Release 4.12 drivers/edac/i7300_edac.c
  
  
  
/*
 * Intel 7300 class Memory Controllers kernel module (Clarksboro)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2010 by:
 *       Mauro Carvalho Chehab
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
 *      http://www.intel.com/Assets/PDF/datasheet/318082.pdf
 *
 * TODO: The chipset allow checking for PCI Express errors also. Currently,
 *       the driver covers only memory error errors
 *
 * This driver uses "csrows" EDAC attribute to represent DIMM slot#
 */
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include "edac_module.h"
/*
 * Alter this version for the I7300 module when modifications are made
 */
#define I7300_REVISION    " Ver: 1.0.0"
#define EDAC_MOD_STR      "i7300_edac"
#define i7300_printk(level, fmt, arg...) \
	edac_printk(level, "i7300", fmt, ##arg)
#define i7300_mc_printk(mci, level, fmt, arg...) \
	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
/***********************************************
 * i7300 Limit constants Structs and static vars
 ***********************************************/
/*
 * Memory topology is organized as:
 *      Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
 *      Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
 * Each channel can have to 8 DIMM sets (called as SLOTS)
 * Slots should generally be filled in pairs
 *      Except on Single Channel mode of operation
 *              just slot 0/channel0 filled on this mode
 *      On normal operation mode, the two channels on a branch should be
 *              filled together for the same SLOT#
 * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
 *              channels on both branches should be filled
 */
/* Limits for i7300 */
#define MAX_SLOTS		8
#define MAX_BRANCHES		2
#define MAX_CH_PER_BRANCH	2
#define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
#define MAX_MIR			3
#define to_channel(ch, branch)	((((branch)) << 1) | (ch))
#define to_csrow(slot, ch, branch)					\
		(to_channel(ch, branch) | ((slot) << 2))
/* Device name and register DID (Device ID) */
struct i7300_dev_info {
	
const char *ctl_name;	/* name for this device */
	
u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};
/* Table of devices attributes supported by this driver */
static const struct i7300_dev_info i7300_devs[] = {
	{
		.ctl_name = "I7300",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
        },
};
struct i7300_dimm_info {
	
int megabytes;		/* size, 0 means not present  */
};
/* driver private data structure */
struct i7300_pvt {
	
struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
	
struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
	
struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
	
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
	
u16 tolm;				/* top of low memory */
	
u64 ambase;				/* AMB BAR */
	
u32 mc_settings;			/* Report several settings */
	
u32 mc_settings_a;
	
u16 mir[MAX_MIR];			/* Memory Interleave Reg*/
	
u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
	
u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */
	/* DIMM information matrix, allocating architecture maximums */
	
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
	/* Temporary buffer for use when preparing error messages */
	
char *tmp_prt_buffer;
};
/* FIXME: Why do we need to have this static? */
static struct edac_pci_ctl_info *i7300_pci;
/***************************************************
 * i7300 Register definitions for memory enumeration
 ***************************************************/
/*
 * Device 16,
 * Function 0: System Address (not documented)
 * Function 1: Memory Branch Map, Control, Errors Register
 */
	/* OFFSETS for Function 0 */
#define AMBASE			0x48 
/* AMB Mem Mapped Reg Region Base */
#define MAXCH			0x56 
/* Max Channel Number */
#define MAXDIMMPERCH		0x57 
/* Max DIMM PER Channel Number */
	/* OFFSETS for Function 1 */
#define MC_SETTINGS		0x40
  
#define IS_MIRRORED(mc)		((mc) & (1 << 16))
  
#define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
  
#define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
  
#define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))
#define MC_SETTINGS_A		0x58
  
#define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))
#define TOLM			0x6C
#define MIR0			0x80
#define MIR1			0x84
#define MIR2			0x88
/*
 * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
 * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
 * seems that we cannot use this information directly for the same usage.
 * Each memory slot may have up to 2 AMB interfaces, one for income and another
 * for outcome interface to the next slot.
 * For now, the driver just stores the AMB present registers, but rely only at
 * the MTR info to detect memory.
 * Datasheet is also not clear about how to map each AMBPRESENT registers to
 * one of the 4 available channels.
 */
#define AMBPRESENT_0	0x64
#define AMBPRESENT_1	0x66
static const u16 mtr_regs[MAX_SLOTS] = {
	0x80, 0x84, 0x88, 0x8c,
	0x82, 0x86, 0x8a, 0x8e
};
/*
 * Defines to extract the vaious fields from the
 *      MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
#define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DRAM_BANKS_ADDR_BITS	2
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
/************************************************
 * i7300 Register definitions for error detection
 ************************************************/
/*
 * Device 16.1: FBD Error Registers
 */
#define FERR_FAT_FBD	0x98
static const char *ferr_fat_fbd_name[] = {
	[22] = "Non-Redundant Fast Reset Timeout",
	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
	[1]  = "Memory or FBD configuration CRC read error",
	[0]  = "Memory Write error on non-redundant retry or "
	       "FBD configuration Write error on retry",
};
#define GET_FBD_FAT_IDX(fbderr)	(((fbderr) >> 28) & 3)
#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
#define FERR_NF_FBD	0xa0
static const char *ferr_nf_fbd_name[] = {
	[24] = "DIMM-Spare Copy Completed",
	[23] = "DIMM-Spare Copy Initiated",
	[22] = "Redundant Fast Reset Timeout",
	[21] = "Memory Write error on redundant retry",
	[18] = "SPD protocol Error",
	[17] = "FBD Northbound parity error on FBD Sync Status",
	[16] = "Correctable Patrol Data ECC",
	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
	[14] = "Correctable Mirrored Demand Data ECC",
	[13] = "Correctable Non-Mirrored Demand Data ECC",
	[11] = "Memory or FBD configuration CRC read error",
	[10] = "FBD Configuration Write error on first attempt",
	[9]  = "Memory Write error on first attempt",
	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	[4]  = "Aliased Uncorrectable Patrol Data ECC",
	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
	[0]  = "Uncorrectable Data ECC on Replay",
};
#define GET_FBD_NF_IDX(fbderr)	(((fbderr) >> 28) & 3)
#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
                              (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
                              (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
                              (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
                              (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
                              (1 << 1)  | (1 << 0))
#define EMASK_FBD	0xa8
#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
                            (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
                            (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
                            (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
                            (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
                            (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
                            (1 << 1)  | (1 << 0))
/*
 * Device 16.2: Global Error Registers
 */
#define FERR_GLOBAL_HI	0x48
static const char *ferr_global_hi_name[] = {
	[3] = "FSB 3 Fatal Error",
	[2] = "FSB 2 Fatal Error",
	[1] = "FSB 1 Fatal Error",
	[0] = "FSB 0 Fatal Error",
};
#define ferr_global_hi_is_fatal(errno)	1
#define FERR_GLOBAL_LO	0x40
static const char *ferr_global_lo_name[] = {
	[31] = "Internal MCH Fatal Error",
	[30] = "Intel QuickData Technology Device Fatal Error",
	[29] = "FSB1 Fatal Error",
	[28] = "FSB0 Fatal Error",
	[27] = "FBD Channel 3 Fatal Error",
	[26] = "FBD Channel 2 Fatal Error",
	[25] = "FBD Channel 1 Fatal Error",
	[24] = "FBD Channel 0 Fatal Error",
	[23] = "PCI Express Device 7Fatal Error",
	[22] = "PCI Express Device 6 Fatal Error",
	[21] = "PCI Express Device 5 Fatal Error",
	[20] = "PCI Express Device 4 Fatal Error",
	[19] = "PCI Express Device 3 Fatal Error",
	[18] = "PCI Express Device 2 Fatal Error",
	[17] = "PCI Express Device 1 Fatal Error",
	[16] = "ESI Fatal Error",
	[15] = "Internal MCH Non-Fatal Error",
	[14] = "Intel QuickData Technology Device Non Fatal Error",
	[13] = "FSB1 Non-Fatal Error",
	[12] = "FSB 0 Non-Fatal Error",
	[11] = "FBD Channel 3 Non-Fatal Error",
	[10] = "FBD Channel 2 Non-Fatal Error",
	[9]  = "FBD Channel 1 Non-Fatal Error",
	[8]  = "FBD Channel 0 Non-Fatal Error",
	[7]  = "PCI Express Device 7 Non-Fatal Error",
	[6]  = "PCI Express Device 6 Non-Fatal Error",
	[5]  = "PCI Express Device 5 Non-Fatal Error",
	[4]  = "PCI Express Device 4 Non-Fatal Error",
	[3]  = "PCI Express Device 3 Non-Fatal Error",
	[2]  = "PCI Express Device 2 Non-Fatal Error",
	[1]  = "PCI Express Device 1 Non-Fatal Error",
	[0]  = "ESI Non-Fatal Error",
};
#define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
#define NRECMEMA	0xbe
  
#define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
  
#define NRECMEMA_RANK(v)	(((v) >> 8) & 15)
#define NRECMEMB	0xc0
  
#define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
  
#define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
  
#define NRECMEMB_RAS(v)	((v) & 0xffff)
#define REDMEMA		0xdc
#define REDMEMB		0x7c
#define RECMEMA		0xe0
  
#define RECMEMA_BANK(v)	(((v) >> 12) & 7)
  
#define RECMEMA_RANK(v)	(((v) >> 8) & 15)
#define RECMEMB		0xe4
  
#define RECMEMB_IS_WR(v)	((v) & (1 << 31))
  
#define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
  
#define RECMEMB_RAS(v)	((v) & 0xffff)
/********************************************
 * i7300 Functions related to error detection
 ********************************************/
/**
 * get_err_from_table() - Gets the error message from a table
 * @table:      table name (array of char *)
 * @size:       number of elements at the table
 * @pos:        position of the element to be returned
 *
 * This is a small routine that gets the pos-th element of a table. If the
 * element doesn't exist (or it is empty), it returns "reserved".
 * Instead of calling it directly, the better is to call via the macro
 * GET_ERR_FROM_TABLE(), that automatically checks the table size via
 * ARRAY_SIZE() macro
 */
static const char *get_err_from_table(const char *table[], int size, int pos)
{
	if (unlikely(pos >= size))
		return "Reserved";
	if (unlikely(!table[pos]))
		return "Reserved";
	return table[pos];
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 52 | 100.00% | 2 | 100.00% | 
| Total | 52 | 100.00% | 2 | 100.00% | 
#define GET_ERR_FROM_TABLE(table, pos)				\
	get_err_from_table(table, ARRAY_SIZE(table), pos)
/**
 * i7300_process_error_global() - Retrieve the hardware error information from
 *                                the hardware global error registers and
 *                                sends it to dmesg
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_process_error_global(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	u32 errnum, error_reg;
	unsigned long errors;
	const char *specific;
	bool is_fatal;
	pvt = mci->pvt_info;
	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_HI, &error_reg);
	if (unlikely(error_reg)) {
		errors = error_reg;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_global_hi_name));
		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
		is_fatal = ferr_global_hi_is_fatal(errnum);
		/* Clear the error bit */
		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
				       FERR_GLOBAL_HI, error_reg);
		goto error_global;
	}
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_LO, &error_reg);
	if (unlikely(error_reg)) {
		errors = error_reg;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_global_lo_name));
		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
		is_fatal = ferr_global_lo_is_fatal(errnum);
		/* Clear the error bit */
		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
				       FERR_GLOBAL_LO, error_reg);
		goto error_global;
	}
	return;
error_global:
	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
			is_fatal ? "Fatal" : "NOT fatal", specific);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 198 | 100.00% | 3 | 100.00% | 
| Total | 198 | 100.00% | 3 | 100.00% | 
/**
 * i7300_process_fbd_error() - Retrieve the hardware error information from
 *                             the FBD error registers and sends it via
 *                             EDAC error API calls
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_process_fbd_error(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	u32 errnum, value, error_reg;
	u16 val16;
	unsigned branch, channel, bank, rank, cas, ras;
	u32 syndrome;
	unsigned long errors;
	const char *specific;
	bool is_wr;
	pvt = mci->pvt_info;
	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_FAT_FBD, &error_reg);
	if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
		errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_fat_fbd_name));
		specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
				     NRECMEMA, &val16);
		bank = NRECMEMA_BANK(val16);
		rank = NRECMEMA_RANK(val16);
		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
				NRECMEMB, &value);
		is_wr = NRECMEMB_IS_WR(value);
		cas = NRECMEMB_CAS(value);
		ras = NRECMEMB_RAS(value);
		/* Clean the error register */
		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
				FERR_FAT_FBD, error_reg);
		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
			 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
			 bank, ras, cas, errors, specific);
		edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
				     branch, -1, rank,
				     is_wr ? "Write error" : "Read error",
				     pvt->tmp_prt_buffer);
	}
	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_NF_FBD, &error_reg);
	if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
		errors = error_reg & FERR_NF_FBD_ERR_MASK;
		errnum = find_first_bit(&errors,
					ARRAY_SIZE(ferr_nf_fbd_name));
		specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
		branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			REDMEMA, &syndrome);
		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
				     RECMEMA, &val16);
		bank = RECMEMA_BANK(val16);
		rank = RECMEMA_RANK(val16);
		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
				RECMEMB, &value);
		is_wr = RECMEMB_IS_WR(value);
		cas = RECMEMB_CAS(value);
		ras = RECMEMB_RAS(value);
		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
				     REDMEMB, &value);
		channel = (branch << 1);
		/* Second channel ? */
		channel += !!(value & BIT(17));
		/* Clear the error bit */
		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
				FERR_NF_FBD, error_reg);
		/* Form out message */
		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
			 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
			 bank, ras, cas, errors, specific);
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
				     syndrome,
				     branch >> 1, channel % 2, rank,
				     is_wr ? "Write error" : "Read error",
				     pvt->tmp_prt_buffer);
	}
	return;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 481 | 97.57% | 7 | 77.78% | 
| Borislav Petkov | 11 | 2.23% | 1 | 11.11% | 
| Jean Delvare | 1 | 0.20% | 1 | 11.11% | 
| Total | 493 | 100.00% | 9 | 100.00% | 
/**
 * i7300_check_error() - Calls the error checking subroutines
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_check_error(struct mem_ctl_info *mci)
{
	i7300_process_error_global(mci);
	i7300_process_fbd_error(mci);
}Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 21 | 100.00% | 3 | 100.00% | 
| Total | 21 | 100.00% | 3 | 100.00% | 
;
/**
 * i7300_clear_error() - Clears the error registers
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_clear_error(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt = mci->pvt_info;
	u32 value;
	/*
         * All error values are RWC - we need to read and write 1 to the
         * bit that we want to cleanup
         */
	/* Clear global error registers */
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_HI, &value);
	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_HI, value);
	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_LO, &value);
	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
			      FERR_GLOBAL_LO, value);
	/* Clear FBD error registers */
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_FAT_FBD, &value);
	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_FAT_FBD, value);
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_NF_FBD, &value);
	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      FERR_NF_FBD, value);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 118 | 100.00% | 3 | 100.00% | 
| Total | 118 | 100.00% | 3 | 100.00% | 
/**
 * i7300_enable_error_reporting() - Enable the memory reporting logic at the
 *                                  hardware
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt = mci->pvt_info;
	u32 fbd_error_mask;
	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			      EMASK_FBD, &fbd_error_mask);
	/* Enable with a '0' */
	fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
			       EMASK_FBD, fbd_error_mask);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 55 | 100.00% | 2 | 100.00% | 
| Total | 55 | 100.00% | 2 | 100.00% | 
/************************************************
 * i7300 Functions related to memory enumberation
 ************************************************/
/**
 * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
 * @pvt: pointer to the private data struct used by i7300 driver
 * @slot: DIMM slot (0 to 7)
 * @ch: Channel number within the branch (0 or 1)
 * @branch: Branch number (0 or 1)
 * @dinfo: Pointer to DIMM info where dimm size is stored
 * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
 */
static int decode_mtr(struct i7300_pvt *pvt,
		      int slot, int ch, int branch,
		      struct i7300_dimm_info *dinfo,
		      struct dimm_info *dimm)
{
	int mtr, ans, addrBits, channel;
	channel = to_channel(ch, branch);
	mtr = pvt->mtr[slot][branch];
	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
	edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
		 slot, channel, ans ? "" : "NOT ");
	/* Determine if there is a DIMM present in this DIMM slot */
	if (!ans)
		return 0;
	/* Start with the number of bits for a Bank
        * on the DRAM */
	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
	/* Add thenumber of ROW bits */
	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
	/* add the number of COLUMN bits */
	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
	/* add the number of RANK bits */
	addrBits += MTR_DIMM_RANKS(mtr);
	addrBits += 6;	/* add 64 bits per DIMM */
	addrBits -= 20;	/* divide by 2^^20 */
	addrBits -= 3;	/* 8 bits per bytes */
	dinfo->megabytes = 1 << addrBits;
	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	edac_dbg(2, "\t\tNUMRANK: %s\n",
		 MTR_DIMM_RANKS(mtr) ? "double" : "single");
	edac_dbg(2, "\t\tNUMROW: %s\n",
		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
		 "65,536 - 16 rows");
	edac_dbg(2, "\t\tNUMCOL: %s\n",
		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
		 "reserved");
	edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
	/*
         * The type of error detection actually depends of the
         * mode of operation. When it is just one single memory chip, at
         * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
         * In normal or mirrored mode, it uses Lockstep mode,
         * with the possibility of using an extended algorithm for x8 memories
         * See datasheet Sections 7.3.6 to 7.3.8
         */
	dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
	dimm->grain = 8;
	dimm->mtype = MEM_FB_DDR2;
	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
		dimm->edac_mode = EDAC_SECDED;
		edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
	} else {
		edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
		if (MTR_DRAM_WIDTH(mtr) == 8)
			dimm->edac_mode = EDAC_S8ECD8ED;
		else
			dimm->edac_mode = EDAC_S4ECD4ED;
	}
	/* ask what device type on this row */
	if (MTR_DRAM_WIDTH(mtr) == 8) {
		edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
			 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
			 "enhanced" : "normal");
		dimm->dtype = DEV_X8;
	} else
		dimm->dtype = DEV_X4;
	return mtr;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 330 | 79.71% | 7 | 77.78% | 
| Joe Perches | 84 | 20.29% | 2 | 22.22% | 
| Total | 414 | 100.00% | 9 | 100.00% | 
/**
 * print_dimm_size() - Prints dump of the memory organization
 * @pvt: pointer to the private data struct used by i7300 driver
 *
 * Useful for debug. If debug is disabled, this routine do nothing
 */
static void print_dimm_size(struct i7300_pvt *pvt)
{
#ifdef CONFIG_EDAC_DEBUG
	struct i7300_dimm_info *dinfo;
	char *p;
	int space, n;
	int channel, slot;
	space = PAGE_SIZE;
	p = pvt->tmp_prt_buffer;
	n = snprintf(p, space, "              ");
	p += n;
	space -= n;
	for (channel = 0; channel < MAX_CHANNELS; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
	p = pvt->tmp_prt_buffer;
	space = PAGE_SIZE;
	n = snprintf(p, space, "-------------------------------"
			       "------------------------------");
	p += n;
	space -= n;
	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
	p = pvt->tmp_prt_buffer;
	space = PAGE_SIZE;
	for (slot = 0; slot < MAX_SLOTS; slot++) {
		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
		p += n;
		space -= n;
		for (channel = 0; channel < MAX_CHANNELS; channel++) {
			dinfo = &pvt->dimm_info[slot][channel];
			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
			p += n;
			space -= n;
		}
		edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
		p = pvt->tmp_prt_buffer;
		space = PAGE_SIZE;
	}
	n = snprintf(p, space, "-------------------------------"
			       "------------------------------");
	p += n;
	space -= n;
	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
	p = pvt->tmp_prt_buffer;
	space = PAGE_SIZE;
#endif
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 299 | 96.14% | 3 | 75.00% | 
| Joe Perches | 12 | 3.86% | 1 | 25.00% | 
| Total | 311 | 100.00% | 4 | 100.00% | 
/**
 * i7300_init_csrows() - Initialize the 'csrows' table within
 *                       the mci control structure with the
 *                       addressing of memory.
 * @mci: struct mem_ctl_info pointer
 */
static int i7300_init_csrows(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	struct i7300_dimm_info *dinfo;
	int rc = -ENODEV;
	int mtr;
	int ch, branch, slot, channel, max_channel, max_branch;
	struct dimm_info *dimm;
	pvt = mci->pvt_info;
	edac_dbg(2, "Memory Technology Registers:\n");
	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
		max_branch = 1;
		max_channel = 1;
	} else {
		max_branch = MAX_BRANCHES;
		max_channel = MAX_CH_PER_BRANCH;
	}
	/* Get the AMB present registers for the four channels */
	for (branch = 0; branch < max_branch; branch++) {
		/* Read and dump branch 0's MTRs */
		channel = to_channel(0, branch);
		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
				     AMBPRESENT_0,
				&pvt->ambpresent[channel]);
		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
			 channel, pvt->ambpresent[channel]);
		if (max_channel == 1)
			continue;
		channel = to_channel(1, branch);
		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
				     AMBPRESENT_1,
				&pvt->ambpresent[channel]);
		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
			 channel, pvt->ambpresent[channel]);
	}
	/* Get the set of MTR[0-7] regs by each branch */
	for (slot = 0; slot < MAX_SLOTS; slot++) {
		int where = mtr_regs[slot];
		for (branch = 0; branch < max_branch; branch++) {
			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
					where,
					&pvt->mtr[slot][branch]);
			for (ch = 0; ch < max_channel; ch++) {
				int channel = to_channel(ch, branch);
				dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
					       mci->n_layers, branch, ch, slot);
				dinfo = &pvt->dimm_info[slot][channel];
				mtr = decode_mtr(pvt, slot, ch, branch,
						 dinfo, dimm);
				/* if no DIMMS on this row, continue */
				if (!MTR_DIMMS_PRESENT(mtr))
					continue;
				rc = 0;
			}
		}
	}
	return rc;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 353 | 97.51% | 6 | 85.71% | 
| Joe Perches | 9 | 2.49% | 1 | 14.29% | 
| Total | 362 | 100.00% | 7 | 100.00% | 
/**
 * decode_mir() - Decodes Memory Interleave Register (MIR) info
 * @int mir_no: number of the MIR register to decode
 * @mir: array with the MIR data cached on the driver
 */
static void decode_mir(int mir_no, u16 mir[MAX_MIR])
{
	if (mir[mir_no] & 3)
		edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
			 mir_no,
			 (mir[mir_no] >> 4) & 0xfff,
			 (mir[mir_no] & 1) ? "B0" : "",
			 (mir[mir_no] & 2) ? "B1" : "");
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 66 | 94.29% | 1 | 50.00% | 
| Joe Perches | 4 | 5.71% | 1 | 50.00% | 
| Total | 70 | 100.00% | 2 | 100.00% | 
/**
 * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
 * @mci: struct mem_ctl_info pointer
 *
 * Data read is cached internally for its usage when needed
 */
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	u32 actual_tolm;
	int i, rc;
	pvt = mci->pvt_info;
	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
			(u32 *) &pvt->ambase);
	edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
	/* Get the Branch Map regs */
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
		 pvt->tolm, pvt->tolm);
	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
	/* Get memory controller settings */
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
			     &pvt->mc_settings);
	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
			     &pvt->mc_settings_a);
	if (IS_SINGLE_MODE(pvt->mc_settings_a))
		edac_dbg(0, "Memory controller operating on single mode\n");
	else
		edac_dbg(0, "Memory controller operating on %smirrored mode\n",
			 IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
	edac_dbg(0, "Error detection is %s\n",
		 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
	edac_dbg(0, "Retry is %s\n",
		 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
	/* Get Memory Interleave Range registers */
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
			     &pvt->mir[0]);
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
			     &pvt->mir[1]);
	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
			     &pvt->mir[2]);
	/* Decode the MIR regs */
	for (i = 0; i < MAX_MIR; i++)
		decode_mir(i, pvt->mir);
	rc = i7300_init_csrows(mci);
	if (rc < 0)
		return rc;
	/* Go and determine the size of each DIMM and place in an
         * orderly matrix */
	print_dimm_size(pvt);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 318 | 92.98% | 5 | 83.33% | 
| Joe Perches | 24 | 7.02% | 1 | 16.67% | 
| Total | 342 | 100.00% | 6 | 100.00% | 
/*************************************************
 * i7300 Functions related to device probe/release
 *************************************************/
/**
 * i7300_put_devices() - Release the PCI devices
 * @mci: struct mem_ctl_info pointer
 */
static void i7300_put_devices(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	int branch;
	pvt = mci->pvt_info;
	/* Decrement usage count for devices */
	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 63 | 100.00% | 2 | 100.00% | 
| Total | 63 | 100.00% | 2 | 100.00% | 
/**
 * i7300_get_devices() - Find and perform 'get' operation on the MCH's
 *                       device/functions we want to reference for this driver
 * @mci: struct mem_ctl_info pointer
 *
 * Access and prepare the several devices for usage:
 * I7300 devices used by this driver:
 *    Device 16, functions 0,1 and 2:   PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
 *    Device 21 function 0:             PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
 *    Device 22 function 0:             PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
 */
static int i7300_get_devices(struct mem_ctl_info *mci)
{
	struct i7300_pvt *pvt;
	struct pci_dev *pdev;
	pvt = mci->pvt_info;
	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
				      pdev))) {
		/* Store device 16 funcs 1 and 2 */
		switch (PCI_FUNC(pdev->devfn)) {
		case 1:
			if (!pvt->pci_dev_16_1_fsb_addr_map)
				pvt->pci_dev_16_1_fsb_addr_map =
							pci_dev_get(pdev);
			break;
		case 2:
			if (!pvt->pci_dev_16_2_fsb_err_regs)
				pvt->pci_dev_16_2_fsb_err_regs =
							pci_dev_get(pdev);
			break;
		}
	}
	if (!pvt->pci_dev_16_1_fsb_addr_map ||
	    !pvt->pci_dev_16_2_fsb_err_regs) {
		/* At least one device was not found */
		i7300_printk(KERN_ERR,
			"'system address,Process Bus' device not found:"
			"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL,
			PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
		goto error;
	}
	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
		 pvt->pci_dev_16_0_fsb_ctlr->vendor,
		 pvt->pci_dev_16_0_fsb_ctlr->device);
	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
		 pvt->pci_dev_16_1_fsb_addr_map->vendor,
		 pvt->pci_dev_16_1_fsb_addr_map->device);
	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
		 pvt->pci_dev_16_2_fsb_err_regs->vendor,
		 pvt->pci_dev_16_2_fsb_err_regs->device);
	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
					    NULL);
	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
		i7300_printk(KERN_ERR,
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
		goto error;
	}
	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
					    NULL);
	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
		i7300_printk(KERN_ERR,
			"MC: 'BRANCH 1' device not found:"
			"vendor 0x%x device 0x%x Func 0 "
			"(broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL,
			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
		goto error;
	}
	return 0;
error:
	i7300_put_devices(mci);
	return -ENODEV;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 249 | 80.32% | 2 | 50.00% | 
| Jean Delvare | 52 | 16.77% | 1 | 25.00% | 
| Joe Perches | 9 | 2.90% | 1 | 25.00% | 
| Total | 310 | 100.00% | 4 | 100.00% | 
/**
 * i7300_init_one() - Probe for one instance of the device
 * @pdev: struct pci_dev pointer
 * @id: struct pci_device_id pointer - currently unused
 */
static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[3];
	struct i7300_pvt *pvt;
	int rc;
	/* wake up device */
	rc = pci_enable_device(pdev);
	if (rc == -EIO)
		return rc;
	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
		 pdev->bus->number,
		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;
	/* allocate a new MC control structure */
	layers[0].type = EDAC_MC_LAYER_BRANCH;
	layers[0].size = MAX_BRANCHES;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = MAX_CH_PER_BRANCH;
	layers[1].is_virt_csrow = true;
	layers[2].type = EDAC_MC_LAYER_SLOT;
	layers[2].size = MAX_SLOTS;
	layers[2].is_virt_csrow = true;
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
	if (mci == NULL)
		return -ENOMEM;
	edac_dbg(0, "MC: mci = %p\n", mci);
	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
	pvt = mci->pvt_info;
	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
	pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!pvt->tmp_prt_buffer) {
		edac_mc_free(mci);
		return -ENOMEM;
	}
	/* 'get' the pci devices we want to reserve for our use */
	if (i7300_get_devices(mci))
		goto fail0;
	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7300_edac.c";
	mci->mod_ver = I7300_REVISION;
	mci->ctl_name = i7300_devs[0].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7300_check_error;
	/* initialize the MC control structure 'csrows' table
         * with the mapping and control information */
	if (i7300_get_mc_regs(mci)) {
		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
		edac_dbg(1, "MC: Enable error reporting now\n");
		i7300_enable_error_reporting(mci);
	}
	/* add this new MC control structure to EDAC's list of MCs */
	if (edac_mc_add_mc(mci)) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		/* FIXME: perhaps some code should go here that disables error
                 * reporting if we just enabled it
                 */
		goto fail1;
	}
	i7300_clear_error(mci);
	/* allocating generic PCI control info */
	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i7300_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}
	return 0;
	/* Error exit unwinding stack */
fail1:
	i7300_put_devices(mci);
fail0:
	kfree(pvt->tmp_prt_buffer);
	edac_mc_free(mci);
	return -ENODEV;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 465 | 96.67% | 9 | 90.00% | 
| Joe Perches | 16 | 3.33% | 1 | 10.00% | 
| Total | 481 | 100.00% | 10 | 100.00% | 
/**
 * i7300_remove_one() - Remove the driver
 * @pdev: struct pci_dev pointer
 */
static void i7300_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
	char *tmp;
	edac_dbg(0, "\n");
	if (i7300_pci)
		edac_pci_release_generic_ctl(i7300_pci);
	mci = edac_mc_del_mc(&pdev->dev);
	if (!mci)
		return;
	tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
	/* retrieve references to resources, and free those resources */
	i7300_put_devices(mci);
	kfree(tmp);
	edac_mc_free(mci);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 80 | 96.39% | 3 | 75.00% | 
| Joe Perches | 3 | 3.61% | 1 | 25.00% | 
| Total | 83 | 100.00% | 4 | 100.00% | 
/*
 * pci_device_id: table for which devices we are looking for
 *
 * Has only 8086:360c PCI ID
 */
static const struct pci_device_id i7300_pci_tbl[] = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
	{0,}			/* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
/*
 * i7300_driver: pci_driver structure for this module
 */
static struct pci_driver i7300_driver = {
	.name = "i7300_edac",
	.probe = i7300_init_one,
	.remove = i7300_remove_one,
	.id_table = i7300_pci_tbl,
};
/**
 * i7300_init() - Registers the driver
 */
static int __init i7300_init(void)
{
	int pci_rc;
	edac_dbg(2, "\n");
	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();
	pci_rc = pci_register_driver(&i7300_driver);
	return (pci_rc < 0) ? pci_rc : 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 39 | 92.86% | 2 | 66.67% | 
| Joe Perches | 3 | 7.14% | 1 | 33.33% | 
| Total | 42 | 100.00% | 3 | 100.00% | 
/**
 * i7300_init() - Unregisters the driver
 */
static void __exit i7300_exit(void)
{
	edac_dbg(2, "\n");
	pci_unregister_driver(&i7300_driver);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 19 | 86.36% | 2 | 66.67% | 
| Joe Perches | 3 | 13.64% | 1 | 33.33% | 
| Total | 22 | 100.00% | 3 | 100.00% | 
module_init(i7300_init);
module_exit(i7300_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
		   I7300_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
Overall Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Mauro Carvalho Chehab | 4327 | 94.70% | 31 | 79.49% | 
| Joe Perches | 167 | 3.66% | 2 | 5.13% | 
| Jean Delvare | 56 | 1.23% | 2 | 5.13% | 
| Borislav Petkov | 11 | 0.24% | 1 | 2.56% | 
| Jingoo Han | 6 | 0.13% | 1 | 2.56% | 
| Michal Marek | 1 | 0.02% | 1 | 2.56% | 
| Jesper Juhl | 1 | 0.02% | 1 | 2.56% | 
| Lionel Debroux |  | 0.00% | 0 | 0.00% | 
| Total | 4569 | 100.00% | 39 | 100.00% | 
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.