cregit-Linux how code gets into the kernel

Release 4.11 drivers/md/bitmap.h

Directory: drivers/md
/*
 * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
 *
 * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
 */
#ifndef BITMAP_H

#define BITMAP_H 1


#define BITMAP_MAJOR_LO 3
/* version 4 insists the bitmap is in little-endian order
 * with version 3, it is host-endian which is non-portable
 * Version 5 is currently set only for clustered devices
 */

#define BITMAP_MAJOR_HI 4

#define BITMAP_MAJOR_CLUSTERED 5

#define	BITMAP_MAJOR_HOSTENDIAN 3

/*
 * in-memory bitmap:
 *
 * Use 16 bit block counters to track pending writes to each "chunk".
 * The 2 high order bits are special-purpose, the first is a flag indicating
 * whether a resync is needed.  The second is a flag indicating whether a
 * resync is active.
 * This means that the counter is actually 14 bits:
 *
 * +--------+--------+------------------------------------------------+
 * | resync | resync |               counter                          |
 * | needed | active |                                                |
 * |  (0-1) |  (0-1) |              (0-16383)                         |
 * +--------+--------+------------------------------------------------+
 *
 * The "resync needed" bit is set when:
 *    a '1' bit is read from storage at startup.
 *    a write request fails on some drives
 *    a resync is aborted on a chunk with 'resync active' set
 * It is cleared (and resync-active set) when a resync starts across all drives
 * of the chunk.
 *
 *
 * The "resync active" bit is set when:
 *    a resync is started on all drives, and resync_needed is set.
 *       resync_needed will be cleared (as long as resync_active wasn't already set).
 * It is cleared when a resync completes.
 *
 * The counter counts pending write requests, plus the on-disk bit.
 * When the counter is '1' and the resync bits are clear, the on-disk
 * bit can be cleared as well, thus setting the counter to 0.
 * When we set a bit, or in the counter (to start a write), if the fields is
 * 0, we first set the disk bit and set the counter to 1.
 *
 * If the counter is 0, the on-disk bit is clear and the stripe is clean
 * Anything that dirties the stripe pushes the counter to 2 (at least)
 * and sets the on-disk bit (lazily).
 * If a periodic sweep find the counter at 2, it is decremented to 1.
 * If the sweep find the counter at 1, the on-disk bit is cleared and the
 * counter goes to zero.
 *
 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
 * counters as a fallback when "page" memory cannot be allocated:
 *
 * Normal case (page memory allocated):
 *
 *     page pointer (32-bit)
 *
 *     [ ] ------+
 *               |
 *               +-------> [   ][   ]..[   ] (4096 byte page == 2048 counters)
 *                          c1   c2    c2048
 *
 * Hijacked case (page memory allocation failed):
 *
 *     hijacked page pointer (32-bit)
 *
 *     [                  ][              ] (no page memory allocated)
 *      counter #1 (16-bit) counter #2 (16-bit)
 *
 */

#ifdef __KERNEL__


#define PAGE_BITS (PAGE_SIZE << 3)

#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)


typedef __u16 bitmap_counter_t;

#define COUNTER_BITS 16

#define COUNTER_BIT_SHIFT 4

#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)


#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))

#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))

#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)

#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)

#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)

#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)

/* how many counters per page? */

#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
/* same, except a shift value for more efficient bitops */

#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
/* same, except a mask value for more efficient bitops */

#define PAGE_COUNTER_MASK  (PAGE_COUNTER_RATIO - 1)


#define BITMAP_BLOCK_SHIFT 9

#endif

/*
 * bitmap structures:
 */


#define BITMAP_MAGIC 0x6d746962

/* use these for bitmap->flags and bitmap->sb->state bit-fields */

enum bitmap_state {
	
BITMAP_STALE	   = 1,  /* the bitmap file is out of date or had -EIO */
	
BITMAP_WRITE_ERROR = 2, /* A write error has occurred */
	
BITMAP_HOSTENDIAN  =15,
};

/* the superblock at the front of the bitmap file -- little endian */

typedef struct bitmap_super_s {
	
__le32 magic;        /*  0  BITMAP_MAGIC */
	
__le32 version;      /*  4  the bitmap major for now, could change... */
	
__u8  uuid[16];      /*  8  128 bit uuid - must match md device uuid */
	
__le64 events;       /* 24  event counter for the bitmap (1)*/
	
__le64 events_cleared;/*32  event counter when last bit cleared (2) */
	
__le64 sync_size;    /* 40  the size of the md device's sync range(3) */
	
__le32 state;        /* 48  bitmap state information */
	
__le32 chunksize;    /* 52  the bitmap chunk size in bytes */
	
__le32 daemon_sleep; /* 56  seconds between disk flushes */
	
__le32 write_behind; /* 60  number of outstanding write-behind writes */
	
__le32 sectors_reserved; /* 64 number of 512-byte sectors that are
                                  * reserved for the bitmap. */
	
__le32 nodes;        /* 68 the maximum number of nodes in cluster. */
	
__u8 cluster_name[64]; /* 72 cluster name to which this md belongs */
	
__u8  pad[256 - 136]; /* set to zero */
} 
bitmap_super_t;

/* notes:
 * (1) This event counter is updated before the eventcounter in the md superblock
 *    When a bitmap is loaded, it is only accepted if this event counter is equal
 *    to, or one greater than, the event counter in the superblock.
 * (2) This event counter is updated when the other one is *if*and*only*if* the
 *    array is not degraded.  As bits are not cleared when the array is degraded,
 *    this represents the last time that any bits were cleared.
 *    If a device is being added that has an event count with this value or
 *    higher, it is accepted as conforming to the bitmap.
 * (3)This is the number of sectors represented by the bitmap, and is the range that
 *    resync happens across.  For raid1 and raid5/6 it is the size of individual
 *    devices.  For raid10 it is the size of the array.
 */

#ifdef __KERNEL__

/* the in-memory bitmap is represented by bitmap_pages */

struct bitmap_page {
	/*
         * map points to the actual memory page
         */
	
char *map;
	/*
         * in emergencies (when map cannot be alloced), hijack the map
         * pointer and use it as two counters itself
         */
	
unsigned int hijacked:1;
	/*
         * If any counter in this page is '1' or '2' - and so could be
         * cleared then that page is marked as 'pending'
         */
	
unsigned int pending:1;
	/*
         * count of dirty bits on the page
         */
	
unsigned int  count:30;
};

/* the main bitmap structure - one per mddev */

struct bitmap {

	
struct bitmap_counts {
		
spinlock_t lock;
		
struct bitmap_page *bp;
		
unsigned long pages;		/* total number of pages
                                                 * in the bitmap */
		
unsigned long missing_pages;	/* number of pages
                                                 * not yet allocated */
		
unsigned long chunkshift;	/* chunksize = 2^chunkshift
                                                 * (for bitops) */
		
unsigned long chunks;		/* Total number of data
                                                 * chunks for the array */
	} 
counts;

	
struct mddev *mddev; /* the md device that the bitmap is for */

	
__u64	events_cleared;
	
int need_sync;

	
struct bitmap_storage {
		
struct file *file;		/* backing disk file */
		
struct page *sb_page;		/* cached copy of the bitmap
                                                 * file superblock */
		
struct page **filemap;		/* list of cache pages for
                                                 * the file */
		
unsigned long *filemap_attr;	/* attributes associated
                                                 * w/ filemap pages */
		
unsigned long file_pages;	/* number of pages in the file*/
		
unsigned long bytes;		/* total bytes in the bitmap */
	} 
storage;

	
unsigned long flags;

	
int allclean;

	
atomic_t behind_writes;
	
unsigned long behind_writes_used; /* highest actual value at runtime */

	/*
         * the bitmap daemon - periodically wakes up and sweeps the bitmap
         * file, cleaning up bits and flushing out pages to disk as necessary
         */
	
unsigned long daemon_lastrun; /* jiffies of last run */
	
unsigned long last_end_sync; /* when we lasted called end_sync to
                                      * update bitmap with resync progress */

	
atomic_t pending_writes; /* pending writes to the bitmap file */
	
wait_queue_head_t write_wait;
	
wait_queue_head_t overflow_wait;
	
wait_queue_head_t behind_wait;

	
struct kernfs_node *sysfs_can_clear;
	
int cluster_slot;		/* Slot offset for clustered env */
};

/* the bitmap API */

/* these are used only by md/bitmap */
struct bitmap *bitmap_create(struct mddev *mddev, int slot);
int bitmap_load(struct mddev *mddev);
void bitmap_flush(struct mddev *mddev);
void bitmap_destroy(struct mddev *mddev);

void bitmap_print_sb(struct bitmap *bitmap);
void bitmap_update_sb(struct bitmap *bitmap);
void bitmap_status(struct seq_file *seq, struct bitmap *bitmap);

int  bitmap_setallbits(struct bitmap *bitmap);
void bitmap_write_all(struct bitmap *bitmap);

void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);

/* these are exported */
int bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
			unsigned long sectors, int behind);
void bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
			unsigned long sectors, int success, int behind);
int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
void bitmap_close_sync(struct bitmap *bitmap);
void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector, bool force);
void bitmap_sync_with_cluster(struct mddev *mddev,
			      sector_t old_lo, sector_t old_hi,
			      sector_t new_lo, sector_t new_hi);

void bitmap_unplug(struct bitmap *bitmap);
void bitmap_daemon_work(struct mddev *mddev);

int bitmap_resize(struct bitmap *bitmap, sector_t blocks,
		  int chunksize, int init);
int bitmap_copy_from_slot(struct mddev *mddev, int slot,
				sector_t *lo, sector_t *hi, bool clear_bits);
#endif

#endif

Overall Contributors

PersonTokensPropCommitsCommitProp
Neil Brown58385.61%2868.29%
Goldwyn Rodrigues537.78%819.51%
Paul Clements223.23%24.88%
Guoqing Jiang223.23%24.88%
Tejun Heo10.15%12.44%
Total681100.00%41100.00%
Directory: drivers/md
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.