction(int X, int factor) { int times_shifted, factor_shifted; bool bNEGATED; fInt fValue; times_shifted = 0; factor_shifted = 0; bNEGATED = false; if (X < 0) { X = -1*X; bNEGATED = true; } if (factor < 0) { factor = -1*factor; bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ } if ((X > MAX) || factor > MAX) { if ((X/factor) <= MAX) { while (X > MAX) { X = X >> 1; times_shifted++; } while (factor > MAX) { factor = factor >> 1; factor_shifted++; } } else { fValue.full = 0; return fValue; } } if (factor == 1) return ConvertToFraction(X); fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); fValue.full = fValue.full << times_shifted; fValue.full = fValue.full >> factor_shifted; return fValue; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang20499.51%150.00%
Nils Wallménius10.49%150.00%
Total205100.00%2100.00%

/* Addition using two fInts */
static fInt fAdd (fInt X, fInt Y) { fInt Sum; Sum.full = X.full + Y.full; return Sum; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2996.67%150.00%
Nils Wallménius13.33%150.00%
Total30100.00%2100.00%

/* Addition using two fInts */
static fInt fSubtract (fInt X, fInt Y) { fInt Difference; Difference.full = X.full - Y.full; return Difference; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2996.67%150.00%
Nils Wallménius13.33%150.00%
Total30100.00%2100.00%


static bool Equal(fInt A, fInt B) { if (A.full == B.full) return true; else return false; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2896.55%150.00%
Nils Wallménius13.45%150.00%
Total29100.00%2100.00%


static bool GreaterThan(fInt A, fInt B) { if (A.full > B.full) return true; else return false; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2896.55%150.00%
Nils Wallménius13.45%150.00%
Total29100.00%2100.00%


static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ { fInt Product; int64_t tempProduct; bool X_LessThanOne, Y_LessThanOne; X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION if (X_LessThanOne && Y_LessThanOne) { Product.full = X.full * Y.full; return Product }*/ tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ return Product; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang11798.32%133.33%
Rex Zhu10.84%133.33%
Nils Wallménius10.84%133.33%
Total119100.00%3100.00%


static fInt fDivide (fInt X, fInt Y) { fInt fZERO, fQuotient; int64_t longlongX, longlongY; fZERO = ConvertToFraction(0); if (Equal(Y, fZERO)) return fZERO; longlongX = (int64_t)X.full; longlongY = (int64_t)Y.full; longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ fQuotient.full = (int)longlongX; return fQuotient; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang8497.67%133.33%
Arnd Bergmann11.16%133.33%
Nils Wallménius11.16%133.33%
Total86100.00%3100.00%


static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ { fInt fullNumber, scaledDecimal, scaledReal; scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ scaledDecimal.full = uGetScaledDecimal(A); fullNumber = fAdd(scaledDecimal,scaledReal); return fullNumber.full; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang5898.31%150.00%
Nils Wallménius11.69%150.00%
Total59100.00%2100.00%


static fInt fGetSquare(fInt A) { return fMultiply(A,A); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang1694.12%150.00%
Nils Wallménius15.88%150.00%
Total17100.00%2100.00%

/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
static fInt fSqrt(fInt num) { fInt F_divide_Fprime, Fprime; fInt test; fInt twoShifted; int seed, counter, error; fInt x_new, x_old, C, y; fInt fZERO = ConvertToFraction(0); /* (0 > num) is the same as (num < 0), i.e., num is negative */ if (GreaterThan(fZERO, num) || Equal(fZERO, num)) return fZERO; C = num; if (num.partial.real > 3000) seed = 60; else if (num.partial.real > 1000) seed = 30; else if (num.partial.real > 100) seed = 10; else seed = 2; counter = 0; if (Equal(num, fZERO)) /*Square Root of Zero is zero */ return fZERO; twoShifted = ConvertToFraction(2); x_new = ConvertToFraction(seed); do { counter++; x_old.full = x_new.full; test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ Fprime = fMultiply(twoShifted, x_old); F_divide_Fprime = fDivide(y, Fprime); x_new = fSubtract(x_old, F_divide_Fprime); error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ return x_new; } while (uAbs(error) > 0); return (x_new); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang24399.59%150.00%
Nils Wallménius10.41%150.00%
Total244100.00%2100.00%


static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) { fInt *pRoots = &Roots[0]; fInt temp, root_first, root_second; fInt f_CONSTANT10, f_CONSTANT100; f_CONSTANT100 = ConvertToFraction(100); f_CONSTANT10 = ConvertToFraction(10); while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { A = fDivide(A, f_CONSTANT10); B = fDivide(B, f_CONSTANT10); C = fDivide(C, f_CONSTANT10); } temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ temp = fMultiply(temp, C); /* root = 4*A*C */ temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ *(pRoots + 0) = root_first; *(pRoots + 1) = root_second; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang24099.59%150.00%
Nils Wallménius10.41%150.00%
Total241100.00%2100.00%

/* ----------------------------------------------------------------------------- * SUPPORT FUNCTIONS * ----------------------------------------------------------------------------- */ /* Conversion Functions */
static int GetReal (fInt A) { return (A.full >> SHIFT_AMOUNT); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang1794.44%150.00%
Nils Wallménius15.56%150.00%
Total18100.00%2100.00%


static fInt Divide (int X, int Y) { fInt A, B, Quotient; A.full = X << SHIFT_AMOUNT; B.full = Y << SHIFT_AMOUNT; Quotient = fDivide(A, B); return Quotient; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang4697.87%150.00%
Nils Wallménius12.13%150.00%
Total47100.00%2100.00%


static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ { int dec[PRECISION]; int i, scaledDecimal = 0, tmp = A.partial.decimal; for (i = 0; i < PRECISION; i++) { dec[i] = tmp / (1 << SHIFT_AMOUNT); tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); tmp *= 10; scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i); } return scaledDecimal; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang10299.03%150.00%
Nils Wallménius10.97%150.00%
Total103100.00%2100.00%


static int uPow(int base, int power) { if (power == 0) return 1; else return (base)*uPow(base, power - 1); }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang3597.22%150.00%
Nils Wallménius12.78%150.00%
Total36100.00%2100.00%


static int uAbs(int X) { if (X < 0) return (X * -1); else return X; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang2696.30%150.00%
Nils Wallménius13.70%150.00%
Total27100.00%2100.00%


static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) { fInt solution; solution = fDivide(A, fStepSize); solution.partial.decimal = 0; /*All fractional digits changes to 0 */ if (error_term) solution.partial.real += 1; /*Error term of 1 added */ solution = fMultiply(solution, fStepSize); solution = fAdd(solution, fStepSize); return solution; }

Contributors

PersonTokensPropCommitsCommitProp
Eric Huang6998.57%150.00%
Nils Wallménius11.43%150.00%
Total70100.00%2100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Eric Huang248297.60%116.67%
Nils Wallménius592.32%350.00%
Rex Zhu10.04%116.67%
Arnd Bergmann10.04%116.67%
Total2543100.00%6100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.