cregit-Linux how code gets into the kernel

Release 4.11 drivers/mtd/devices/lart.c

/*
 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
 *
 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
 *
 * Copyright (c) 2001, 2d3D, Inc.
 *
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * References:
 *
 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 *           - Order Number: 290644-005
 *           - January 2000
 *
 *    [2] MTD internal API documentation
 *           - http://www.linux-mtd.infradead.org/ 
 *
 * Limitations:
 *
 *    Even though this driver is written for 3 Volt Fast Boot
 *    Block Flash Memory, it is rather specific to LART. With
 *    Minor modifications, notably the without data/address line
 *    mangling and different bus settings, etc. it should be
 *    trivial to adapt to other platforms.
 *
 *    If somebody would sponsor me a different board, I'll
 *    adapt the driver (:
 */

/* debugging */
//#define LART_DEBUG

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>

#ifndef CONFIG_SA1100_LART
#error This is for LART architecture only
#endif


static char module_name[] = "lart";

/*
 * These values is specific to 28Fxxxx3 flash memory.
 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 */

#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)

#define FLASH_NUMBLOCKS_16m_PARAM	8

#define FLASH_NUMBLOCKS_8m_PARAM	8

/*
 * These values is specific to 28Fxxxx3 flash memory.
 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 */

#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)

#define FLASH_NUMBLOCKS_16m_MAIN	31

#define FLASH_NUMBLOCKS_8m_MAIN		15

/*
 * These values are specific to LART
 */

/* general */

#define BUSWIDTH			4				
/* don't change this - a lot of the code _will_ break if you change this */

#define FLASH_OFFSET		0xe8000000		
/* see linux/arch/arm/mach-sa1100/lart.c */

/* blob */

#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM

#define PART_BLOB_START		0x00000000

#define PART_BLOB_LEN		(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)

/* kernel */

#define NUM_KERNEL_BLOCKS	7

#define PART_KERNEL_START	(PART_BLOB_START + PART_BLOB_LEN)

#define PART_KERNEL_LEN		(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)

/* initial ramdisk */

#define NUM_INITRD_BLOCKS	24

#define PART_INITRD_START	(PART_KERNEL_START + PART_KERNEL_LEN)

#define PART_INITRD_LEN		(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)

/*
 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 */

#define READ_ARRAY			0x00FF00FF		
/* Read Array/Reset */

#define READ_ID_CODES		0x00900090		
/* Read Identifier Codes */

#define ERASE_SETUP			0x00200020		
/* Block Erase */

#define ERASE_CONFIRM		0x00D000D0		
/* Block Erase and Program Resume */

#define PGM_SETUP			0x00400040		
/* Program */

#define STATUS_READ			0x00700070		
/* Read Status Register */

#define STATUS_CLEAR		0x00500050		
/* Clear Status Register */

#define STATUS_BUSY			0x00800080		
/* Write State Machine Status (WSMS) */

#define STATUS_ERASE_ERR	0x00200020		
/* Erase Status (ES) */

#define STATUS_PGM_ERR		0x00100010		
/* Program Status (PS) */

/*
 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 */

#define FLASH_MANUFACTURER			0x00890089

#define FLASH_DEVICE_8mbit_TOP		0x88f188f1

#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2

#define FLASH_DEVICE_16mbit_TOP		0x88f388f3

#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4

/***************************************************************************************************/

/*
 * The data line mapping on LART is as follows:
 *
 *       U2  CPU |   U3  CPU
 *       -------------------
 *        0  20  |   0   12
 *        1  22  |   1   14
 *        2  19  |   2   11
 *        3  17  |   3   9
 *        4  24  |   4   0
 *        5  26  |   5   2
 *        6  31  |   6   7
 *        7  29  |   7   5
 *        8  21  |   8   13
 *        9  23  |   9   15
 *        10 18  |   10  10
 *        11 16  |   11  8
 *        12 25  |   12  1
 *        13 27  |   13  3
 *        14 30  |   14  6
 *        15 28  |   15  4
 */

/* Mangle data (x) */

#define DATA_TO_FLASH(x)				\
	(                                                                       \
                (((x) & 0x08009000) >> 11)      +       \
                (((x) & 0x00002000) >> 10)      +       \
                (((x) & 0x04004000) >> 8)       +       \
                (((x) & 0x00000010) >> 4)       +       \
                (((x) & 0x91000820) >> 3)       +       \
                (((x) & 0x22080080) >> 2)       +       \
                ((x) & 0x40000400)                      +       \
                (((x) & 0x00040040) << 1)       +       \
                (((x) & 0x00110000) << 4)       +       \
                (((x) & 0x00220100) << 5)       +       \
                (((x) & 0x00800208) << 6)       +       \
                (((x) & 0x00400004) << 9)       +       \
                (((x) & 0x00000001) << 12)      +       \
                (((x) & 0x00000002) << 13)              \
        )

/* Unmangle data (x) */

#define FLASH_TO_DATA(x)				\
	(                                                                       \
                (((x) & 0x00010012) << 11)      +       \
                (((x) & 0x00000008) << 10)      +       \
                (((x) & 0x00040040) << 8)       +       \
                (((x) & 0x00000001) << 4)       +       \
                (((x) & 0x12200104) << 3)       +       \
                (((x) & 0x08820020) << 2)       +       \
                ((x) & 0x40000400)                      +       \
                (((x) & 0x00080080) >> 1)       +       \
                (((x) & 0x01100000) >> 4)       +       \
                (((x) & 0x04402000) >> 5)       +       \
                (((x) & 0x20008200) >> 6)       +       \
                (((x) & 0x80000800) >> 9)       +       \
                (((x) & 0x00001000) >> 12)      +       \
                (((x) & 0x00004000) >> 13)              \
        )

/*
 * The address line mapping on LART is as follows:
 *
 *       U3  CPU |   U2  CPU
 *       -------------------
 *        0  2   |   0   2
 *        1  3   |   1   3
 *        2  9   |   2   9
 *        3  13  |   3   8
 *        4  8   |   4   7
 *        5  12  |   5   6
 *        6  11  |   6   5
 *        7  10  |   7   4
 *        8  4   |   8   10
 *        9  5   |   9   11
 *       10  6   |   10  12
 *       11  7   |   11  13
 *
 *       BOOT BLOCK BOUNDARY
 *
 *       12  15  |   12  15
 *       13  14  |   13  14
 *       14  16  |   14  16
 *
 *       MAIN BLOCK BOUNDARY
 *
 *       15  17  |   15  18
 *       16  18  |   16  17
 *       17  20  |   17  20
 *       18  19  |   18  19
 *       19  21  |   19  21
 *
 * As we can see from above, the addresses aren't mangled across
 * block boundaries, so we don't need to worry about address
 * translations except for sending/reading commands during
 * initialization
 */

/* Mangle address (x) on chip U2 */

#define ADDR_TO_FLASH_U2(x)				\
	(                                                                       \
                (((x) & 0x00000f00) >> 4)       +       \
                (((x) & 0x00042000) << 1)       +       \
                (((x) & 0x0009c003) << 2)       +       \
                (((x) & 0x00021080) << 3)       +       \
                (((x) & 0x00000010) << 4)       +       \
                (((x) & 0x00000040) << 5)       +       \
                (((x) & 0x00000024) << 7)       +       \
                (((x) & 0x00000008) << 10)              \
        )

/* Unmangle address (x) on chip U2 */

#define FLASH_U2_TO_ADDR(x)				\
	(                                                                       \
                (((x) << 4) & 0x00000f00)       +       \
                (((x) >> 1) & 0x00042000)       +       \
                (((x) >> 2) & 0x0009c003)       +       \
                (((x) >> 3) & 0x00021080)       +       \
                (((x) >> 4) & 0x00000010)       +       \
                (((x) >> 5) & 0x00000040)       +       \
                (((x) >> 7) & 0x00000024)       +       \
                (((x) >> 10) & 0x00000008)              \
        )

/* Mangle address (x) on chip U3 */

#define ADDR_TO_FLASH_U3(x)				\
	(                                                                       \
                (((x) & 0x00000080) >> 3)       +       \
                (((x) & 0x00000040) >> 1)       +       \
                (((x) & 0x00052020) << 1)       +       \
                (((x) & 0x00084f03) << 2)       +       \
                (((x) & 0x00029010) << 3)       +       \
                (((x) & 0x00000008) << 5)       +       \
                (((x) & 0x00000004) << 7)               \
        )

/* Unmangle address (x) on chip U3 */

#define FLASH_U3_TO_ADDR(x)				\
	(                                                                       \
                (((x) << 3) & 0x00000080)       +       \
                (((x) << 1) & 0x00000040)       +       \
                (((x) >> 1) & 0x00052020)       +       \
                (((x) >> 2) & 0x00084f03)       +       \
                (((x) >> 3) & 0x00029010)       +       \
                (((x) >> 5) & 0x00000008)       +       \
                (((x) >> 7) & 0x00000004)               \
        )

/***************************************************************************************************/


static __u8 read8 (__u32 offset) { volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data); #endif return (*data); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds4797.92%150.00%
Harvey Harrison12.08%150.00%
Total48100.00%2100.00%


static __u32 read32 (__u32 offset) { volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data); #endif return (*data); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds4797.92%150.00%
Harvey Harrison12.08%150.00%
Total48100.00%2100.00%


static void write32 (__u32 x,__u32 offset) { volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); *data = x; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data); #endif }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds4998.00%150.00%
Harvey Harrison12.00%150.00%
Total50100.00%2100.00%

/***************************************************************************************************/ /* * Probe for 16mbit flash memory on a LART board without doing * too much damage. Since we need to write 1 dword to memory, * we're f**cked if this happens to be DRAM since we can't * restore the memory (otherwise we might exit Read Array mode). * * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. */
static int flash_probe (void) { __u32 manufacturer,devtype; /* setup "Read Identifier Codes" mode */ write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); /* probe U2. U2/U3 returns the same data since the first 3 * address lines is mangled in the same way */ manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM)); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds7797.47%150.00%
Roel Kluin22.53%150.00%
Total79100.00%2100.00%

/* * Erase one block of flash memory at offset ``offset'' which is any * address within the block which should be erased. * * Returns 1 if successful, 0 otherwise. */
static inline int erase_block (__u32 offset) { __u32 status; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset); #endif /* erase and confirm */ write32 (DATA_TO_FLASH (ERASE_SETUP),offset); write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); /* wait for block erase to finish */ do { write32 (DATA_TO_FLASH (STATUS_READ),offset); status = FLASH_TO_DATA (read32 (offset)); } while ((~status & STATUS_BUSY) != 0); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); /* was the erase successful? */ if ((status & STATUS_ERASE_ERR)) { printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); return (0); } return (1); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds12598.43%133.33%
Lucas De Marchi10.79%133.33%
Harvey Harrison10.79%133.33%
Total127100.00%3100.00%


static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) { __u32 addr,len; int i,first; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len); #endif /* * check that both start and end of the requested erase are * aligned with the erasesize at the appropriate addresses. * * skip all erase regions which are ended before the start of * the requested erase. Actually, to save on the calculations, * we skip to the first erase region which starts after the * start of the requested erase, and then go back one. */ for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; i--; /* * ok, now i is pointing at the erase region in which this * erase request starts. Check the start of the requested * erase range is aligned with the erase size which is in * effect here. */ if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1))) return -EINVAL; /* Remember the erase region we start on */ first = i; /* * next, check that the end of the requested erase is aligned * with the erase region at that address. * * as before, drop back one to point at the region in which * the address actually falls */ for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; i--; /* is the end aligned on a block boundary? */ if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1))) return -EINVAL; addr = instr->addr; len = instr->len; i = first; /* now erase those blocks */ while (len) { if (!erase_block (addr)) { instr->state = MTD_ERASE_FAILED; return (-EIO); } addr += mtd->eraseregions[i].erasesize; len -= mtd->eraseregions[i].erasesize; if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; } instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return (0); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds29095.39%125.00%
Roel Kluin123.95%125.00%
Harvey Harrison10.33%125.00%
David Woodhouse10.33%125.00%
Total304100.00%4100.00%


static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) { #ifdef LART_DEBUG printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len); #endif /* we always read len bytes */ *retlen = len; /* first, we read bytes until we reach a dword boundary */ if (from & (BUSWIDTH - 1)) { int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); while (len && gap--) *buf++ = read8 (from++), len--; } /* now we read dwords until we reach a non-dword boundary */ while (len >= BUSWIDTH) { *((__u32 *) buf) = read32 (from); buf += BUSWIDTH; from += BUSWIDTH; len -= BUSWIDTH; } /* top up the last unaligned bytes */ if (len & (BUSWIDTH - 1)) while (len--) *buf++ = read8 (from++); return (0); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds16499.39%150.00%
Harvey Harrison10.61%150.00%
Total165100.00%2100.00%

/* * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' * must be 32 bits, i.e. it must be on a dword boundary. * * Returns 1 if successful, 0 otherwise. */
static inline int write_dword (__u32 offset,__u32 x) { __u32 status; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x); #endif /* setup writing */ write32 (DATA_TO_FLASH (PGM_SETUP),offset); /* write the data */ write32 (x,offset); /* wait for the write to finish */ do { write32 (DATA_TO_FLASH (STATUS_READ),offset); status = FLASH_TO_DATA (read32 (offset)); } while ((~status & STATUS_BUSY) != 0); /* put the flash back into command mode */ write32 (DATA_TO_FLASH (READ_ARRAY),offset); /* was the write successful? */ if ((status & STATUS_PGM_ERR) || read32 (offset) != x) { printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); return (0); } return (1); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds13598.54%133.33%
Lucas De Marchi10.73%133.33%
Harvey Harrison10.73%133.33%
Total137100.00%3100.00%


static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) { __u8 tmp[4]; int i,n; #ifdef LART_DEBUG printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len); #endif /* sanity checks */ if (!len) return (0); /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ if (to & (BUSWIDTH - 1)) { __u32 aligned = to & ~(BUSWIDTH - 1); int gap = to - aligned; i = n = 0; while (gap--) tmp[i++] = 0xFF; while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--; while (i < BUSWIDTH) tmp[i++] = 0xFF; if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); to += n; buf += n; *retlen += n; } /* now we write dwords until we reach a non-dword boundary */ while (len >= BUSWIDTH) { if (!write_dword (to,*((__u32 *) buf))) return (-EIO); to += BUSWIDTH; buf += BUSWIDTH; *retlen += BUSWIDTH; len -= BUSWIDTH; } /* top up the last unaligned bytes, padded with 0xFF.... */ if (len & (BUSWIDTH - 1)) { i = n = 0; while (len--) tmp[i++] = buf[n++]; while (i < BUSWIDTH) tmp[i++] = 0xFF; if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); *retlen += n; } return (0); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds32399.69%150.00%
Harvey Harrison10.31%150.00%
Total324100.00%2100.00%

/***************************************************************************************************/ static struct mtd_info mtd; static struct mtd_erase_region_info erase_regions[] = { /* parameter blocks */ { .offset = 0x00000000, .erasesize = FLASH_BLOCKSIZE_PARAM, .numblocks = FLASH_NUMBLOCKS_16m_PARAM, }, /* main blocks */ { .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, .erasesize = FLASH_BLOCKSIZE_MAIN, .numblocks = FLASH_NUMBLOCKS_16m_MAIN, } }; static struct mtd_partition lart_partitions[] = { /* blob */ { .name = "blob", .offset = PART_BLOB_START, .size = PART_BLOB_LEN, }, /* kernel */ { .name = "kernel", .offset = PART_KERNEL_START, /* MTDPART_OFS_APPEND */ .size = PART_KERNEL_LEN, }, /* initial ramdisk / file system */ { .name = "file system", .offset = PART_INITRD_START, /* MTDPART_OFS_APPEND */ .size = PART_INITRD_LEN, /* MTDPART_SIZ_FULL */ } }; #define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
static int __init lart_flash_init (void) { int result; memset (&mtd,0,sizeof (mtd)); printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); if (!flash_probe ()) { printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); return (-ENXIO); } printk ("%s: This looks like a LART board to me.\n",module_name); mtd.name = module_name; mtd.type = MTD_NORFLASH; mtd.writesize = 1; mtd.writebufsize = 4; mtd.flags = MTD_CAP_NORFLASH; mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; mtd.erasesize = FLASH_BLOCKSIZE_MAIN; mtd.numeraseregions = ARRAY_SIZE(erase_regions); mtd.eraseregions = erase_regions; mtd._erase = flash_erase; mtd._read = flash_read; mtd._write = flash_write; mtd.owner = THIS_MODULE; #ifdef LART_DEBUG printk (KERN_DEBUG "mtd.name = %s\n" "mtd.size = 0x%.8x (%uM)\n" "mtd.erasesize = 0x%.8x (%uK)\n" "mtd.numeraseregions = %d\n", mtd.name, mtd.size,mtd.size / (1024*1024), mtd.erasesize,mtd.erasesize / 1024, mtd.numeraseregions); if (mtd.numeraseregions) for (result = 0; result < mtd.numeraseregions; result++) printk (KERN_DEBUG "\n\n" "mtd.eraseregions[%d].offset = 0x%.8x\n" "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" "mtd.eraseregions[%d].numblocks = %d\n", result,mtd.eraseregions[result].offset, result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, result,mtd.eraseregions[result].numblocks); printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions)); for (result = 0; result < ARRAY_SIZE(lart_partitions); result++) printk (KERN_DEBUG "\n\n" "lart_partitions[%d].name = %s\n" "lart_partitions[%d].offset = 0x%.8x\n" "lart_partitions[%d].size = 0x%.8x (%uK)\n", result,lart_partitions[result].name, result,lart_partitions[result].offset, result,lart_partitions[result].size,lart_partitions[result].size / 1024); #endif result = mtd_device_register(&mtd, lart_partitions, ARRAY_SIZE(lart_partitions)); return (result); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds33792.58%112.50%
Artem B. Bityutskiy154.12%337.50%
David Woodhouse61.65%112.50%
Tobias Klauser41.10%112.50%
Jamie Iles10.27%112.50%
Dmitri Vorobiev10.27%112.50%
Total364100.00%8100.00%


static void __exit lart_flash_exit (void) { mtd_device_unregister(&mtd); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds1386.67%133.33%
Jamie Iles16.67%133.33%
Dmitri Vorobiev16.67%133.33%
Total15100.00%3100.00%

module_init (lart_flash_init); module_exit (lart_flash_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");

Overall Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds194694.42%15.26%
David Woodhouse411.99%210.53%
Artem B. Bityutskiy150.73%315.79%
Florian Fainelli140.68%15.26%
Roel Kluin140.68%210.53%
Harvey Harrison80.39%15.26%
Tobias Klauser40.19%15.26%
Dmitry Baryshkov40.19%15.26%
Tim Schmielau30.15%15.26%
Yves Rutschle30.15%15.26%
Thomas Gleixner20.10%15.26%
Lucas De Marchi20.10%15.26%
Dmitri Vorobiev20.10%15.26%
Jamie Iles20.10%15.26%
Justin P. Mattock10.05%15.26%
Total2061100.00%19100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.