cregit-Linux how code gets into the kernel

Release 4.11 include/uapi/linux/btrfs_tree.h

#ifndef _BTRFS_CTREE_H_

#define _BTRFS_CTREE_H_

/*
 * This header contains the structure definitions and constants used
 * by file system objects that can be retrieved using
 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
 * is needed to describe a leaf node's key or item contents.
 */

/* holds pointers to all of the tree roots */

#define BTRFS_ROOT_TREE_OBJECTID 1ULL

/* stores information about which extents are in use, and reference counts */

#define BTRFS_EXTENT_TREE_OBJECTID 2ULL

/*
 * chunk tree stores translations from logical -> physical block numbering
 * the super block points to the chunk tree
 */

#define BTRFS_CHUNK_TREE_OBJECTID 3ULL

/*
 * stores information about which areas of a given device are in use.
 * one per device.  The tree of tree roots points to the device tree
 */

#define BTRFS_DEV_TREE_OBJECTID 4ULL

/* one per subvolume, storing files and directories */

#define BTRFS_FS_TREE_OBJECTID 5ULL

/* directory objectid inside the root tree */

#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL

/* holds checksums of all the data extents */

#define BTRFS_CSUM_TREE_OBJECTID 7ULL

/* holds quota configuration and tracking */

#define BTRFS_QUOTA_TREE_OBJECTID 8ULL

/* for storing items that use the BTRFS_UUID_KEY* types */

#define BTRFS_UUID_TREE_OBJECTID 9ULL

/* tracks free space in block groups. */

#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL

/* device stats in the device tree */

#define BTRFS_DEV_STATS_OBJECTID 0ULL

/* for storing balance parameters in the root tree */

#define BTRFS_BALANCE_OBJECTID -4ULL

/* orhpan objectid for tracking unlinked/truncated files */

#define BTRFS_ORPHAN_OBJECTID -5ULL

/* does write ahead logging to speed up fsyncs */

#define BTRFS_TREE_LOG_OBJECTID -6ULL

#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL

/* for space balancing */

#define BTRFS_TREE_RELOC_OBJECTID -8ULL

#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL

/*
 * extent checksums all have this objectid
 * this allows them to share the logging tree
 * for fsyncs
 */

#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL

/* For storing free space cache */

#define BTRFS_FREE_SPACE_OBJECTID -11ULL

/*
 * The inode number assigned to the special inode for storing
 * free ino cache
 */

#define BTRFS_FREE_INO_OBJECTID -12ULL

/* dummy objectid represents multiple objectids */

#define BTRFS_MULTIPLE_OBJECTIDS -255ULL

/*
 * All files have objectids in this range.
 */

#define BTRFS_FIRST_FREE_OBJECTID 256ULL

#define BTRFS_LAST_FREE_OBJECTID -256ULL

#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL


/*
 * the device items go into the chunk tree.  The key is in the form
 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 */

#define BTRFS_DEV_ITEMS_OBJECTID 1ULL


#define BTRFS_BTREE_INODE_OBJECTID 1


#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2


#define BTRFS_DEV_REPLACE_DEVID 0ULL

/*
 * inode items have the data typically returned from stat and store other
 * info about object characteristics.  There is one for every file and dir in
 * the FS
 */

#define BTRFS_INODE_ITEM_KEY		1

#define BTRFS_INODE_REF_KEY		12

#define BTRFS_INODE_EXTREF_KEY		13

#define BTRFS_XATTR_ITEM_KEY		24

#define BTRFS_ORPHAN_ITEM_KEY		48
/* reserve 2-15 close to the inode for later flexibility */

/*
 * dir items are the name -> inode pointers in a directory.  There is one
 * for every name in a directory.
 */

#define BTRFS_DIR_LOG_ITEM_KEY  60

#define BTRFS_DIR_LOG_INDEX_KEY 72

#define BTRFS_DIR_ITEM_KEY	84

#define BTRFS_DIR_INDEX_KEY	96
/*
 * extent data is for file data
 */

#define BTRFS_EXTENT_DATA_KEY	108

/*
 * extent csums are stored in a separate tree and hold csums for
 * an entire extent on disk.
 */

#define BTRFS_EXTENT_CSUM_KEY	128

/*
 * root items point to tree roots.  They are typically in the root
 * tree used by the super block to find all the other trees
 */

#define BTRFS_ROOT_ITEM_KEY	132

/*
 * root backrefs tie subvols and snapshots to the directory entries that
 * reference them
 */

#define BTRFS_ROOT_BACKREF_KEY	144

/*
 * root refs make a fast index for listing all of the snapshots and
 * subvolumes referenced by a given root.  They point directly to the
 * directory item in the root that references the subvol
 */

#define BTRFS_ROOT_REF_KEY	156

/*
 * extent items are in the extent map tree.  These record which blocks
 * are used, and how many references there are to each block
 */

#define BTRFS_EXTENT_ITEM_KEY	168

/*
 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 * the length, so we save the level in key->offset instead of the length.
 */

#define BTRFS_METADATA_ITEM_KEY	169


#define BTRFS_TREE_BLOCK_REF_KEY	176


#define BTRFS_EXTENT_DATA_REF_KEY	178


#define BTRFS_EXTENT_REF_V0_KEY		180


#define BTRFS_SHARED_BLOCK_REF_KEY	182


#define BTRFS_SHARED_DATA_REF_KEY	184

/*
 * block groups give us hints into the extent allocation trees.  Which
 * blocks are free etc etc
 */

#define BTRFS_BLOCK_GROUP_ITEM_KEY 192

/*
 * Every block group is represented in the free space tree by a free space info
 * item, which stores some accounting information. It is keyed on
 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 */

#define BTRFS_FREE_SPACE_INFO_KEY 198

/*
 * A free space extent tracks an extent of space that is free in a block group.
 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 */

#define BTRFS_FREE_SPACE_EXTENT_KEY 199

/*
 * When a block group becomes very fragmented, we convert it to use bitmaps
 * instead of extents. A free space bitmap is keyed on
 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 * (length / sectorsize) bits.
 */

#define BTRFS_FREE_SPACE_BITMAP_KEY 200


#define BTRFS_DEV_EXTENT_KEY	204

#define BTRFS_DEV_ITEM_KEY	216

#define BTRFS_CHUNK_ITEM_KEY	228

/*
 * Records the overall state of the qgroups.
 * There's only one instance of this key present,
 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 */

#define BTRFS_QGROUP_STATUS_KEY         240
/*
 * Records the currently used space of the qgroup.
 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 */

#define BTRFS_QGROUP_INFO_KEY           242
/*
 * Contains the user configured limits for the qgroup.
 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 */

#define BTRFS_QGROUP_LIMIT_KEY          244
/*
 * Records the child-parent relationship of qgroups. For
 * each relation, 2 keys are present:
 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 */

#define BTRFS_QGROUP_RELATION_KEY       246

/*
 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 */

#define BTRFS_BALANCE_ITEM_KEY	248

/*
 * The key type for tree items that are stored persistently, but do not need to
 * exist for extended period of time. The items can exist in any tree.
 *
 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 *
 * Existing items:
 *
 * - balance status item
 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 */

#define BTRFS_TEMPORARY_ITEM_KEY	248

/*
 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 */

#define BTRFS_DEV_STATS_KEY		249

/*
 * The key type for tree items that are stored persistently and usually exist
 * for a long period, eg. filesystem lifetime. The item kinds can be status
 * information, stats or preference values. The item can exist in any tree.
 *
 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 *
 * Existing items:
 *
 * - device statistics, store IO stats in the device tree, one key for all
 *   stats
 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 */

#define BTRFS_PERSISTENT_ITEM_KEY	249

/*
 * Persistantly stores the device replace state in the device tree.
 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 */

#define BTRFS_DEV_REPLACE_KEY	250

/*
 * Stores items that allow to quickly map UUIDs to something else.
 * These items are part of the filesystem UUID tree.
 * The key is built like this:
 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 */
#if BTRFS_UUID_SIZE != 16
#error "UUID items require BTRFS_UUID_SIZE == 16!"
#endif

#define BTRFS_UUID_KEY_SUBVOL	251	
/* for UUIDs assigned to subvols */

#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	
/* for UUIDs assigned to
                                                 * received subvols */

/*
 * string items are for debugging.  They just store a short string of
 * data in the FS
 */

#define BTRFS_STRING_ITEM_KEY	253



/* 32 bytes in various csum fields */

#define BTRFS_CSUM_SIZE 32

/* csum types */

#define BTRFS_CSUM_TYPE_CRC32	0

/*
 * flags definitions for directory entry item type
 *
 * Used by:
 * struct btrfs_dir_item.type
 */

#define BTRFS_FT_UNKNOWN	0

#define BTRFS_FT_REG_FILE	1

#define BTRFS_FT_DIR		2

#define BTRFS_FT_CHRDEV		3

#define BTRFS_FT_BLKDEV		4

#define BTRFS_FT_FIFO		5

#define BTRFS_FT_SOCK		6

#define BTRFS_FT_SYMLINK	7

#define BTRFS_FT_XATTR		8

#define BTRFS_FT_MAX		9

/*
 * The key defines the order in the tree, and so it also defines (optimal)
 * block layout.
 *
 * objectid corresponds to the inode number.
 *
 * type tells us things about the object, and is a kind of stream selector.
 * so for a given inode, keys with type of 1 might refer to the inode data,
 * type of 2 may point to file data in the btree and type == 3 may point to
 * extents.
 *
 * offset is the starting byte offset for this key in the stream.
 *
 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 * in cpu native order.  Otherwise they are identical and their sizes
 * should be the same (ie both packed)
 */

struct btrfs_disk_key {
	
__le64 objectid;
	
__u8 type;
	
__le64 offset;
} __attribute__ ((__packed__));


struct btrfs_key {
	
__u64 objectid;
	
__u8 type;
	
__u64 offset;
} __attribute__ ((__packed__));


struct btrfs_dev_item {
	/* the internal btrfs device id */
	
__le64 devid;

	/* size of the device */
	
__le64 total_bytes;

	/* bytes used */
	
__le64 bytes_used;

	/* optimal io alignment for this device */
	
__le32 io_align;

	/* optimal io width for this device */
	
__le32 io_width;

	/* minimal io size for this device */
	
__le32 sector_size;

	/* type and info about this device */
	
__le64 type;

	/* expected generation for this device */
	
__le64 generation;

	/*
         * starting byte of this partition on the device,
         * to allow for stripe alignment in the future
         */
	
__le64 start_offset;

	/* grouping information for allocation decisions */
	
__le32 dev_group;

	/* seek speed 0-100 where 100 is fastest */
	
__u8 seek_speed;

	/* bandwidth 0-100 where 100 is fastest */
	
__u8 bandwidth;

	/* btrfs generated uuid for this device */
	
__u8 uuid[BTRFS_UUID_SIZE];

	/* uuid of FS who owns this device */
	
__u8 fsid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));


struct btrfs_stripe {
	
__le64 devid;
	
__le64 offset;
	
__u8 dev_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));


struct btrfs_chunk {
	/* size of this chunk in bytes */
	
__le64 length;

	/* objectid of the root referencing this chunk */
	
__le64 owner;

	
__le64 stripe_len;
	
__le64 type;

	/* optimal io alignment for this chunk */
	
__le32 io_align;

	/* optimal io width for this chunk */
	
__le32 io_width;

	/* minimal io size for this chunk */
	
__le32 sector_size;

	/* 2^16 stripes is quite a lot, a second limit is the size of a single
         * item in the btree
         */
	
__le16 num_stripes;

	/* sub stripes only matter for raid10 */
	
__le16 sub_stripes;
	
struct btrfs_stripe stripe;
	/* additional stripes go here */
} __attribute__ ((__packed__));


#define BTRFS_FREE_SPACE_EXTENT	1

#define BTRFS_FREE_SPACE_BITMAP	2


struct btrfs_free_space_entry {
	
__le64 offset;
	
__le64 bytes;
	
__u8 type;
} __attribute__ ((__packed__));


struct btrfs_free_space_header {
	
struct btrfs_disk_key location;
	
__le64 generation;
	
__le64 num_entries;
	
__le64 num_bitmaps;
} __attribute__ ((__packed__));


#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)

#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)

/* Super block flags */
/* Errors detected */

#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)


#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)

#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)


/*
 * items in the extent btree are used to record the objectid of the
 * owner of the block and the number of references
 */


struct btrfs_extent_item {
	
__le64 refs;
	
__le64 generation;
	
__le64 flags;
} __attribute__ ((__packed__));


struct btrfs_extent_item_v0 {
	
__le32 refs;
} __attribute__ ((__packed__));



#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)

#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)

/* following flags only apply to tree blocks */

/* use full backrefs for extent pointers in the block */

#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)

/*
 * this flag is only used internally by scrub and may be changed at any time
 * it is only declared here to avoid collisions
 */

#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)


struct btrfs_tree_block_info {
	
struct btrfs_disk_key key;
	
__u8 level;
} __attribute__ ((__packed__));


struct btrfs_extent_data_ref {
	
__le64 root;
	
__le64 objectid;
	
__le64 offset;
	
__le32 count;
} __attribute__ ((__packed__));


struct btrfs_shared_data_ref {
	
__le32 count;
} __attribute__ ((__packed__));


struct btrfs_extent_inline_ref {
	
__u8 type;
	
__le64 offset;
} __attribute__ ((__packed__));

/* old style backrefs item */

struct btrfs_extent_ref_v0 {
	
__le64 root;
	
__le64 generation;
	
__le64 objectid;
	
__le32 count;
} __attribute__ ((__packed__));


/* dev extents record free space on individual devices.  The owner
 * field points back to the chunk allocation mapping tree that allocated
 * the extent.  The chunk tree uuid field is a way to double check the owner
 */

struct btrfs_dev_extent {
	
__le64 chunk_tree;
	
__le64 chunk_objectid;
	
__le64 chunk_offset;
	
__le64 length;
	
__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
} __attribute__ ((__packed__));


struct btrfs_inode_ref {
	
__le64 index;
	
__le16 name_len;
	/* name goes here */
} __attribute__ ((__packed__));


struct btrfs_inode_extref {
	
__le64 parent_objectid;
	
__le64 index;
	
__le16 name_len;
	
__u8   name[0];
	/* name goes here */
} __attribute__ ((__packed__));


struct btrfs_timespec {
	
__le64 sec;
	
__le32 nsec;
} __attribute__ ((__packed__));


struct btrfs_inode_item {
	/* nfs style generation number */
	
__le64 generation;
	/* transid that last touched this inode */
	
__le64 transid;
	
__le64 size;
	
__le64 nbytes;
	
__le64 block_group;
	
__le32 nlink;
	
__le32 uid;
	
__le32 gid;
	
__le32 mode;
	
__le64 rdev;
	
__le64 flags;

	/* modification sequence number for NFS */
	
__le64 sequence;

	/*
         * a little future expansion, for more than this we can
         * just grow the inode item and version it
         */
	
__le64 reserved[4];
	
struct btrfs_timespec atime;
	
struct btrfs_timespec ctime;
	
struct btrfs_timespec mtime;
	
struct btrfs_timespec otime;
} __attribute__ ((__packed__));


struct btrfs_dir_log_item {
	
__le64 end;
} __attribute__ ((__packed__));


struct btrfs_dir_item {
	
struct btrfs_disk_key location;
	
__le64 transid;
	
__le16 data_len;
	
__le16 name_len;
	
__u8 type;
} __attribute__ ((__packed__));


#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)

/*
 * Internal in-memory flag that a subvolume has been marked for deletion but
 * still visible as a directory
 */

#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)


struct btrfs_root_item {
	
struct btrfs_inode_item inode;
	
__le64 generation;
	
__le64 root_dirid;
	
__le64 bytenr;
	
__le64 byte_limit;
	
__le64 bytes_used;
	
__le64 last_snapshot;
	
__le64 flags;
	
__le32 refs;
	
struct btrfs_disk_key drop_progress;
	
__u8 drop_level;
	
__u8 level;

	/*
         * The following fields appear after subvol_uuids+subvol_times
         * were introduced.
         */

	/*
         * This generation number is used to test if the new fields are valid
         * and up to date while reading the root item. Every time the root item
         * is written out, the "generation" field is copied into this field. If
         * anyone ever mounted the fs with an older kernel, we will have
         * mismatching generation values here and thus must invalidate the
         * new fields. See btrfs_update_root and btrfs_find_last_root for
         * details.
         * the offset of generation_v2 is also used as the start for the memset
         * when invalidating the fields.
         */
	
__le64 generation_v2;
	
__u8 uuid[BTRFS_UUID_SIZE];
	
__u8 parent_uuid[BTRFS_UUID_SIZE];
	
__u8 received_uuid[BTRFS_UUID_SIZE];
	
__le64 ctransid; /* updated when an inode changes */
	
__le64 otransid; /* trans when created */
	
__le64 stransid; /* trans when sent. non-zero for received subvol */
	
__le64 rtransid; /* trans when received. non-zero for received subvol */
	
struct btrfs_timespec ctime;
	
struct btrfs_timespec otime;
	
struct btrfs_timespec stime;
	
struct btrfs_timespec rtime;
	
__le64 reserved[8]; /* for future */
} __attribute__ ((__packed__));

/*
 * this is used for both forward and backward root refs
 */

struct btrfs_root_ref {
	
__le64 dirid;
	
__le64 sequence;
	
__le16 name_len;
} __attribute__ ((__packed__));


struct btrfs_disk_balance_args {
	/*
         * profiles to operate on, single is denoted by
         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
         */
	
__le64 profiles;

	/*
         * usage filter
         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
         */
	union {
		
__le64 usage;
		struct {
			
__le32 usage_min;
			
__le32 usage_max;
		};
	};

	/* devid filter */
	
__le64 devid;

	/* devid subset filter [pstart..pend) */
	
__le64 pstart;
	
__le64 pend;

	/* btrfs virtual address space subset filter [vstart..vend) */
	
__le64 vstart;
	
__le64 vend;

	/*
         * profile to convert to, single is denoted by
         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
         */
	
__le64 target;

	/* BTRFS_BALANCE_ARGS_* */
	
__le64 flags;

	/*
         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
         * and maximum
         */
	union {
		
__le64 limit;
		struct {
			
__le32 limit_min;
			
__le32 limit_max;
		};
	};

	/*
         * Process chunks that cross stripes_min..stripes_max devices,
         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
         */
	
__le32 stripes_min;
	
__le32 stripes_max;

	
__le64 unused[6];
} __attribute__ ((__packed__));

/*
 * store balance parameters to disk so that balance can be properly
 * resumed after crash or unmount
 */

struct btrfs_balance_item {
	/* BTRFS_BALANCE_* */
	
__le64 flags;

	
struct btrfs_disk_balance_args data;
	
struct btrfs_disk_balance_args meta;
	
struct btrfs_disk_balance_args sys;

	
__le64 unused[4];
} __attribute__ ((__packed__));


#define BTRFS_FILE_EXTENT_INLINE 0

#define BTRFS_FILE_EXTENT_REG 1

#define BTRFS_FILE_EXTENT_PREALLOC 2


struct btrfs_file_extent_item {
	/*
         * transaction id that created this extent
         */
	
__le64 generation;
	/*
         * max number of bytes to hold this extent in ram
         * when we split a compressed extent we can't know how big
         * each of the resulting pieces will be.  So, this is
         * an upper limit on the size of the extent in ram instead of
         * an exact limit.
         */
	
__le64 ram_bytes;

	/*
         * 32 bits for the various ways we might encode the data,
         * including compression and encryption.  If any of these
         * are set to something a given disk format doesn't understand
         * it is treated like an incompat flag for reading and writing,
         * but not for stat.
         */
	
__u8 compression;
	
__u8 encryption;
	
__le16 other_encoding; /* spare for later use */

	/* are we inline data or a real extent? */
	
__u8 type;

	/*
         * disk space consumed by the extent, checksum blocks are included
         * in these numbers
         *
         * At this offset in the structure, the inline extent data start.
         */
	
__le64 disk_bytenr;
	
__le64 disk_num_bytes;
	/*
         * the logical offset in file blocks (no csums)
         * this extent record is for.  This allows a file extent to point
         * into the middle of an existing extent on disk, sharing it
         * between two snapshots (useful if some bytes in the middle of the
         * extent have changed
         */
	
__le64 offset;
	/*
         * the logical number of file blocks (no csums included).  This
         * always reflects the size uncompressed and without encoding.
         */
	
__le64 num_bytes;

} __attribute__ ((__packed__));


struct btrfs_csum_item {
	
__u8 csum;
} __attribute__ ((__packed__));


struct btrfs_dev_stats_item {
	/*
         * grow this item struct at the end for future enhancements and keep
         * the existing values unchanged
         */
	
__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
} __attribute__ ((__packed__));


#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0

#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1

#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0

#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1

#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2

#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3

#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4


struct btrfs_dev_replace_item {
	/*
         * grow this item struct at the end for future enhancements and keep
         * the existing values unchanged
         */
	
__le64 src_devid;
	
__le64 cursor_left;
	
__le64 cursor_right;
	
__le64 cont_reading_from_srcdev_mode;

	
__le64 replace_state;
	
__le64 time_started;
	
__le64 time_stopped;
	
__le64 num_write_errors;
	
__le64 num_uncorrectable_read_errors;
} __attribute__ ((__packed__));

/* different types of block groups (and chunks) */

#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)

#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)

#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)

#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)

#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)

#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)

#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)

#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)

#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)

#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
                                         BTRFS_SPACE_INFO_GLOBAL_RSV)


enum btrfs_raid_types {
	
BTRFS_RAID_RAID10,
	
BTRFS_RAID_RAID1,
	
BTRFS_RAID_DUP,
	
BTRFS_RAID_RAID0,
	
BTRFS_RAID_SINGLE,
	
BTRFS_RAID_RAID5,
	
BTRFS_RAID_RAID6,
	
BTRFS_NR_RAID_TYPES
};


#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
                                         BTRFS_BLOCK_GROUP_METADATA)


#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
                                         BTRFS_BLOCK_GROUP_RAID1 |   \
                                         BTRFS_BLOCK_GROUP_RAID5 |   \
                                         BTRFS_BLOCK_GROUP_RAID6 |   \
                                         BTRFS_BLOCK_GROUP_DUP |     \
                                         BTRFS_BLOCK_GROUP_RAID10)

#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
                                         BTRFS_BLOCK_GROUP_RAID6)

/*
 * We need a bit for restriper to be able to tell when chunks of type
 * SINGLE are available.  This "extended" profile format is used in
 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 * to avoid remappings between two formats in future.
 */

#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)

/*
 * A fake block group type that is used to communicate global block reserve
 * size to userspace via the SPACE_INFO ioctl.
 */

#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)


#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)


static inline __u64 chunk_to_extended(__u64 flags) { if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; return flags; }

Contributors

PersonTokensPropCommitsCommitProp
Jeff Mahoney27100.00%2100.00%
Total27100.00%2100.00%


static inline __u64 extended_to_chunk(__u64 flags) { return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; }

Contributors

PersonTokensPropCommitsCommitProp
Jeff Mahoney16100.00%2100.00%
Total16100.00%2100.00%

struct btrfs_block_group_item { __le64 used; __le64 chunk_objectid; __le64 flags; } __attribute__ ((__packed__)); struct btrfs_free_space_info { __le32 extent_count; __le32 flags; } __attribute__ ((__packed__)); #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) #define BTRFS_QGROUP_LEVEL_SHIFT 48
static inline __u64 btrfs_qgroup_level(__u64 qgroupid) { return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT; }

Contributors

PersonTokensPropCommitsCommitProp
Jeff Mahoney15100.00%2100.00%
Total15100.00%2100.00%

/* * is subvolume quota turned on? */ #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) /* * RESCAN is set during the initialization phase */ #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) /* * Some qgroup entries are known to be out of date, * either because the configuration has changed in a way that * makes a rescan necessary, or because the fs has been mounted * with a non-qgroup-aware version. * Turning qouta off and on again makes it inconsistent, too. */ #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) #define BTRFS_QGROUP_STATUS_VERSION 1 struct btrfs_qgroup_status_item { __le64 version; /* * the generation is updated during every commit. As older * versions of btrfs are not aware of qgroups, it will be * possible to detect inconsistencies by checking the * generation on mount time */ __le64 generation; /* flag definitions see above */ __le64 flags; /* * only used during scanning to record the progress * of the scan. It contains a logical address */ __le64 rescan; } __attribute__ ((__packed__)); struct btrfs_qgroup_info_item { __le64 generation; __le64 rfer; __le64 rfer_cmpr; __le64 excl; __le64 excl_cmpr; } __attribute__ ((__packed__)); struct btrfs_qgroup_limit_item { /* * only updated when any of the other values change */ __le64 flags; __le64 max_rfer; __le64 max_excl; __le64 rsv_rfer; __le64 rsv_excl; } __attribute__ ((__packed__)); #endif /* _BTRFS_CTREE_H_ */

Overall Contributors

PersonTokensPropCommitsCommitProp
Jeff Mahoney1721100.00%2100.00%
Total1721100.00%2100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.