cregit-Linux how code gets into the kernel

Release 4.11 drivers/scsi/sym53c8xx_2/sym_hipd.h

/*
 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
 * of PCI-SCSI IO processors.
 *
 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
 *
 * This driver is derived from the Linux sym53c8xx driver.
 * Copyright (C) 1998-2000  Gerard Roudier
 *
 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
 * a port of the FreeBSD ncr driver to Linux-1.2.13.
 *
 * The original ncr driver has been written for 386bsd and FreeBSD by
 *         Wolfgang Stanglmeier        <wolf@cologne.de>
 *         Stefan Esser                <se@mi.Uni-Koeln.de>
 * Copyright (C) 1994  Wolfgang Stanglmeier
 *
 * Other major contributions:
 *
 * NVRAM detection and reading.
 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
 *
 *-----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/gfp.h>

#ifndef SYM_HIPD_H

#define SYM_HIPD_H

/*
 *  Generic driver options.
 *
 *  They may be defined in platform specific headers, if they 
 *  are useful.
 *
 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
 *        When this option is set, the driver will use a queue per 
 *        device and handle QUEUE FULL status requeuing internally.
 *
 *    SYM_OPT_LIMIT_COMMAND_REORDERING
 *        When this option is set, the driver tries to limit tagged 
 *        command reordering to some reasonable value.
 *        (set for Linux)
 */
#if 0
#define SYM_OPT_HANDLE_DEVICE_QUEUEING
#define SYM_OPT_LIMIT_COMMAND_REORDERING
#endif

/*
 *  Active debugging tags and verbosity.
 *  Both DEBUG_FLAGS and sym_verbose can be redefined 
 *  by the platform specific code to something else.
 */

#define DEBUG_ALLOC	(0x0001)

#define DEBUG_PHASE	(0x0002)

#define DEBUG_POLL	(0x0004)

#define DEBUG_QUEUE	(0x0008)

#define DEBUG_RESULT	(0x0010)

#define DEBUG_SCATTER	(0x0020)

#define DEBUG_SCRIPT	(0x0040)

#define DEBUG_TINY	(0x0080)

#define DEBUG_TIMING	(0x0100)

#define DEBUG_NEGO	(0x0200)

#define DEBUG_TAGS	(0x0400)

#define DEBUG_POINTER	(0x0800)

#ifndef DEBUG_FLAGS

#define DEBUG_FLAGS	(0x0000)
#endif

#ifndef sym_verbose

#define sym_verbose	(np->verbose)
#endif

/*
 *  These ones should have been already defined.
 */
#ifndef assert

#define	assert(expression) { \
        if (!(expression)) { \
                (void)panic( \
                        "assertion \"%s\" failed: file \"%s\", line %d\n", \
                        #expression, \
                        __FILE__, __LINE__); \
        } \
}
#endif

/*
 *  Number of tasks per device we want to handle.
 */
#if	SYM_CONF_MAX_TAG_ORDER > 8
#error	"more than 256 tags per logical unit not allowed."
#endif

#define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)

/*
 *  Donnot use more tasks that we can handle.
 */
#ifndef	SYM_CONF_MAX_TAG

#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
#endif
#if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK

#undef	SYM_CONF_MAX_TAG

#define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
#endif

/*
 *    This one means 'NO TAG for this job'
 */

#define NO_TAG	(256)

/*
 *  Number of SCSI targets.
 */
#if	SYM_CONF_MAX_TARGET > 16
#error	"more than 16 targets not allowed."
#endif

/*
 *  Number of logical units per target.
 */
#if	SYM_CONF_MAX_LUN > 64
#error	"more than 64 logical units per target not allowed."
#endif

/*
 *    Asynchronous pre-scaler (ns). Shall be 40 for 
 *    the SCSI timings to be compliant.
 */

#define	SYM_CONF_MIN_ASYNC (40)


/*
 * MEMORY ALLOCATOR.
 */


#define SYM_MEM_WARN	1	
/* Warn on failed operations */


#define SYM_MEM_PAGE_ORDER 0	
/* 1 PAGE  maximum */

#define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)

#define SYM_MEM_FREE_UNUSED	
/* Free unused pages immediately */
/*
 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
 *  (1 PAGE at a time is just fine).
 */

#define SYM_MEM_SHIFT	4

#define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)

#define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)

/*
 *  Number of entries in the START and DONE queues.
 *
 *  We limit to 1 PAGE in order to succeed allocation of 
 *  these queues. Each entry is 8 bytes long (2 DWORDS).
 */
#ifdef	SYM_CONF_MAX_START

#define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
#else

#define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)

#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif

#if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8

#undef	SYM_CONF_MAX_QUEUE

#define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)

#undef	SYM_CONF_MAX_START

#define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
#endif

/*
 *  For this one, we want a short name :-)
 */

#define MAX_QUEUE	SYM_CONF_MAX_QUEUE

/*
 *  Common definitions for both bus space based and legacy IO methods.
 */


#define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))

#define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))

#define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))


#define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))

#define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))

#define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))


#define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))

#define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))

#define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))


#define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))

#define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))

#define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))


#define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))

#define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))

#define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))

#define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))

#define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))

#define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))

/*
 *  We normally want the chip to have a consistent view
 *  of driver internal data structures when we restart it.
 *  Thus these macros.
 */

#define OUTL_DSP(np, v)				\
	do {                                    \
                MEMORY_WRITE_BARRIER();         \
                OUTL(np, nc_dsp, (v));          \
        } while (0)


#define OUTONB_STD()				\
	do {                                    \
                MEMORY_WRITE_BARRIER();         \
                OUTONB(np, nc_dcntl, (STD|NOCOM));      \
        } while (0)

/*
 *  Command control block states.
 */

#define HS_IDLE		(0)

#define HS_BUSY		(1)

#define HS_NEGOTIATE	(2)	
/* sync/wide data transfer*/

#define HS_DISCONNECT	(3)	
/* Disconnected by target */

#define HS_WAIT		(4)	
/* waiting for resource   */


#define HS_DONEMASK	(0x80)

#define HS_COMPLETE	(4|HS_DONEMASK)

#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	
/* Selection timeout      */

#define HS_UNEXPECTED	(6|HS_DONEMASK)	
/* Unexpected disconnect  */

#define HS_COMP_ERR	(7|HS_DONEMASK)	
/* Completed with error   */

/*
 *  Software Interrupt Codes
 */

#define	SIR_BAD_SCSI_STATUS	(1)

#define	SIR_SEL_ATN_NO_MSG_OUT	(2)

#define	SIR_MSG_RECEIVED	(3)

#define	SIR_MSG_WEIRD		(4)

#define	SIR_NEGO_FAILED		(5)

#define	SIR_NEGO_PROTO		(6)

#define	SIR_SCRIPT_STOPPED	(7)

#define	SIR_REJECT_TO_SEND	(8)

#define	SIR_SWIDE_OVERRUN	(9)

#define	SIR_SODL_UNDERRUN	(10)

#define	SIR_RESEL_NO_MSG_IN	(11)

#define	SIR_RESEL_NO_IDENTIFY	(12)

#define	SIR_RESEL_BAD_LUN	(13)

#define	SIR_TARGET_SELECTED	(14)

#define	SIR_RESEL_BAD_I_T_L	(15)

#define	SIR_RESEL_BAD_I_T_L_Q	(16)

#define	SIR_ABORT_SENT		(17)

#define	SIR_RESEL_ABORTED	(18)

#define	SIR_MSG_OUT_DONE	(19)

#define	SIR_COMPLETE_ERROR	(20)

#define	SIR_DATA_OVERRUN	(21)

#define	SIR_BAD_PHASE		(22)
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2

#define	SIR_DMAP_DIRTY		(23)

#define	SIR_MAX			(23)
#else

#define	SIR_MAX			(22)
#endif

/*
 *  Extended error bit codes.
 *  xerr_status field of struct sym_ccb.
 */

#define	XE_EXTRA_DATA	(1)	
/* unexpected data phase         */

#define	XE_BAD_PHASE	(1<<1)	
/* illegal phase (4/5)           */

#define	XE_PARITY_ERR	(1<<2)	
/* unrecovered SCSI parity error */

#define	XE_SODL_UNRUN	(1<<3)	
/* ODD transfer in DATA OUT phase */

#define	XE_SWIDE_OVRUN	(1<<4)	
/* ODD transfer in DATA IN phase */

/*
 *  Negotiation status.
 *  nego_status field of struct sym_ccb.
 */

#define NS_SYNC		(1)

#define NS_WIDE		(2)

#define NS_PPR		(3)

/*
 *  A CCB hashed table is used to retrieve CCB address 
 *  from DSA value.
 */

#define CCB_HASH_SHIFT		8

#define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)

#define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
#if 1

#define CCB_HASH_CODE(dsa)	\
	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
#else

#define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
#endif

#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
/*
 *  We may want to use segment registers for 64 bit DMA.
 *  16 segments registers -> up to 64 GB addressable.
 */

#define SYM_DMAP_SHIFT	(4)

#define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)

#define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
#endif

/*
 *  Device flags.
 */

#define SYM_DISC_ENABLED	(1)

#define SYM_TAGS_ENABLED	(1<<1)

#define SYM_SCAN_BOOT_DISABLED	(1<<2)

#define SYM_SCAN_LUNS_DISABLED	(1<<3)

/*
 *  Host adapter miscellaneous flags.
 */

#define SYM_AVOID_BUS_RESET	(1)

/*
 *  Misc.
 */

#define SYM_SNOOP_TIMEOUT (10000000)

#define BUS_8_BIT	0

#define BUS_16_BIT	1

/*
 *  Gather negotiable parameters value
 */

struct sym_trans {
	
u8 period;
	
u8 offset;
	
unsigned int width:1;
	
unsigned int iu:1;
	
unsigned int dt:1;
	
unsigned int qas:1;
	
unsigned int check_nego:1;
	
unsigned int renego:2;
};

/*
 *  Global TCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the TCB to a global 
 *  address after selection.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */

struct sym_tcbh {
	/*
         *  Scripts bus addresses of LUN table accessed from scripts.
         *  LUN #0 is a special case, since multi-lun devices are rare, 
         *  and we we want to speed-up the general case and not waste 
         *  resources.
         */
	
u32	luntbl_sa;	/* bus address of this table    */
	
u32	lun0_sa;	/* bus address of LCB #0        */
	/*
         *  Actual SYNC/WIDE IO registers value for this target.
         *  'sval', 'wval' and 'uval' are read from SCRIPTS and 
         *  so have alignment constraints.
         */

/*0*/	u_char	uval;		/* -> SCNTL4 register           */

/*1*/	u_char	sval;		/* -> SXFER  io register        */

/*2*/	u_char	filler1;

/*3*/	u_char	wval;		/* -> SCNTL3 io register        */
};

/*
 *  Target Control Block
 */

struct sym_tcb {
	/*
         *  TCB header.
         *  Assumed at offset 0.
         */

/*0*/	struct sym_tcbh head;

	/*
         *  LUN table used by the SCRIPTS processor.
         *  An array of bus addresses is used on reselection.
         */
	
u32	*luntbl;	/* LCBs bus address table       */
	
int	nlcb;		/* Number of valid LCBs (including LUN #0) */

	/*
         *  LUN table used by the C code.
         */
	
struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)   */
#if SYM_CONF_MAX_LUN > 1
	
struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]      */
#endif

#ifdef	SYM_HAVE_STCB
	/*
         *  O/S specific data structure.
         */
	
struct sym_stcb s;
#endif

	/* Transfer goal */
	
struct sym_trans tgoal;

	/* Last printed transfer speed */
	
struct sym_trans tprint;

	/*
         * Keep track of the CCB used for the negotiation in order
         * to ensure that only 1 negotiation is queued at a time.
         */
	
struct sym_ccb *  nego_cp;	/* CCB used for the nego                */

	/*
         *  Set when we want to reset the device.
         */
	
u_char	to_reset;

	/*
         *  Other user settable limits and options.
         *  These limits are read from the NVRAM if present.
         */
	
unsigned char	usrflags;
	
unsigned char	usr_period;
	
unsigned char	usr_width;
	
unsigned short	usrtags;
	
struct scsi_target *starget;
};

/*
 *  Global LCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the LCB to a global 
 *  address after selection.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */

struct sym_lcbh {
	/*
         *  SCRIPTS address jumped by SCRIPTS on reselection.
         *  For not probed logical units, this address points to 
         *  SCRIPTS that deal with bad LU handling (must be at 
         *  offset zero of the LCB for that reason).
         */

/*0*/	u32	resel_sa;

	/*
         *  Task (bus address of a CCB) read from SCRIPTS that points 
         *  to the unique ITL nexus allowed to be disconnected.
         */
	
u32	itl_task_sa;

	/*
         *  Task table bus address (read from SCRIPTS).
         */
	
u32	itlq_tbl_sa;
};

/*
 *  Logical Unit Control Block
 */

struct sym_lcb {
	/*
         *  TCB header.
         *  Assumed at offset 0.
         */

/*0*/	struct sym_lcbh head;

	/*
         *  Task table read from SCRIPTS that contains pointers to 
         *  ITLQ nexuses. The bus address read from SCRIPTS is 
         *  inside the header.
         */
	
u32	*itlq_tbl;	/* Kernel virtual address       */

	/*
         *  Busy CCBs management.
         */
	
u_short	busy_itlq;	/* Number of busy tagged CCBs   */
	
u_short	busy_itl;	/* Number of busy untagged CCBs */

	/*
         *  Circular tag allocation buffer.
         */
	
u_short	ia_tag;		/* Tag allocation index         */
	
u_short	if_tag;		/* Tag release index            */
	
u_char	*cb_tags;	/* Circular tags buffer         */

	/*
         *  O/S specific data structure.
         */
#ifdef	SYM_HAVE_SLCB
	
struct sym_slcb s;
#endif

#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	/*
         *  Optionnaly the driver can handle device queueing, 
         *  and requeues internally command to redo.
         */
	
SYM_QUEHEAD waiting_ccbq;
	
SYM_QUEHEAD started_ccbq;
	
int	num_sgood;
	
u_short	started_tags;
	
u_short	started_no_tag;
	
u_short	started_max;
	
u_short	started_limit;
#endif

#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
	/*
         *  Optionally the driver can try to prevent SCSI 
         *  IOs from being reordered too much.
         */
	
u_char		tags_si;	/* Current index to tags sum    */
	
u_short		tags_sum[2];	/* Tags sum counters            */
	
u_short		tags_since;	/* # of tags since last switch  */
#endif

	/*
         *  Set when we want to clear all tasks.
         */
	
u_char to_clear;

	/*
         *  Capabilities.
         */
	
u_char	user_flags;
	
u_char	curr_flags;
};

/*
 *  Action from SCRIPTS on a task.
 *  Is part of the CCB, but is also used separately to plug 
 *  error handling action to perform from SCRIPTS.
 */

struct sym_actscr {
	
u32	start;		/* Jumped by SCRIPTS after selection    */
	
u32	restart;	/* Jumped by SCRIPTS on relection       */
};

/*
 *  Phase mismatch context.
 *
 *  It is part of the CCB and is used as parameters for the 
 *  DATA pointer. We need two contexts to handle correctly the 
 *  SAVED DATA POINTER.
 */

struct sym_pmc {
	
struct	sym_tblmove sg;	/* Updated interrupted SG block */
	
u32	ret;		/* SCRIPT return address        */
};

/*
 *  LUN control block lookup.
 *  We use a direct pointer for LUN #0, and a table of 
 *  pointers which is only allocated for devices that support 
 *  LUN(s) > 0.
 */
#if SYM_CONF_MAX_LUN <= 1

#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
#else

#define sym_lp(tp, lun) \
	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
#endif

/*
 *  Status are used by the host and the script processor.
 *
 *  The last four bytes (status[4]) are copied to the 
 *  scratchb register (declared as scr0..scr3) just after the 
 *  select/reselect, and copied back just after disconnecting.
 *  Inside the script the XX_REG are used.
 */

/*
 *  Last four bytes (script)
 */

#define  HX_REG	scr0

#define  HX_PRT	nc_scr0

#define  HS_REG	scr1

#define  HS_PRT	nc_scr1

#define  SS_REG	scr2

#define  SS_PRT	nc_scr2

#define  HF_REG	scr3

#define  HF_PRT	nc_scr3

/*
 *  Last four bytes (host)
 */

#define  host_xflags   phys.head.status[0]

#define  host_status   phys.head.status[1]

#define  ssss_status   phys.head.status[2]

#define  host_flags    phys.head.status[3]

/*
 *  Host flags
 */

#define HF_IN_PM0	1u

#define HF_IN_PM1	(1u<<1)

#define HF_ACT_PM	(1u<<2)

#define HF_DP_SAVED	(1u<<3)

#define HF_SENSE	(1u<<4)

#define HF_EXT_ERR	(1u<<5)

#define HF_DATA_IN	(1u<<6)
#ifdef SYM_CONF_IARB_SUPPORT

#define HF_HINT_IARB	(1u<<7)
#endif

/*
 *  More host flags
 */
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2

#define	HX_DMAP_DIRTY	(1u<<7)
#endif

/*
 *  Global CCB HEADER.
 *
 *  Due to lack of indirect addressing on earlier NCR chips,
 *  this substructure is copied from the ccb to a global 
 *  address after selection (or reselection) and copied back 
 *  before disconnect.
 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 *  not needed and thus not performed.
 */


struct sym_ccbh {
	/*
         *  Start and restart SCRIPTS addresses (must be at 0).
         */

/*0*/	struct sym_actscr go;

	/*
         *  SCRIPTS jump address that deal with data pointers.
         *  'savep' points to the position in the script responsible 
         *  for the actual transfer of data.
         *  It's written on reception of a SAVE_DATA_POINTER message.
         */
	
u32	savep;		/* Jump address to saved data pointer   */
	
u32	lastp;		/* SCRIPTS address at end of data       */

	/*
         *  Status fields.
         */
	
u8	status[4];
};

/*
 *  GET/SET the value of the data pointer used by SCRIPTS.
 *
 *  We must distinguish between the LOAD/STORE-based SCRIPTS 
 *  that use directly the header in the CCB, and the NCR-GENERIC 
 *  SCRIPTS that use the copy of the header in the HCB.
 */
#if	SYM_CONF_GENERIC_SUPPORT

#define sym_set_script_dp(np, cp, dp)				\
	do {                                                    \
                if (np->features & FE_LDSTR)                    \
                        cp->phys.head.lastp = cpu_to_scr(dp);   \
                else                                            \
                        np->ccb_head.lastp = cpu_to_scr(dp);    \
        } while (0)

#define sym_get_script_dp(np, cp) 				\
	scr_to_cpu((np->features & FE_LDSTR) ?                  \
                cp->phys.head.lastp : np->ccb_head.lastp)
#else

#define sym_set_script_dp(np, cp, dp)				\
	do {                                                    \
                cp->phys.head.lastp = cpu_to_scr(dp);           \
        } while (0)


#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
#endif

/*
 *  Data Structure Block
 *
 *  During execution of a ccb by the script processor, the 
 *  DSA (data structure address) register points to this 
 *  substructure of the ccb.
 */

struct sym_dsb {
	/*
         *  CCB header.
         *  Also assumed at offset 0 of the sym_ccb structure.
         */

/*0*/	struct sym_ccbh head;

	/*
         *  Phase mismatch contexts.
         *  We need two to handle correctly the SAVED DATA POINTER.
         *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 
         *  for address calculation from SCRIPTS.
         */
	
struct sym_pmc pm0;
	
struct sym_pmc pm1;

	/*
         *  Table data for Script
         */
	
struct sym_tblsel  select;
	
struct sym_tblmove smsg;
	
struct sym_tblmove smsg_ext;
	
struct sym_tblmove cmd;
	
struct sym_tblmove sense;
	
struct sym_tblmove wresid;
	
struct sym_tblmove data [SYM_CONF_MAX_SG];
};

/*
 *  Our Command Control Block
 */

struct sym_ccb {
	/*
         *  This is the data structure which is pointed by the DSA 
         *  register when it is executed by the script processor.
         *  It must be the first entry.
         */
	
struct sym_dsb phys;

	/*
         *  Pointer to CAM ccb and related stuff.
         */
	
struct scsi_cmnd *cmd;	/* CAM scsiio ccb               */
	
u8	cdb_buf[16];	/* Copy of CDB                  */

#define	SYM_SNS_BBUF_LEN 32
	
u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
	
int	data_len;	/* Total data length            */
	
int	segments;	/* Number of SG segments        */

	
u8	order;		/* Tag type (if tagged command) */
	
unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */

	
u_char	nego_status;	/* Negotiation status           */
	
u_char	xerr_status;	/* Extended error flags         */
	
u32	extra_bytes;	/* Extraneous bytes transferred */

	/*
         *  Message areas.
         *  We prepare a message to be sent after selection.
         *  We may use a second one if the command is rescheduled 
         *  due to CHECK_CONDITION or COMMAND TERMINATED.
         *  Contents are IDENTIFY and SIMPLE_TAG.
         *  While negotiating sync or wide transfer,
         *  a SDTR or WDTR message is appended.
         */
	
u_char	scsi_smsg [12];
	
u_char	scsi_smsg2[12];

	/*
         *  Auto request sense related fields.
         */
	
u_char	sensecmd[6];	/* Request Sense command        */
	
u_char	sv_scsi_status;	/* Saved SCSI status            */
	
u_char	sv_xerr_status;	/* Saved extended status        */
	
int	sv_resid;	/* Saved residual               */

	/*
         *  Other fields.
         */
	
u32	ccb_ba;		/* BUS address of this CCB      */
	
u_short	tag;		/* Tag for this transfer        */
				/*  NO_TAG means no tag         */
	
u_char	target;
	
u_char	lun;
	
struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain  */
	
SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue  */
	
u32	startp;		/* Initial data pointer         */
	
u32	goalp;		/* Expected last data pointer   */
	
int	ext_sg;		/* Extreme data pointer, used   */
	
int	ext_ofs;	/*  to calculate the residual.  */
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	
SYM_QUEHEAD link2_ccbq;	/* Link for device queueing     */
	
u_char	started;	/* CCB queued to the squeue     */
#endif
	
u_char	to_abort;	/* Want this IO to be aborted   */
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
	
u_char	tags_si;	/* Lun tags sum index (0,1)     */
#endif
};


#define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))


typedef struct device *m_pool_ident_t;

/*
 *  Host Control Block
 */

struct sym_hcb {
	/*
         *  Global headers.
         *  Due to poorness of addressing capabilities, earlier 
         *  chips (810, 815, 825) copy part of the data structures 
         *  (CCB, TCB and LCB) in fixed areas.
         */
#if	SYM_CONF_GENERIC_SUPPORT
	
struct sym_ccbh	ccb_head;
	
struct sym_tcbh	tcb_head;
	
struct sym_lcbh	lcb_head;
#endif
	/*
         *  Idle task and invalid task actions and 
         *  their bus addresses.
         */
	



struct sym_actscr idletask, notask, bad_itl, bad_itlq;
	



u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;

	/*
         *  Dummy lun table to protect us against target 
         *  returning bad lun number on reselection.
         */
	
u32	*badluntbl;	/* Table physical address       */
	
u32	badlun_sa;	/* SCRIPT handler BUS address   */

	/*
         *  Bus address of this host control block.
         */
	
u32	hcb_ba;

	/*
         *  Bit 32-63 of the on-chip RAM bus address in LE format.
         *  The START_RAM64 script loads the MMRS and MMWS from this 
         *  field.
         */
	
u32	scr_ram_seg;

	/*
         *  Initial value of some IO register bits.
         *  These values are assumed to have been set by BIOS, and may 
         *  be used to probe adapter implementation differences.
         */
	





u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
		




sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
		
sv_stest1;

	/*
         *  Actual initial value of IO register bits used by the 
         *  driver. They are loaded at initialisation according to  
         *  features that are to be enabled/disabled.
         */
	





u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 
		




rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;

	/*
         *  Target data.
         */
	
struct sym_tcb	target[SYM_CONF_MAX_TARGET];

	/*
         *  Target control block bus address array used by the SCRIPT 
         *  on reselection.
         */
	
u32		*targtbl;
	
u32		targtbl_ba;

	/*
         *  DMA pool handle for this HBA.
         */
	
m_pool_ident_t	bus_dmat;

	/*
         *  O/S specific data structure
         */
	
struct sym_shcb s;

	/*
         *  Physical bus addresses of the chip.
         */
	
u32		mmio_ba;	/* MMIO 32 bit BUS address      */
	
u32		ram_ba;		/* RAM 32 bit BUS address       */

	/*
         *  SCRIPTS virtual and physical bus addresses.
         *  'script'  is loaded in the on-chip RAM if present.
         *  'scripth' stays in main memory for all chips except the 
         *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
         */
	
u_char		*scripta0;	/* Copy of scripts A, B, Z      */
	
u_char		*scriptb0;
	
u_char		*scriptz0;
	
u32		scripta_ba;	/* Actual scripts A, B, Z       */
	
u32		scriptb_ba;	/* 32 bit bus addresses.        */
	
u32		scriptz_ba;
	
u_short		scripta_sz;	/* Actual size of script A, B, Z*/
	
u_short		scriptb_sz;
	
u_short		scriptz_sz;

	/*
         *  Bus addresses, setup and patch methods for 
         *  the selected firmware.
         */
	
struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses */
	
struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses */
	
struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses */
	
void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
	
void		(*fw_patch)(struct Scsi_Host *);
	
char		*fw_name;

	/*
         *  General controller parameters and configuration.
         */
	
u_int	features;	/* Chip features map            */
	
u_char	myaddr;		/* SCSI id of the adapter       */
	
u_char	maxburst;	/* log base 2 of dwords burst   */
	
u_char	maxwide;	/* Maximum transfer width       */
	
u_char	minsync;	/* Min sync period factor (ST)  */
	
u_char	maxsync;	/* Max sync period factor (ST)  */
	
u_char	maxoffs;	/* Max scsi offset        (ST)  */
	
u_char	minsync_dt;	/* Min sync period factor (DT)  */
	
u_char	maxsync_dt;	/* Max sync period factor (DT)  */
	
u_char	maxoffs_dt;	/* Max scsi offset        (DT)  */
	
u_char	multiplier;	/* Clock multiplier (1,2,4)     */
	
u_char	clock_divn;	/* Number of clock divisors     */
	
u32	clock_khz;	/* SCSI clock frequency in KHz  */
	
u32	pciclk_khz;	/* Estimated PCI clock  in KHz  */
	/*
         *  Start queue management.
         *  It is filled up by the host processor and accessed by the 
         *  SCRIPTS processor in order to start SCSI commands.
         */
	volatile		/* Prevent code optimizations   */
	
u32	*squeue;	/* Start queue virtual address  */
	
u32	squeue_ba;	/* Start queue BUS address      */
	
u_short	squeueput;	/* Next free slot of the queue  */
	
u_short	actccbs;	/* Number of allocated CCBs     */

	/*
         *  Command completion queue.
         *  It is the same size as the start queue to avoid overflow.
         */
	
u_short	dqueueget;	/* Next position to scan        */
	volatile		/* Prevent code optimizations   */
	
u32	*dqueue;	/* Completion (done) queue      */
	
u32	dqueue_ba;	/* Done queue BUS address       */

	/*
         *  Miscellaneous buffers accessed by the scripts-processor.
         *  They shall be DWORD aligned, because they may be read or 
         *  written with a script command.
         */
	
u_char		msgout[8];	/* Buffer for MESSAGE OUT       */
	
u_char		msgin [8];	/* Buffer for MESSAGE IN        */
	
u32		lastmsg;	/* Last SCSI message sent       */
	
u32		scratch;	/* Scratch for SCSI receive     */
					/* Also used for cache test     */
	/*
         *  Miscellaneous configuration and status parameters.
         */
	
u_char		usrflags;	/* Miscellaneous user flags     */
	
u_char		scsi_mode;	/* Current SCSI BUS mode        */
	
u_char		verbose;	/* Verbosity for this controller*/

	/*
         *  CCB lists and queue.
         */
	
struct sym_ccb **ccbh;			/* CCBs hashed by DSA value     */
					/* CCB_HASH_SIZE lists of CCBs  */
	
SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs      */
	
SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs           */

	/*
         *  During error handling and/or recovery,
         *  active CCBs that are to be completed with 
         *  error or requeued are moved from the busy_ccbq
         *  to the comp_ccbq prior to completion.
         */
	
SYM_QUEHEAD	comp_ccbq;

#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
	
SYM_QUEHEAD	dummy_ccbq;
#endif

	/*
         *  IMMEDIATE ARBITRATION (IARB) control.
         *
         *  We keep track in 'last_cp' of the last CCB that has been 
         *  queued to the SCRIPTS processor and clear 'last_cp' when 
         *  this CCB completes. If last_cp is not zero at the moment 
         *  we queue a new CCB, we set a flag in 'last_cp' that is 
         *  used by the SCRIPTS as a hint for setting IARB.
         *  We donnot set more than 'iarb_max' consecutive hints for 
         *  IARB in order to leave devices a chance to reselect.
         *  By the way, any non zero value of 'iarb_max' is unfair. :)
         */
#ifdef SYM_CONF_IARB_SUPPORT
	
u_short		iarb_max;	/* Max. # consecutive IARB hints*/
	
u_short		iarb_count;	/* Actual # of these hints      */
	
struct sym_ccb *	last_cp;
#endif

	/*
         *  Command abort handling.
         *  We need to synchronize tightly with the SCRIPTS 
         *  processor in order to handle things correctly.
         */
	
u_char		abrt_msg[4];	/* Message to send buffer       */
	
struct sym_tblmove abrt_tbl;	/* Table for the MOV of it      */
	
struct sym_tblsel  abrt_sel;	/* Sync params for selection    */
	
u_char		istat_sem;	/* Tells the chip to stop (SEM) */

	/*
         *  64 bit DMA handling.
         */
#if	SYM_CONF_DMA_ADDRESSING_MODE != 0
	
u_char	use_dac;		/* Use PCI DAC cycles           */
#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
	
u_char	dmap_dirty;		/* Dma segments registers dirty */
	
u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map        */
#endif
#endif
};

#if SYM_CONF_DMA_ADDRESSING_MODE == 0

#define use_dac(np)	0

#define set_dac(np)	do { } while (0)
#else

#define use_dac(np)	(np)->use_dac

#define set_dac(np)	(np)->use_dac = 1
#endif


#define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))


/*
 *  FIRMWARES (sym_fw.c)
 */
struct sym_fw * sym_find_firmware(struct sym_chip *chip);
void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);

/*
 *  Driver methods called from O/S specific code.
 */
char *sym_driver_name(void);
void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
#else
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
#endif
void sym_start_up(struct Scsi_Host *, int reason);
irqreturn_t sym_interrupt(struct Scsi_Host *);
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
int sym_reset_scsi_target(struct sym_hcb *np, int target);
void sym_hcb_free(struct sym_hcb *np);
int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);

/*
 *  Build a scatter/gather entry.
 *
 *  For 64 bit systems, we use the 8 upper bits of the size field 
 *  to provide bus address bits 32-39 to the SCRIPTS processor.
 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
 */

#if   SYM_CONF_DMA_ADDRESSING_MODE == 0

#define DMA_DAC_MASK	DMA_BIT_MASK(32)

#define sym_build_sge(np, data, badd, len)	\
do {                                            \
        (data)->addr = cpu_to_scr(badd);        \
        (data)->size = cpu_to_scr(len);         \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1

#define DMA_DAC_MASK	DMA_BIT_MASK(40)

#define sym_build_sge(np, data, badd, len)				\
do {                                                                    \
        (data)->addr = cpu_to_scr(badd);                                \
        (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);  \
} while (0)
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2

#define DMA_DAC_MASK	DMA_BIT_MASK(64)
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);

static inline void sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len) { u32 h = (badd>>32); int s = (h&SYM_DMAP_MASK); if (h != np->dmap_bah[s]) goto bad; good: (data)->addr = cpu_to_scr(badd); (data)->size = cpu_to_scr((s<<24) + len); return; bad: s = sym_lookup_dmap(np, h, s); goto good; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds9896.08%133.33%
Matthew Wilcox32.94%133.33%
Harvey Harrison10.98%133.33%
Total102100.00%3100.00%

#else #error "Unsupported DMA addressing mode" #endif /* * MEMORY ALLOCATOR. */ #define sym_get_mem_cluster() \ (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER) #define sym_free_mem_cluster(p) \ free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER) /* * Link between free memory chunks of a given size. */ typedef struct sym_m_link { struct sym_m_link *next; } *m_link_p; /* * Virtual to bus physical translation for a given cluster. * Such a structure is only useful with DMA abstraction. */ typedef struct sym_m_vtob { /* Virtual to Bus address translation */ struct sym_m_vtob *next; void *vaddr; /* Virtual address */ dma_addr_t baddr; /* Bus physical address */ } *m_vtob_p; /* Hash this stuff a bit to speed up translations */ #define VTOB_HASH_SHIFT 5 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) #define VTOB_HASH_CODE(m) \ ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK) /* * Memory pool of a given kind. * Ideally, we want to use: * 1) 1 pool for memory we donnot need to involve in DMA. * 2) The same pool for controllers that require same DMA * constraints and features. * The OS specific m_pool_id_t thing and the sym_m_pool_match() * method are expected to tell the driver about. */ typedef struct sym_m_pool { m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */ void * (*get_mem_cluster)(struct sym_m_pool *); #ifdef SYM_MEM_FREE_UNUSED void (*free_mem_cluster)(struct sym_m_pool *, void *); #endif #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp) #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p) int nump; m_vtob_p vtob[VTOB_HASH_SIZE]; struct sym_m_pool *next; struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1]; } *m_pool_p; /* * Alloc, free and translate addresses to bus physical * for DMAable memory. */ void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name); void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name); dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m); /* * Verbs used by the driver code for DMAable memory handling. * The _uvptv_ macro avoids a nasty warning about pointer to volatile * being discarded. */ #define _uvptv_(p) ((void *)((u_long)(p))) #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n) #define _sym_mfree_dma(np, p, l, n) \ __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n) #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n) #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n) #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p)) /* * We have to provide the driver memory allocator with methods for * it to maintain virtual to bus physical address translations. */ #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2)
static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) { void *vaddr = NULL; dma_addr_t baddr = 0; vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr, GFP_ATOMIC); if (vaddr) { vbp->vaddr = vaddr; vbp->baddr = baddr; } return vaddr; }

Contributors

PersonTokensPropCommitsCommitProp
Matthew Wilcox6198.39%150.00%
Harvey Harrison11.61%150.00%
Total62100.00%2100.00%


static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) { dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr, vbp->baddr); }

Contributors

PersonTokensPropCommitsCommitProp
Matthew Wilcox2996.67%150.00%
Harvey Harrison13.33%150.00%
Total30100.00%2100.00%

#endif /* SYM_HIPD_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds232481.15%28.00%
Matthew Wilcox47716.66%1040.00%
Aaro Koskinen250.87%28.00%
Olaf Hering190.66%14.00%
Tony Battersby50.17%14.00%
Tim Schmielau30.10%14.00%
Yang Hongyang30.10%312.00%
Harvey Harrison30.10%14.00%
James Bottomley20.07%14.00%
Al Viro10.03%14.00%
Hannes Reinecke10.03%14.00%
André Goddard Rosa10.03%14.00%
Total2864100.00%25100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.