cregit-Linux how code gets into the kernel

Release 4.11 include/linux/slab.h

Directory: include/linux
/*
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
 * (C) SGI 2006, Christoph Lameter
 *      Cleaned up and restructured to ease the addition of alternative
 *      implementations of SLAB allocators.
 * (C) Linux Foundation 2008-2013
 *      Unified interface for all slab allocators
 */

#ifndef _LINUX_SLAB_H

#define	_LINUX_SLAB_H

#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/workqueue.h>


/*
 * Flags to pass to kmem_cache_create().
 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
 */

#define SLAB_CONSISTENCY_CHECKS	0x00000100UL	
/* DEBUG: Perform (expensive) checks on alloc/free */

#define SLAB_RED_ZONE		0x00000400UL	
/* DEBUG: Red zone objs in a cache */

#define SLAB_POISON		0x00000800UL	
/* DEBUG: Poison objects */

#define SLAB_HWCACHE_ALIGN	0x00002000UL	
/* Align objs on cache lines */

#define SLAB_CACHE_DMA		0x00004000UL	
/* Use GFP_DMA memory */

#define SLAB_STORE_USER		0x00010000UL	
/* DEBUG: Store the last owner for bug hunting */

#define SLAB_PANIC		0x00040000UL	
/* Panic if kmem_cache_create() fails */
/*
 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
 *
 * This delays freeing the SLAB page by a grace period, it does _NOT_
 * delay object freeing. This means that if you do kmem_cache_free()
 * that memory location is free to be reused at any time. Thus it may
 * be possible to see another object there in the same RCU grace period.
 *
 * This feature only ensures the memory location backing the object
 * stays valid, the trick to using this is relying on an independent
 * object validation pass. Something like:
 *
 *  rcu_read_lock()
 * again:
 *  obj = lockless_lookup(key);
 *  if (obj) {
 *    if (!try_get_ref(obj)) // might fail for free objects
 *      goto again;
 *
 *    if (obj->key != key) { // not the object we expected
 *      put_ref(obj);
 *      goto again;
 *    }
 *  }
 *  rcu_read_unlock();
 *
 * This is useful if we need to approach a kernel structure obliquely,
 * from its address obtained without the usual locking. We can lock
 * the structure to stabilize it and check it's still at the given address,
 * only if we can be sure that the memory has not been meanwhile reused
 * for some other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */

#define SLAB_DESTROY_BY_RCU	0x00080000UL	
/* Defer freeing slabs to RCU */

#define SLAB_MEM_SPREAD		0x00100000UL	
/* Spread some memory over cpuset */

#define SLAB_TRACE		0x00200000UL	
/* Trace allocations and frees */

/* Flag to prevent checks on free */
#ifdef CONFIG_DEBUG_OBJECTS

# define SLAB_DEBUG_OBJECTS	0x00400000UL
#else

# define SLAB_DEBUG_OBJECTS	0x00000000UL
#endif


#define SLAB_NOLEAKTRACE	0x00800000UL	
/* Avoid kmemleak tracing */

/* Don't track use of uninitialized memory */
#ifdef CONFIG_KMEMCHECK

# define SLAB_NOTRACK		0x01000000UL
#else

# define SLAB_NOTRACK		0x00000000UL
#endif
#ifdef CONFIG_FAILSLAB

# define SLAB_FAILSLAB		0x02000000UL	
/* Fault injection mark */
#else

# define SLAB_FAILSLAB		0x00000000UL
#endif
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)

# define SLAB_ACCOUNT		0x04000000UL	
/* Account to memcg */
#else

# define SLAB_ACCOUNT		0x00000000UL
#endif

#ifdef CONFIG_KASAN

#define SLAB_KASAN		0x08000000UL
#else

#define SLAB_KASAN		0x00000000UL
#endif

/* The following flags affect the page allocator grouping pages by mobility */

#define SLAB_RECLAIM_ACCOUNT	0x00020000UL		
/* Objects are reclaimable */

#define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	
/* Objects are short-lived */
/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */

#define ZERO_SIZE_PTR ((void *)16)


#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
                                (unsigned long)ZERO_SIZE_PTR)

#include <linux/kmemleak.h>
#include <linux/kasan.h>

struct mem_cgroup;
/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
bool slab_is_available(void);

struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
			unsigned long,
			void (*)(void *));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);

void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
void memcg_deactivate_kmem_caches(struct mem_cgroup *);
void memcg_destroy_kmem_caches(struct mem_cgroup *);

/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */

#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
                sizeof(struct __struct), __alignof__(struct __struct),\
                (__flags), NULL)

/*
 * Common kmalloc functions provided by all allocators
 */
void * __must_check __krealloc(const void *, size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
void kzfree(const void *);
size_t ksize(const void *);

#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page);
#else

static inline const char *__check_heap_object(const void *ptr, unsigned long n, struct page *page) { return NULL; }

Contributors

PersonTokensPropCommitsCommitProp
Kees Cook26100.00%1100.00%
Total26100.00%1100.00%

#endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. */ #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) #else #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN * aligned pointers. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ #ifdef CONFIG_SLAB /* * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * * WARNING: Its not easy to increase this value since the allocators have * to do various tricks to work around compiler limitations in order to * ensure proper constant folding. */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 5 #endif #endif #ifdef CONFIG_SLUB /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif #ifdef CONFIG_SLOB /* * SLOB passes all requests larger than one page to the page allocator. * No kmalloc array is necessary since objects of different sizes can * be allocated from the same page. */ #define KMALLOC_SHIFT_HIGH PAGE_SHIFT #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocagtor */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) #ifndef CONFIG_SLOB extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; #ifdef CONFIG_ZONE_DMA extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; #endif /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n */
static __always_inline int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter329100.00%1100.00%
Total329100.00%1100.00%

#endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */
static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); }

Contributors

PersonTokensPropCommitsCommitProp
Jesper Dangaard Brouer24100.00%1100.00%
Total24100.00%1100.00%

#ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else
static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
Pekka J Enberg1144.00%116.67%
Christoph Lameter624.00%233.33%
Jaroslav Kysela416.00%116.67%
Xi Wang312.00%116.67%
Al Viro14.00%116.67%
Total25100.00%6100.00%


static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); }

Contributors

PersonTokensPropCommitsCommitProp
Xi Wang1348.15%133.33%
Christoph Lameter1140.74%133.33%
Pekka J Enberg311.11%133.33%
Total27100.00%3100.00%

#endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else
static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter2681.25%240.00%
Paul Mundt39.38%120.00%
Manfred Spraul26.25%120.00%
Al Viro13.12%120.00%
Total32100.00%5100.00%

#endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */
static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); kasan_kmalloc(s, ret, size, flags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Andrey Ryabinin1636.36%116.67%
Christoph Hellwig1431.82%116.67%
Christoph Lameter1125.00%233.33%
Alexander Potapenko24.55%116.67%
Paul Mundt12.27%116.67%
Total44100.00%6100.00%


static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); kasan_kmalloc(s, ret, size, gfpflags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter2857.14%240.00%
Andrey Ryabinin1632.65%120.00%
Paul Mundt36.12%120.00%
Alexander Potapenko24.08%120.00%
Total49100.00%5100.00%

#endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else
static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter28100.00%1100.00%
Total28100.00%1100.00%

#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter33100.00%1100.00%
Total33100.00%1100.00%

/** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The @flags argument may be one of: * * %GFP_USER - Allocate memory on behalf of user. May sleep. * * %GFP_KERNEL - Allocate normal kernel ram. May sleep. * * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. * For example, use this inside interrupt handlers. * * %GFP_HIGHUSER - Allocate pages from high memory. * * %GFP_NOIO - Do not do any I/O at all while trying to get memory. * * %GFP_NOFS - Do not make any fs calls while trying to get memory. * * %GFP_NOWAIT - Allocation will not sleep. * * %__GFP_THISNODE - Allocate node-local memory only. * * %GFP_DMA - Allocation suitable for DMA. * Should only be used for kmalloc() caches. Otherwise, use a * slab created with SLAB_DMA. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_COLD - Request cache-cold pages instead of * trying to return cache-warm pages. * * %__GFP_HIGH - This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY - If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN - If allocation fails, don't issue any warnings. * * %__GFP_REPEAT - If allocation fails initially, try once more before failing. * * There are other flags available as well, but these are not intended * for general use, and so are not documented here. For a full list of * potential flags, always refer to linux/gfp.h. */
static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB if (!(flags & GFP_DMA)) { int index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace(kmalloc_caches[index], flags, size); } #endif } return __kmalloc(size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter90100.00%1100.00%
Total90100.00%1100.00%

/* * Determine size used for the nth kmalloc cache. * return size or 0 if a kmalloc cache for that * size does not exist */
static __always_inline int kmalloc_size(int n) { #ifndef CONFIG_SLOB if (n > 2) return 1 << n; if (n == 1 && KMALLOC_MIN_SIZE <= 32) return 96; if (n == 2 && KMALLOC_MIN_SIZE <= 64) return 192; #endif return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter55100.00%1100.00%
Total55100.00%1100.00%


static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace(kmalloc_caches[i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter83100.00%2100.00%
Total83100.00%2100.00%

struct memcg_cache_array { struct rcu_head rcu; struct kmem_cache *entries[0]; }; /* * This is the main placeholder for memcg-related information in kmem caches. * Both the root cache and the child caches will have it. For the root cache, * this will hold a dynamically allocated array large enough to hold * information about the currently limited memcgs in the system. To allow the * array to be accessed without taking any locks, on relocation we free the old * version only after a grace period. * * Root and child caches hold different metadata. * * @root_cache: Common to root and child caches. NULL for root, pointer to * the root cache for children. * * The following fields are specific to root caches. * * @memcg_caches: kmemcg ID indexed table of child caches. This table is * used to index child cachces during allocation and cleared * early during shutdown. * * @root_caches_node: List node for slab_root_caches list. * * @children: List of all child caches. While the child caches are also * reachable through @memcg_caches, a child cache remains on * this list until it is actually destroyed. * * The following fields are specific to child caches. * * @memcg: Pointer to the memcg this cache belongs to. * * @children_node: List node for @root_cache->children list. * * @kmem_caches_node: List node for @memcg->kmem_caches list. */ struct memcg_cache_params { struct kmem_cache *root_cache; union { struct { struct memcg_cache_array __rcu *memcg_caches; struct list_head __root_caches_node; struct list_head children; }; struct { struct mem_cgroup *memcg; struct list_head children_node; struct list_head kmem_caches_node; void (*deact_fn)(struct kmem_cache *); union { struct rcu_head deact_rcu_head; struct work_struct deact_work; }; }; }; }; int memcg_update_all_caches(int num_memcgs); /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { if (size != 0 && n > SIZE_MAX / size) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc(n * size, flags); return __kmalloc(n * size, flags); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter4265.62%150.00%
Alexey Dobriyan2234.38%150.00%
Total64100.00%2100.00%

/** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter29100.00%1100.00%
Total29100.00%1100.00%

/* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter26100.00%1100.00%
Total26100.00%1100.00%

/** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */
static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter24100.00%1100.00%
Total24100.00%1100.00%

/** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */
static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); }

Contributors

PersonTokensPropCommitsCommitProp
Jeff Layton29100.00%1100.00%
Total29100.00%1100.00%

unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) int slab_prepare_cpu(unsigned int cpu); int slab_dead_cpu(unsigned int cpu); #else #define slab_prepare_cpu NULL #define slab_dead_cpu NULL #endif #endif /* _LINUX_SLAB_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter126062.53%1920.43%
Rasmus Villemoes874.32%33.23%
Linus Torvalds (pre-git)673.33%66.45%
Vladimir Davydov663.28%66.45%
Kees Cook532.63%11.08%
Christoph Hellwig472.33%22.15%
Tejun Heo452.23%44.30%
Sebastian Andrzej Siewior391.94%11.08%
Andrey Ryabinin351.74%11.08%
Jeff Layton301.49%11.08%
Jesper Dangaard Brouer271.34%33.23%
Alexey Dobriyan231.14%22.15%
Pekka J Enberg211.04%22.15%
Alexander Potapenko190.94%22.15%
Vegard Nossum160.79%11.08%
Xi Wang160.79%11.08%
Thomas Gleixner160.79%11.08%
Dmitriy Monakhov160.79%11.08%
Glauber de Oliveira Costa150.74%44.30%
Johannes Weiner130.65%22.15%
Mel Gorman110.55%11.08%
Ezequiel García90.45%11.08%
Manfred Spraul90.45%22.15%
Andrew Morton90.45%33.23%
Paul Mundt90.45%22.15%
JoonSoo Kim70.35%33.23%
Eduard - Gabriel Munteanu60.30%11.08%
Paul Jackson50.25%11.08%
Catalin Marinas50.25%11.08%
Dave Hansen50.25%11.08%
Jaroslav Kysela40.20%11.08%
Michael Opdenacker40.20%11.08%
Linus Torvalds40.20%22.15%
Hugh Dickins40.20%11.08%
Matt Mackall20.10%11.08%
Michal Hocko20.10%11.08%
Laura Abbott20.10%11.08%
Al Viro20.10%11.08%
Pascal Terjan10.05%11.08%
Roland Dreier10.05%11.08%
David Rientjes10.05%11.08%
Denis Kirjanov10.05%11.08%
Andries E. Brouwer10.05%11.08%
Total2015100.00%93100.00%
Directory: include/linux
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.