cregit-Linux how code gets into the kernel

Release 4.11 fs/mpage.c

Directory: fs
/*
 * fs/mpage.c
 *
 * Copyright (C) 2002, Linus Torvalds.
 *
 * Contains functions related to preparing and submitting BIOs which contain
 * multiple pagecache pages.
 *
 * 15May2002    Andrew Morton
 *              Initial version
 * 27Jun2002    axboe@suse.de
 *              use bio_add_page() to build bio's just the right size
 */

#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/kdev_t.h>
#include <linux/gfp.h>
#include <linux/bio.h>
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/prefetch.h>
#include <linux/mpage.h>
#include <linux/mm_inline.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/cleancache.h>
#include "internal.h"

/*
 * I/O completion handler for multipage BIOs.
 *
 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 * If a page does not map to a contiguous run of blocks then it simply falls
 * back to block_read_full_page().
 *
 * Why is this?  If a page's completion depends on a number of different BIOs
 * which can complete in any order (or at the same time) then determining the
 * status of that page is hard.  See end_buffer_async_read() for the details.
 * There is no point in duplicating all that complexity.
 */

static void mpage_end_io(struct bio *bio) { struct bio_vec *bv; int i; bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; page_endio(page, op_is_write(bio_op(bio)), bio->bi_error); } bio_put(bio); }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton3456.67%220.00%
Kent Overstreet1321.67%110.00%
Christoph Hellwig35.00%110.00%
Jens Axboe35.00%110.00%
Matthew Wilcox35.00%110.00%
Michael Christie11.67%110.00%
Neil Brown11.67%110.00%
Qu Fuping11.67%110.00%
Hai Shan11.67%110.00%
Total60100.00%10100.00%


static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) { bio->bi_end_io = mpage_end_io; bio_set_op_attrs(bio, op, op_flags); guard_bio_eod(op, bio); submit_bio(bio); return NULL; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton2755.10%228.57%
Michael Christie1428.57%228.57%
Akinobu Mita612.24%114.29%
Dmitri Vorobiev12.04%114.29%
Hai Shan12.04%114.29%
Total49100.00%7100.00%


static struct bio * mpage_alloc(struct block_device *bdev, sector_t first_sector, int nr_vecs, gfp_t gfp_flags) { struct bio *bio; /* Restrict the given (page cache) mask for slab allocations */ gfp_flags &= GFP_KERNEL; bio = bio_alloc(gfp_flags, nr_vecs); if (bio == NULL && (current->flags & PF_MEMALLOC)) { while (!bio && (nr_vecs /= 2)) bio = bio_alloc(gfp_flags, nr_vecs); } if (bio) { bio->bi_bdev = bdev; bio->bi_iter.bi_sector = first_sector; } return bio; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton9292.00%240.00%
Michal Hocko55.00%120.00%
Kent Overstreet22.00%120.00%
Al Viro11.00%120.00%
Total100100.00%5100.00%

/* * support function for mpage_readpages. The fs supplied get_block might * return an up to date buffer. This is used to map that buffer into * the page, which allows readpage to avoid triggering a duplicate call * to get_block. * * The idea is to avoid adding buffers to pages that don't already have * them. So when the buffer is up to date and the page size == block size, * this marks the page up to date instead of adding new buffers. */
static void map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) { struct inode *inode = page->mapping->host; struct buffer_head *page_bh, *head; int block = 0; if (!page_has_buffers(page)) { /* * don't make any buffers if there is only one buffer on * the page and the page just needs to be set up to date */ if (inode->i_blkbits == PAGE_SHIFT && buffer_uptodate(bh)) { SetPageUptodate(page); return; } create_empty_buffers(page, i_blocksize(inode), 0); } head = page_buffers(page); page_bh = head; do { if (block == page_block) { page_bh->b_state = bh->b_state; page_bh->b_bdev = bh->b_bdev; page_bh->b_blocknr = bh->b_blocknr; break; } page_bh = page_bh->b_this_page; block++; } while (page_bh != head); }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton14697.33%133.33%
Fabian Frederick32.00%133.33%
Kirill A. Shutemov10.67%133.33%
Total150100.00%3100.00%

/* * This is the worker routine which does all the work of mapping the disk * blocks and constructs largest possible bios, submits them for IO if the * blocks are not contiguous on the disk. * * We pass a buffer_head back and forth and use its buffer_mapped() flag to * represent the validity of its disk mapping and to decide when to do the next * get_block() call. */
static struct bio * do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, sector_t *last_block_in_bio, struct buffer_head *map_bh, unsigned long *first_logical_block, get_block_t get_block, gfp_t gfp) { struct inode *inode = page->mapping->host; const unsigned blkbits = inode->i_blkbits; const unsigned blocks_per_page = PAGE_SIZE >> blkbits; const unsigned blocksize = 1 << blkbits; sector_t block_in_file; sector_t last_block; sector_t last_block_in_file; sector_t blocks[MAX_BUF_PER_PAGE]; unsigned page_block; unsigned first_hole = blocks_per_page; struct block_device *bdev = NULL; int length; int fully_mapped = 1; unsigned nblocks; unsigned relative_block; if (page_has_buffers(page)) goto confused; block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); last_block = block_in_file + nr_pages * blocks_per_page; last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; if (last_block > last_block_in_file) last_block = last_block_in_file; page_block = 0; /* * Map blocks using the result from the previous get_blocks call first. */ nblocks = map_bh->b_size >> blkbits; if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && block_in_file < (*first_logical_block + nblocks)) { unsigned map_offset = block_in_file - *first_logical_block; unsigned last = nblocks - map_offset; for (relative_block = 0; ; relative_block++) { if (relative_block == last) { clear_buffer_mapped(map_bh); break; } if (page_block == blocks_per_page) break; blocks[page_block] = map_bh->b_blocknr + map_offset + relative_block; page_block++; block_in_file++; } bdev = map_bh->b_bdev; } /* * Then do more get_blocks calls until we are done with this page. */ map_bh->b_page = page; while (page_block < blocks_per_page) { map_bh->b_state = 0; map_bh->b_size = 0; if (block_in_file < last_block) { map_bh->b_size = (last_block-block_in_file) << blkbits; if (get_block(inode, block_in_file, map_bh, 0)) goto confused; *first_logical_block = block_in_file; } if (!buffer_mapped(map_bh)) { fully_mapped = 0; if (first_hole == blocks_per_page) first_hole = page_block; page_block++; block_in_file++; continue; } /* some filesystems will copy data into the page during * the get_block call, in which case we don't want to * read it again. map_buffer_to_page copies the data * we just collected from get_block into the page's buffers * so readpage doesn't have to repeat the get_block call */ if (buffer_uptodate(map_bh)) { map_buffer_to_page(page, map_bh, page_block); goto confused; } if (first_hole != blocks_per_page) goto confused; /* hole -> non-hole */ /* Contiguous blocks? */ if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) goto confused; nblocks = map_bh->b_size >> blkbits; for (relative_block = 0; ; relative_block++) { if (relative_block == nblocks) { clear_buffer_mapped(map_bh); break; } else if (page_block == blocks_per_page) break; blocks[page_block] = map_bh->b_blocknr+relative_block; page_block++; block_in_file++; } bdev = map_bh->b_bdev; } if (first_hole != blocks_per_page) { zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); if (first_hole == 0) { SetPageUptodate(page); unlock_page(page); goto out; } } else if (fully_mapped) { SetPageMappedToDisk(page); } if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && cleancache_get_page(page) == 0) { SetPageUptodate(page); goto confused; } /* * This page will go to BIO. Do we need to send this BIO off first? */ if (bio && (*last_block_in_bio != blocks[0] - 1)) bio = mpage_bio_submit(REQ_OP_READ, 0, bio); alloc_new: if (bio == NULL) { if (first_hole == blocks_per_page) { if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), page)) goto out; } bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), min_t(int, nr_pages, BIO_MAX_PAGES), gfp); if (bio == NULL) goto confused; } length = first_hole << blkbits; if (bio_add_page(bio, page, length, 0) < length) { bio = mpage_bio_submit(REQ_OP_READ, 0, bio); goto alloc_new; } relative_block = block_in_file - *first_logical_block; nblocks = map_bh->b_size >> blkbits; if ((buffer_boundary(map_bh) && relative_block == nblocks) || (first_hole != blocks_per_page)) bio = mpage_bio_submit(REQ_OP_READ, 0, bio); else *last_block_in_bio = blocks[blocks_per_page - 1]; out: return bio; confused: if (bio) bio = mpage_bio_submit(REQ_OP_READ, 0, bio); if (!PageUptodate(page)) block_read_full_page(page, get_block); else unlock_page(page); goto out; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton45053.96%631.58%
Badari Pulavarty24429.26%315.79%
Jens Axboe354.20%210.53%
Matthew Wilcox323.84%15.26%
Dan Magenheimer313.72%15.26%
Miquel van Smoorenburg212.52%15.26%
Michael Christie121.44%15.26%
Michal Hocko40.48%15.26%
Kirill A. Shutemov30.36%15.26%
Kent Overstreet10.12%15.26%
Christoph Lameter10.12%15.26%
Total834100.00%19100.00%

/** * mpage_readpages - populate an address space with some pages & start reads against them * @mapping: the address_space * @pages: The address of a list_head which contains the target pages. These * pages have their ->index populated and are otherwise uninitialised. * The page at @pages->prev has the lowest file offset, and reads should be * issued in @pages->prev to @pages->next order. * @nr_pages: The number of pages at *@pages * @get_block: The filesystem's block mapper function. * * This function walks the pages and the blocks within each page, building and * emitting large BIOs. * * If anything unusual happens, such as: * * - encountering a page which has buffers * - encountering a page which has a non-hole after a hole * - encountering a page with non-contiguous blocks * * then this code just gives up and calls the buffer_head-based read function. * It does handle a page which has holes at the end - that is a common case: * the end-of-file on blocksize < PAGE_SIZE setups. * * BH_Boundary explanation: * * There is a problem. The mpage read code assembles several pages, gets all * their disk mappings, and then submits them all. That's fine, but obtaining * the disk mappings may require I/O. Reads of indirect blocks, for example. * * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be * submitted in the following order: * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 * * because the indirect block has to be read to get the mappings of blocks * 13,14,15,16. Obviously, this impacts performance. * * So what we do it to allow the filesystem's get_block() function to set * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block * after this one will require I/O against a block which is probably close to * this one. So you should push what I/O you have currently accumulated. * * This all causes the disk requests to be issued in the correct order. */
int mpage_readpages(struct address_space *mapping, struct list_head *pages, unsigned nr_pages, get_block_t get_block) { struct bio *bio = NULL; unsigned page_idx; sector_t last_block_in_bio = 0; struct buffer_head map_bh; unsigned long first_logical_block = 0; gfp_t gfp = readahead_gfp_mask(mapping); map_bh.b_state = 0; map_bh.b_size = 0; for (page_idx = 0; page_idx < nr_pages; page_idx++) { struct page *page = lru_to_page(pages); prefetchw(&page->flags); list_del(&page->lru); if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) { bio = do_mpage_readpage(bio, page, nr_pages - page_idx, &last_block_in_bio, &map_bh, &first_logical_block, get_block, gfp); } put_page(page); } BUG_ON(!list_empty(pages)); if (bio) mpage_bio_submit(REQ_OP_READ, 0, bio); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton13876.24%541.67%
Badari Pulavarty179.39%18.33%
Michal Hocko116.08%216.67%
Aneesh Kumar K.V105.52%18.33%
Michael Christie31.66%18.33%
Kirill A. Shutemov10.55%18.33%
Nicholas Piggin10.55%18.33%
Total181100.00%12100.00%

EXPORT_SYMBOL(mpage_readpages); /* * This isn't called much at all */
int mpage_readpage(struct page *page, get_block_t get_block) { struct bio *bio = NULL; sector_t last_block_in_bio = 0; struct buffer_head map_bh; unsigned long first_logical_block = 0; gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); map_bh.b_state = 0; map_bh.b_size = 0; bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, &map_bh, &first_logical_block, get_block, gfp); if (bio) mpage_bio_submit(REQ_OP_READ, 0, bio); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton5454.55%116.67%
Badari Pulavarty1818.18%116.67%
Michal Hocko1414.14%233.33%
Aneesh Kumar K.V1010.10%116.67%
Michael Christie33.03%116.67%
Total99100.00%6100.00%

EXPORT_SYMBOL(mpage_readpage); /* * Writing is not so simple. * * If the page has buffers then they will be used for obtaining the disk * mapping. We only support pages which are fully mapped-and-dirty, with a * special case for pages which are unmapped at the end: end-of-file. * * If the page has no buffers (preferred) then the page is mapped here. * * If all blocks are found to be contiguous then the page can go into the * BIO. Otherwise fall back to the mapping's writepage(). * * FIXME: This code wants an estimate of how many pages are still to be * written, so it can intelligently allocate a suitably-sized BIO. For now, * just allocate full-size (16-page) BIOs. */ struct mpage_data { struct bio *bio; sector_t last_block_in_bio; get_block_t *get_block; unsigned use_writepage; }; /* * We have our BIO, so we can now mark the buffers clean. Make * sure to only clean buffers which we know we'll be writing. */
static void clean_buffers(struct page *page, unsigned first_unmapped) { unsigned buffer_counter = 0; struct buffer_head *bh, *head; if (!page_has_buffers(page)) return; head = page_buffers(page); bh = head; do { if (buffer_counter++ == first_unmapped) break; clear_buffer_dirty(bh); bh = bh->b_this_page; } while (bh != head); /* * we cannot drop the bh if the page is not uptodate or a concurrent * readpage would fail to serialize with the bh and it would read from * disk before we reach the platter. */ if (buffer_heads_over_limit && PageUptodate(page)) try_to_free_buffers(page); }

Contributors

PersonTokensPropCommitsCommitProp
Matthew Wilcox91100.00%1100.00%
Total91100.00%1100.00%


static int __mpage_writepage(struct page *page, struct writeback_control *wbc, void *data) { struct mpage_data *mpd = data; struct bio *bio = mpd->bio; struct address_space *mapping = page->mapping; struct inode *inode = page->mapping->host; const unsigned blkbits = inode->i_blkbits; unsigned long end_index; const unsigned blocks_per_page = PAGE_SIZE >> blkbits; sector_t last_block; sector_t block_in_file; sector_t blocks[MAX_BUF_PER_PAGE]; unsigned page_block; unsigned first_unmapped = blocks_per_page; struct block_device *bdev = NULL; int boundary = 0; sector_t boundary_block = 0; struct block_device *boundary_bdev = NULL; int length; struct buffer_head map_bh; loff_t i_size = i_size_read(inode); int ret = 0; int op_flags = wbc_to_write_flags(wbc); if (page_has_buffers(page)) { struct buffer_head *head = page_buffers(page); struct buffer_head *bh = head; /* If they're all mapped and dirty, do it */ page_block = 0; do { BUG_ON(buffer_locked(bh)); if (!buffer_mapped(bh)) { /* * unmapped dirty buffers are created by * __set_page_dirty_buffers -> mmapped data */ if (buffer_dirty(bh)) goto confused; if (first_unmapped == blocks_per_page) first_unmapped = page_block; continue; } if (first_unmapped != blocks_per_page) goto confused; /* hole -> non-hole */ if (!buffer_dirty(bh) || !buffer_uptodate(bh)) goto confused; if (page_block) { if (bh->b_blocknr != blocks[page_block-1] + 1) goto confused; } blocks[page_block++] = bh->b_blocknr; boundary = buffer_boundary(bh); if (boundary) { boundary_block = bh->b_blocknr; boundary_bdev = bh->b_bdev; } bdev = bh->b_bdev; } while ((bh = bh->b_this_page) != head); if (first_unmapped) goto page_is_mapped; /* * Page has buffers, but they are all unmapped. The page was * created by pagein or read over a hole which was handled by * block_read_full_page(). If this address_space is also * using mpage_readpages then this can rarely happen. */ goto confused; } /* * The page has no buffers: map it to disk */ BUG_ON(!PageUptodate(page)); block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); last_block = (i_size - 1) >> blkbits; map_bh.b_page = page; for (page_block = 0; page_block < blocks_per_page; ) { map_bh.b_state = 0; map_bh.b_size = 1 << blkbits; if (mpd->get_block(inode, block_in_file, &map_bh, 1)) goto confused; if (buffer_new(&map_bh)) clean_bdev_bh_alias(&map_bh); if (buffer_boundary(&map_bh)) { boundary_block = map_bh.b_blocknr; boundary_bdev = map_bh.b_bdev; } if (page_block) { if (map_bh.b_blocknr != blocks[page_block-1] + 1) goto confused; } blocks[page_block++] = map_bh.b_blocknr; boundary = buffer_boundary(&map_bh); bdev = map_bh.b_bdev; if (block_in_file == last_block) break; block_in_file++; } BUG_ON(page_block == 0); first_unmapped = page_block; page_is_mapped: end_index = i_size >> PAGE_SHIFT; if (page->index >= end_index) { /* * The page straddles i_size. It must be zeroed out on each * and every writepage invocation because it may be mmapped. * "A file is mapped in multiples of the page size. For a file * that is not a multiple of the page size, the remaining memory * is zeroed when mapped, and writes to that region are not * written out to the file." */ unsigned offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) goto confused; zero_user_segment(page, offset, PAGE_SIZE); } /* * This page will go to BIO. Do we need to send this BIO off first? */ if (bio && mpd->last_block_in_bio != blocks[0] - 1) bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); alloc_new: if (bio == NULL) { if (first_unmapped == blocks_per_page) { if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), page, wbc)) { clean_buffers(page, first_unmapped); goto out; } } bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); if (bio == NULL) goto confused; wbc_init_bio(wbc, bio); } /* * Must try to add the page before marking the buffer clean or * the confused fail path above (OOM) will be very confused when * it finds all bh marked clean (i.e. it will not write anything) */ wbc_account_io(wbc, page, PAGE_SIZE); length = first_unmapped << blkbits; if (bio_add_page(bio, page, length, 0) < length) { bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); goto alloc_new; } clean_buffers(page, first_unmapped); BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); if (boundary || (first_unmapped != blocks_per_page)) { bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); if (boundary_block) { write_boundary_block(boundary_bdev, boundary_block, 1 << blkbits); } } else { mpd->last_block_in_bio = blocks[blocks_per_page - 1]; } goto out; confused: if (bio) bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); if (mpd->use_writepage) { ret = mapping->a_ops->writepage(page, wbc); } else { ret = -EAGAIN; goto out; } /* * The caller has a ref on the inode, so *mapping is stable */ mapping_set_error(mapping, ret); out: mpd->bio = bio; return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton68175.67%1235.29%
Andrea Arcangeli485.33%25.88%
Miklos Szeredi465.11%12.94%
Matthew Wilcox455.00%25.88%
Badari Pulavarty262.89%25.88%
Tejun Heo161.78%38.82%
Michael Christie131.44%12.94%
Jens Axboe80.89%38.82%
Kirill A. Shutemov50.56%12.94%
Roman Peniaev40.44%12.94%
Guillaume Chazarain20.22%12.94%
Jan Kara20.22%12.94%
Dmitri Vorobiev10.11%12.94%
Christoph Lameter10.11%12.94%
Adam Buchbinder10.11%12.94%
Kent Overstreet10.11%12.94%
Total900100.00%34100.00%

/** * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * @get_block: the filesystem's block mapper function. * If this is NULL then use a_ops->writepage. Otherwise, go * direct-to-BIO. * * This is a library function, which implements the writepages() * address_space_operation. * * If a page is already under I/O, generic_writepages() skips it, even * if it's dirty. This is desirable behaviour for memory-cleaning writeback, * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() * and msync() need to guarantee that all the data which was dirty at the time * the call was made get new I/O started against them. If wbc->sync_mode is * WB_SYNC_ALL then we were called for data integrity and we must wait for * existing IO to complete. */
int mpage_writepages(struct address_space *mapping, struct writeback_control *wbc, get_block_t get_block) { struct blk_plug plug; int ret; blk_start_plug(&plug); if (!get_block) ret = generic_writepages(mapping, wbc); else { struct mpage_data mpd = { .bio = NULL, .last_block_in_bio = 0, .get_block = get_block, .use_writepage = 1, }; ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); if (mpd.bio) { int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? REQ_SYNC : 0); mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); } } blk_finish_plug(&plug); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Miklos Szeredi7053.44%111.11%
Andrew Morton2519.08%444.44%
Jens Axboe1612.21%111.11%
Roman Peniaev1410.69%111.11%
Michael Christie53.82%111.11%
Christoph Hellwig10.76%111.11%
Total131100.00%9100.00%

EXPORT_SYMBOL(mpage_writepages);
int mpage_writepage(struct page *page, get_block_t get_block, struct writeback_control *wbc) { struct mpage_data mpd = { .bio = NULL, .last_block_in_bio = 0, .get_block = get_block, .use_writepage = 0, }; int ret = __mpage_writepage(page, wbc, &mpd); if (mpd.bio) { int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? REQ_SYNC : 0); mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); } return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Miklos Szeredi3840.43%18.33%
Andrew Morton2526.60%758.33%
Roman Peniaev1414.89%18.33%
Badari Pulavarty1111.70%18.33%
Michael Christie55.32%18.33%
Christoph Hellwig11.06%18.33%
Total94100.00%12100.00%

EXPORT_SYMBOL(mpage_writepage);

Overall Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton172461.75%2935.37%
Badari Pulavarty32211.53%44.88%
Matthew Wilcox1726.16%33.66%
Miklos Szeredi1595.69%11.22%
Jens Axboe622.22%56.10%
Michael Christie562.01%33.66%
Andrea Arcangeli481.72%22.44%
Michal Hocko341.22%33.66%
Dan Magenheimer341.22%11.22%
Roman Peniaev321.15%11.22%
Dmitri Vorobiev220.79%11.22%
Miquel van Smoorenburg210.75%11.22%
Aneesh Kumar K.V200.72%11.22%
Tejun Heo190.68%44.88%
Kent Overstreet170.61%33.66%
Kirill A. Shutemov110.39%22.44%
Akinobu Mita90.32%11.22%
Christoph Hellwig80.29%33.66%
Fabian Frederick30.11%11.22%
Dave Jones30.11%11.22%
Christoph Lameter20.07%11.22%
Hai Shan20.07%11.22%
Guillaume Chazarain20.07%11.22%
Jan Kara20.07%11.22%
Adam Buchbinder10.04%11.22%
Francois Cami10.04%11.22%
Neil Brown10.04%11.22%
Qu Fuping10.04%11.22%
Al Viro10.04%11.22%
Paul Gortmaker10.04%11.22%
Nicholas Piggin10.04%11.22%
Randy Dunlap10.04%11.22%
Total2792100.00%82100.00%
Directory: fs
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.