Release 4.12 drivers/rtc/rtc-ab-b5ze-s3.c
  
  
  
/*
 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
 *                  I2C RTC / Alarm chip
 *
 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
 *
 * Detailed datasheet of the chip is available here:
 *
 *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
 *
 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/rtc.h>
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
#define DRV_NAME "rtc-ab-b5ze-s3"
/* Control section */
#define ABB5ZES3_REG_CTRL1	   0x00	   
/* Control 1 register */
#define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  
/* Pulse interrupt enable */
#define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  
/* Alarm interrupt enable */
#define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  
/* Second interrupt enable */
#define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  
/* 24h/12h mode */
#define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  
/* Software reset */
#define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  
/* RTC circuit enable */
#define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
#define ABB5ZES3_REG_CTRL2	   0x01	   
/* Control 2 register */
#define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  
/* Countdown timer B int. enable */
#define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  
/* Countdown timer A int. enable */
#define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  
/* Watchdog timer A int. enable */
#define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  
/* Alarm interrupt status */
#define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  
/* Second interrupt status */
#define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  
/* Countdown timer B int. status */
#define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  
/* Countdown timer A int. status */
#define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  
/* Watchdog timer A int. status */
#define ABB5ZES3_REG_CTRL3	   0x02	   
/* Control 3 register */
#define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  
/* Power Management bit 2 */
#define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  
/* Power Management bit 1 */
#define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  
/* Power Management bit 0 */
#define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  
/* Battery switchover int. status */
#define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  
/* Battery low int. status */
#define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  
/* Battery switchover int. enable */
#define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  
/* Battery low int. enable */
#define ABB5ZES3_CTRL_SEC_LEN	   3
/* RTC section */
#define ABB5ZES3_REG_RTC_SC	   0x03	   
/* RTC Seconds register */
#define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  
/* Clock integrity status */
#define ABB5ZES3_REG_RTC_MN	   0x04	   
/* RTC Minutes register */
#define ABB5ZES3_REG_RTC_HR	   0x05	   
/* RTC Hours register */
#define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  
/* RTC Hours PM bit */
#define ABB5ZES3_REG_RTC_DT	   0x06	   
/* RTC Date register */
#define ABB5ZES3_REG_RTC_DW	   0x07	   
/* RTC Day of the week register */
#define ABB5ZES3_REG_RTC_MO	   0x08	   
/* RTC Month register */
#define ABB5ZES3_REG_RTC_YR	   0x09	   
/* RTC Year register */
#define ABB5ZES3_RTC_SEC_LEN	   7
/* Alarm section (enable bits are all active low) */
#define ABB5ZES3_REG_ALRM_MN	   0x0A	   
/* Alarm - minute register */
#define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  
/* Minute enable */
#define ABB5ZES3_REG_ALRM_HR	   0x0B	   
/* Alarm - hours register */
#define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  
/* Hour enable */
#define ABB5ZES3_REG_ALRM_DT	   0x0C	   
/* Alarm - date register */
#define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  
/* Date (day of the month) enable */
#define ABB5ZES3_REG_ALRM_DW	   0x0D	   
/* Alarm - day of the week reg. */
#define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  
/* Day of the week enable */
#define ABB5ZES3_ALRM_SEC_LEN	   4
/* Frequency offset section */
#define ABB5ZES3_REG_FREQ_OF	   0x0E	   
/* Frequency offset register */
#define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   
/* Offset mode: 2 hours / minute */
/* CLOCKOUT section */
#define ABB5ZES3_REG_TIM_CLK	   0x0F	   
/* Timer & Clockout register */
#define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  
/* Permanent/pulsed timer A/int. 2 */
#define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  
/* Permanent/pulsed timer B */
#define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  
/* Clkout Freq bit 2 */
#define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  
/* Clkout Freq bit 1 */
#define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  
/* Clkout Freq bit 0 */
#define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  
/* Timer A: - 01 : countdown */
#define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  
/*             - 10 : timer     */
#define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  
/* Timer B enable */
/* Timer A Section */
#define ABB5ZES3_REG_TIMA_CLK	   0x10	   
/* Timer A clock register */
#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  
/* Freq bit 2 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  
/* Freq bit 1 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  
/* Freq bit 0 */
#define ABB5ZES3_REG_TIMA	   0x11	   
/* Timer A register */
#define ABB5ZES3_TIMA_SEC_LEN	   2
/* Timer B Section */
#define ABB5ZES3_REG_TIMB_CLK	   0x12	   
/* Timer B clock register */
#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
#define ABB5ZES3_REG_TIMB	   0x13	   
/* Timer B register */
#define ABB5ZES3_TIMB_SEC_LEN	   2
#define ABB5ZES3_MEM_MAP_LEN	   0x14
struct abb5zes3_rtc_data {
	
struct rtc_device *rtc;
	
struct regmap *regmap;
	
struct mutex lock;
	
int irq;
	
bool battery_low;
	
bool timer_alarm; /* current alarm is via timer A */
};
/*
 * Try and match register bits w/ fixed null values to see whether we
 * are dealing with an ABB5ZES3. Note: this function is called early
 * during init and hence does need mutex protection.
 */
static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
{
	u8 regs[ABB5ZES3_MEM_MAP_LEN];
	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
						       0x80, 0xc0, 0xc0, 0xf8,
						       0xe0, 0x00, 0x00, 0x40,
						       0x40, 0x78, 0x00, 0x00,
						       0xf8, 0x00, 0x88, 0x00 };
	int ret, i;
	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
	if (ret)
		return ret;
	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
		if (regs[i] & mask[i]) /* check if bits are cleared */
			return -ENODEV;
	}
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 127 | 100.00% | 1 | 100.00% | 
| Total | 127 | 100.00% | 1 | 100.00% | 
/* Clear alarm status bit. */
static int _abb5zes3_rtc_clear_alarm(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_AF, 0);
	if (ret)
		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 57 | 100.00% | 1 | 100.00% | 
| Total | 57 | 100.00% | 1 | 100.00% | 
/* Enable or disable alarm (i.e. alarm interrupt generation) */
static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
				 ABB5ZES3_REG_CTRL1_AIE,
				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
	if (ret)
		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
			__func__, ret);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 64 | 100.00% | 1 | 100.00% | 
| Total | 64 | 100.00% | 1 | 100.00% | 
/* Enable or disable timer (watchdog timer A interrupt generation) */
static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_WTAIE,
				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
	if (ret)
		dev_err(dev, "%s: writing timer INT failed (%d)\n",
			__func__, ret);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 64 | 100.00% | 1 | 100.00% | 
| Total | 64 | 100.00% | 1 | 100.00% | 
/*
 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 * we do not need driver's main lock protection.
 */
static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret;
	/*
         * As we need to read CTRL1 register anyway to access 24/12h
         * mode bit, we do a single bulk read of both control and RTC
         * sections (they are consecutive). This also ease indexing
         * of register values after bulk read.
         */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
			       sizeof(regs));
	if (ret) {
		dev_err(dev, "%s: reading RTC time failed (%d)\n",
			__func__, ret);
		goto err;
	}
	/* If clock integrity is not guaranteed, do not return a time value */
	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
		ret = -ENODATA;
		goto err;
	}
	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
			tm->tm_hour += 12;
	} else {						/* 24hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
	}
	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
	ret = rtc_valid_tm(tm);
err:
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 245 | 100.00% | 1 | 100.00% | 
| Total | 245 | 100.00% | 1 | 100.00% | 
static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret;
	/*
         * Year register is 8-bit wide and bcd-coded, i.e records values
         * between 0 and 99. tm_year is an offset from 1900 and we are
         * interested in the 2000-2099 range, so any value less than 100
         * is invalid.
         */
	if (tm->tm_year < 100)
		return -EINVAL;
	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
	mutex_lock(&data->lock);
	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
				regs + ABB5ZES3_REG_RTC_SC,
				ABB5ZES3_RTC_SEC_LEN);
	mutex_unlock(&data->lock);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 176 | 100.00% | 1 | 100.00% | 
| Total | 176 | 100.00% | 1 | 100.00% | 
/*
 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 * given number of seconds.
 */
static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
{
	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
	*timer_a = secs;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 29 | 100.00% | 1 | 100.00% | 
| Total | 29 | 100.00% | 1 | 100.00% | 
/*
 * Return current number of seconds in Timer A. As we only use
 * timer A with a 1Hz freq, this is what we expect to have.
 */
static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
{
	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
		return -EINVAL;
	*secs = timer_a;
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 36 | 100.00% | 2 | 100.00% | 
| Total | 36 | 100.00% | 2 | 100.00% | 
/*
 * Read alarm currently configured via a watchdog timer using timer A. This
 * is done by reading current RTC time and adding remaining timer time.
 */
static int _abb5zes3_rtc_read_timer(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
	unsigned long rtc_secs;
	unsigned int reg;
	u8 timer_secs;
	int ret;
	/*
         * Instead of doing two separate calls, because they are consecutive,
         * we grab both clockout register and Timer A section. The latter is
         * used to decide if timer A is enabled (as a watchdog timer).
         */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
			       ABB5ZES3_TIMA_SEC_LEN + 1);
	if (ret) {
		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
			__func__, ret);
		goto err;
	}
	/* get current time ... */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		goto err;
	/* ... convert to seconds ... */
	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
	if (ret)
		goto err;
	/* ... add remaining timer A time ... */
	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
	if (ret)
		goto err;
	/* ... and convert back. */
	rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		goto err;
	}
	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
err:
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 222 | 100.00% | 2 | 100.00% | 
| Total | 222 | 100.00% | 2 | 100.00% | 
/* Read alarm currently configured via a RTC alarm registers. */
static int _abb5zes3_rtc_read_alarm(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	unsigned int reg;
	int ret;
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
			       ABB5ZES3_ALRM_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: reading alarm section failed (%d)\n",
			__func__, ret);
		goto err;
	}
	alarm_tm->tm_sec  = 0;
	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
	alarm_tm->tm_wday = -1;
	/*
         * The alarm section does not store year/month. We use the ones in rtc
         * section as a basis and increment month and then year if needed to get
         * alarm after current time.
         */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		goto err;
	alarm_tm->tm_year = rtc_tm.tm_year;
	alarm_tm->tm_mon = rtc_tm.tm_mon;
	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
	if (ret)
		goto err;
	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
	if (ret)
		goto err;
	if (alarm_secs < rtc_secs) {
		if (alarm_tm->tm_mon == 11) {
			alarm_tm->tm_mon = 0;
			alarm_tm->tm_year += 1;
		} else {
			alarm_tm->tm_mon += 1;
		}
	}
	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		goto err;
	}
	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
err:
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 306 | 100.00% | 2 | 100.00% | 
| Total | 306 | 100.00% | 2 | 100.00% | 
/*
 * As the Alarm mechanism supported by the chip is only accurate to the
 * minute, we use the watchdog timer mechanism provided by timer A
 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 * 4 minutes). Otherwise, we use the common alarm mechanism provided
 * by the chip. In order for that to work, we keep track of currently
 * configured timer type via 'timer_alarm' flag in our private data
 * structure.
 */
static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;
	mutex_lock(&data->lock);
	if (data->timer_alarm)
		ret = _abb5zes3_rtc_read_timer(dev, alarm);
	else
		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
	mutex_unlock(&data->lock);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 73 | 100.00% | 1 | 100.00% | 
| Total | 73 | 100.00% | 1 | 100.00% | 
/*
 * Set alarm using chip alarm mechanism. It is only accurate to the
 * minute (not the second). The function expects alarm interrupt to
 * be disabled.
 */
static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	struct rtc_time rtc_tm;
	int ret, enable = 1;
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		goto err;
	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
	if (ret)
		goto err;
	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
	if (ret)
		goto err;
	/* If alarm time is before current time, disable the alarm */
	if (!alarm->enabled || alarm_secs <= rtc_secs) {
		enable = 0;
	} else {
		/*
                 * Chip only support alarms up to one month in the future. Let's
                 * return an error if we get something after that limit.
                 * Comparison is done by incrementing rtc_tm month field by one
                 * and checking alarm value is still below.
                 */
		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
			rtc_tm.tm_mon = 0;
			rtc_tm.tm_year += 1;
		} else {
			rtc_tm.tm_mon += 1;
		}
		ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
		if (ret)
			goto err;
		if (alarm_secs > rtc_secs) {
			dev_err(dev, "%s: alarm maximum is one month in the "
				"future (%d)\n", __func__, ret);
			ret = -EINVAL;
			goto err;
		}
	}
	/*
         * Program all alarm registers but DW one. For each register, setting
         * MSB to 0 enables associated alarm.
         */
	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
				ABB5ZES3_ALRM_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
			__func__, ret);
		goto err;
	}
	/* Record currently configured alarm is not a timer */
	data->timer_alarm = 0;
	/* Enable or disable alarm interrupt generation */
	ret = _abb5zes3_rtc_update_alarm(dev, enable);
err:
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 321 | 100.00% | 1 | 100.00% | 
| Total | 321 | 100.00% | 1 | 100.00% | 
/*
 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 * timer A interrupt to be disabled.
 */
static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
				   u8 secs)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
	int ret = 0;
	/* Program given number of seconds to Timer A registers */
	sec_to_timer_a(secs, ®s[0], ®s[1]);
	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
				ABB5ZES3_TIMA_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing timer section failed\n", __func__);
		goto err;
	}
	/* Configure Timer A as a watchdog timer */
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
	if (ret)
		dev_err(dev, "%s: failed to update timer\n", __func__);
	/* Record currently configured alarm is a timer */
	data->timer_alarm = 1;
	/* Enable or disable timer interrupt generation */
	ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
err:
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 153 | 100.00% | 1 | 100.00% | 
| Total | 153 | 100.00% | 1 | 100.00% | 
/*
 * The chip has an alarm which is only accurate to the minute. In order to
 * handle alarms below that limit, we use the watchdog timer function of
 * timer A. More precisely, the timer method is used for alarms below 240
 * seconds.
 */
static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	struct rtc_time rtc_tm;
	int ret;
	mutex_lock(&data->lock);
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		goto err;
	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
	if (ret)
		goto err;
	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
	if (ret)
		goto err;
	/* Let's first disable both the alarm and the timer interrupts */
	ret = _abb5zes3_rtc_update_alarm(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
			ret);
		goto err;
	}
	ret = _abb5zes3_rtc_update_timer(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
			ret);
		goto err;
	}
	data->timer_alarm = 0;
	/*
         * Let's now configure the alarm; if we are expected to ring in
         * more than 240s, then we setup an alarm. Otherwise, a timer.
         */
	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
		ret = _abb5zes3_rtc_set_timer(dev, alarm,
					      alarm_secs - rtc_secs);
	else
		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
 err:
	mutex_unlock(&data->lock);
	if (ret)
		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
			ret);
	return ret;
 }
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 248 | 100.00% | 2 | 100.00% | 
| Total | 248 | 100.00% | 2 | 100.00% | 
/* Enable or disable battery low irq generation */
static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
						       bool enable)
{
	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
				  ABB5ZES3_REG_CTRL3_BLIE,
				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 31 | 100.00% | 1 | 100.00% | 
| Total | 31 | 100.00% | 1 | 100.00% | 
/*
 * Check current RTC status and enable/disable what needs to be. Return 0 if
 * everything went ok and a negative value upon error. Note: this function
 * is called early during init and hence does need mutex protection.
 */
static int abb5zes3_rtc_check_setup(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct regmap *regmap = data->regmap;
	unsigned int reg;
	int ret;
	u8 mask;
	/*
         * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
         * is disabled here to prevent polluting the interrupt line and
         * uselessly triggering the IRQ handler we install for alarm and battery
         * low events. Note: this is done before clearing int. status below
         * in this function.
         * We also disable all timers and set timer interrupt to permanent (not
         * pulsed).
         */
	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
		ABB5ZES3_REG_TIM_CLK_COF2);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
			__func__, ret);
		return ret;
	}
	/*
         * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
         * individually by clearing/setting MSB of each associated register. So,
         * we set all alarm enable bits to disable current alarm setting.
         */
	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
			__func__, ret);
		return ret;
	}
	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
			__func__, ret);
		return ret;
	}
	/*
         * Set Control 2 register (timer int. disabled, alarm status cleared).
         * WTAF is read-only and cleared automatically by reading the register.
         */
	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
		ABB5ZES3_REG_CTRL2_CTAF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
			__func__, ret);
		return ret;
	}
	/*
         * Enable battery low detection function and battery switchover function
         * (standard mode). Disable associated interrupts. Clear battery
         * switchover flag but not battery low flag. The latter is checked
         * later below.
         */
	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
			__func__, ret);
		return ret;
	}
	/* Check oscillator integrity flag */
	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
			__func__, ret);
		return ret;
	}
	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
			"or has been interrupted.\n");
		dev_err(dev, "change battery (if not already done) and  "
			"then set time to reset osc. failure flag.\n");
	}
	/*
         * Check battery low flag at startup: this allows reporting battery
         * is low at startup when IRQ line is not connected. Note: we record
         * current status to avoid reenabling this interrupt later in probe
         * function if battery is low.
         */
	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
			__func__, ret);
		return ret;
	}
	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
	if (data->battery_low) {
		dev_err(dev, "RTC battery is low; please, consider "
			"changing it!\n");
		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
		if (ret)
			dev_err(dev, "%s: disabling battery low interrupt "
				"generation failed (%d)\n", __func__, ret);
	}
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 452 | 100.00% | 1 | 100.00% | 
| Total | 452 | 100.00% | 1 | 100.00% | 
static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
					 unsigned int enable)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	int ret = 0;
	if (rtc_data->irq) {
		mutex_lock(&rtc_data->lock);
		if (rtc_data->timer_alarm)
			ret = _abb5zes3_rtc_update_timer(dev, enable);
		else
			ret = _abb5zes3_rtc_update_alarm(dev, enable);
		mutex_unlock(&rtc_data->lock);
	}
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 82 | 100.00% | 2 | 100.00% | 
| Total | 82 | 100.00% | 2 | 100.00% | 
static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
{
	struct i2c_client *client = data;
	struct device *dev = &client->dev;
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	struct rtc_device *rtc = rtc_data->rtc;
	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
	int ret, handled = IRQ_NONE;
	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
			       ABB5ZES3_CTRL_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: unable to read control section (%d)!\n",
			__func__, ret);
		return handled;
	}
	/*
         * Check battery low detection flag and disable battery low interrupt
         * generation if flag is set (interrupt can only be cleared when
         * battery is replaced).
         */
	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
		dev_err(dev, "RTC battery is low; please change it!\n");
		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
		handled = IRQ_HANDLED;
	}
	/* Check alarm flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
		dev_dbg(dev, "RTC alarm!\n");
		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
		/* Acknowledge and disable the alarm */
		_abb5zes3_rtc_clear_alarm(dev);
		_abb5zes3_rtc_update_alarm(dev, 0);
		handled = IRQ_HANDLED;
	}
	/* Check watchdog Timer A flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
		dev_dbg(dev, "RTC timer!\n");
		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
		/*
                 * Acknowledge and disable the alarm. Note: WTAF
                 * flag had been cleared when reading CTRL2
                 */
		_abb5zes3_rtc_update_timer(dev, 0);
		rtc_data->timer_alarm = 0;
		handled = IRQ_HANDLED;
	}
	return handled;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 227 | 100.00% | 2 | 100.00% | 
| Total | 227 | 100.00% | 2 | 100.00% | 
static const struct rtc_class_ops rtc_ops = {
	.read_time = _abb5zes3_rtc_read_time,
	.set_time = abb5zes3_rtc_set_time,
	.read_alarm = abb5zes3_rtc_read_alarm,
	.set_alarm = abb5zes3_rtc_set_alarm,
	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
};
static const struct regmap_config abb5zes3_rtc_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
};
static int abb5zes3_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct abb5zes3_rtc_data *data = NULL;
	struct device *dev = &client->dev;
	struct regmap *regmap;
	int ret;
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
				     I2C_FUNC_SMBUS_BYTE_DATA |
				     I2C_FUNC_SMBUS_I2C_BLOCK)) {
		ret = -ENODEV;
		goto err;
	}
	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
	if (IS_ERR(regmap)) {
		ret = PTR_ERR(regmap);
		dev_err(dev, "%s: regmap allocation failed: %d\n",
			__func__, ret);
		goto err;
	}
	ret = abb5zes3_i2c_validate_chip(regmap);
	if (ret)
		goto err;
	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data) {
		ret = -ENOMEM;
		goto err;
	}
	mutex_init(&data->lock);
	data->regmap = regmap;
	dev_set_drvdata(dev, data);
	ret = abb5zes3_rtc_check_setup(dev);
	if (ret)
		goto err;
	if (client->irq > 0) {
		ret = devm_request_threaded_irq(dev, client->irq, NULL,
						_abb5zes3_rtc_interrupt,
						IRQF_SHARED|IRQF_ONESHOT,
						DRV_NAME, client);
		if (!ret) {
			device_init_wakeup(dev, true);
			data->irq = client->irq;
			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
				client->irq);
		} else {
			dev_err(dev, "%s: irq %d unavailable (%d)\n",
				__func__, client->irq, ret);
			goto err;
		}
	}
	data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
					     THIS_MODULE);
	ret = PTR_ERR_OR_ZERO(data->rtc);
	if (ret) {
		dev_err(dev, "%s: unable to register RTC device (%d)\n",
			__func__, ret);
		goto err;
	}
	/* Enable battery low detection interrupt if battery not already low */
	if (!data->battery_low && data->irq) {
		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
		if (ret) {
			dev_err(dev, "%s: enabling battery low interrupt "
				"generation failed (%d)\n", __func__, ret);
			goto err;
		}
	}
err:
	if (ret && data && data->irq)
		device_init_wakeup(dev, false);
	return ret;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 387 | 100.00% | 1 | 100.00% | 
| Total | 387 | 100.00% | 1 | 100.00% | 
static int abb5zes3_remove(struct i2c_client *client)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
	if (rtc_data->irq > 0)
		device_init_wakeup(&client->dev, false);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 45 | 100.00% | 1 | 100.00% | 
| Total | 45 | 100.00% | 1 | 100.00% | 
#ifdef CONFIG_PM_SLEEP
static int abb5zes3_rtc_suspend(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	if (device_may_wakeup(dev))
		return enable_irq_wake(rtc_data->irq);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 39 | 100.00% | 1 | 100.00% | 
| Total | 39 | 100.00% | 1 | 100.00% | 
static int abb5zes3_rtc_resume(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	if (device_may_wakeup(dev))
		return disable_irq_wake(rtc_data->irq);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 39 | 100.00% | 1 | 100.00% | 
| Total | 39 | 100.00% | 1 | 100.00% | 
#endif
static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
			 abb5zes3_rtc_resume);
#ifdef CONFIG_OF
static const struct of_device_id abb5zes3_dt_match[] = {
	{ .compatible = "abracon,abb5zes3" },
	{ },
};
MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
#endif
static const struct i2c_device_id abb5zes3_id[] = {
	{ "abb5zes3", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
static struct i2c_driver abb5zes3_driver = {
	.driver = {
		.name = DRV_NAME,
		.pm = &abb5zes3_rtc_pm_ops,
		.of_match_table = of_match_ptr(abb5zes3_dt_match),
        },
	.probe	  = abb5zes3_probe,
	.remove	  = abb5zes3_remove,
	.id_table = abb5zes3_id,
};
module_i2c_driver(abb5zes3_driver);
MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
MODULE_LICENSE("GPL");
Overall Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Arnaud Ebalard | 4028 | 99.80% | 2 | 50.00% | 
| Javier Martinez Canillas | 7 | 0.17% | 1 | 25.00% | 
| Krzysztof Kozlowski | 1 | 0.02% | 1 | 25.00% | 
| Total | 4036 | 100.00% | 4 | 100.00% | 
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.