cregit-Linux how code gets into the kernel

Release 4.12 include/linux/sched.h

Directory: include/linux
#ifndef _LINUX_SCHED_H

#define _LINUX_SCHED_H

 * Define 'struct task_struct' and provide the main scheduler
 * APIs (schedule(), wakeup variants, etc.)

#include <uapi/linux/sched.h>

#include <asm/current.h>

#include <linux/pid.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
#include <linux/seccomp.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>

/* task_struct member predeclarations (sorted alphabetically): */
struct audit_context;
struct backing_dev_info;
struct bio_list;
struct blk_plug;
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
struct nameidata;
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
struct sched_attr;
struct sched_param;
struct seq_file;
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
struct task_group;

 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.

/* Used in tsk->state: */

#define TASK_RUNNING			0



#define __TASK_STOPPED			4

#define __TASK_TRACED			8
/* Used in tsk->exit_state: */

#define EXIT_DEAD			16

#define EXIT_ZOMBIE			32

/* Used in tsk->state again: */

#define TASK_DEAD			64

#define TASK_WAKEKILL			128

#define TASK_WAKING			256

#define TASK_PARKED			512

#define TASK_NOLOAD			1024

#define TASK_NEW			2048

#define TASK_STATE_MAX			4096


/* Convenience macros for the sake of set_current_state: */





/* Convenience macros for the sake of wake_up(): */



/* get_task_state(): */

                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
                                         __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)

#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
                                         (task->flags & PF_FROZEN) == 0 && \
                                         (task->state & TASK_NOLOAD) == 0)


#define __set_current_state(state_value)			\
	do {                                                    \
                current->task_state_change = _THIS_IP_;         \
                current->state = (state_value);                 \
        } while (0)

#define set_current_state(state_value)				\
	do {                                                    \
                current->task_state_change = _THIS_IP_;         \
                smp_store_mb(current->state, (state_value));    \
        } while (0)

 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *   for (;;) {
 *      set_current_state(TASK_UNINTERRUPTIBLE);
 *      if (!need_sleep)
 *              break;
 *      schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 * The above is typically ordered against the wakeup, which does:
 *      need_sleep = false;
 *      wake_up_state(p, TASK_UNINTERRUPTIBLE);
 * Where wake_up_state() (and all other wakeup primitives) imply enough
 * barriers to order the store of the variable against wakeup.
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 * This is obviously fine, since they both store the exact same value.
 * Also see the comments of try_to_wake_up().

#define __set_current_state(state_value) do { current->state = (state_value); } while (0)

#define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))

/* Task command name length: */

#define TASK_COMM_LEN			16

extern cpumask_var_t			cpu_isolated_map;

extern void scheduler_tick(void);


extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);

extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
extern void io_schedule(void);

 * struct prev_cputime - snapshot of system and user cputime
 * @utime: time spent in user mode
 * @stime: time spent in system mode
 * @lock: protects the above two fields
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.

struct prev_cputime {
u64				utime;
u64				stime;
raw_spinlock_t			lock;

 * struct task_cputime - collected CPU time counts
 * @utime:              time spent in user mode, in nanoseconds
 * @stime:              time spent in kernel mode, in nanoseconds
 * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
 * This structure groups together three kinds of CPU time that are tracked for
 * threads and thread groups.  Most things considering CPU time want to group
 * these counts together and treat all three of them in parallel.

struct task_cputime {
u64				utime;
u64				stime;
unsigned long long		sum_exec_runtime;

/* Alternate field names when used on cache expirations: */

#define virt_exp			utime

#define prof_exp			stime

#define sched_exp			sum_exec_runtime

struct sched_info {
	/* Cumulative counters: */

	/* # of times we have run on this CPU: */
unsigned long			pcount;

	/* Time spent waiting on a runqueue: */
unsigned long long		run_delay;

	/* Timestamps: */

	/* When did we last run on a CPU? */
unsigned long long		last_arrival;

	/* When were we last queued to run? */
unsigned long long		last_queued;

#endif /* CONFIG_SCHED_INFO */

 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.



struct load_weight {
unsigned long			weight;
u32				inv_weight;

 * The load_avg/util_avg accumulates an infinite geometric series
 * (see __update_load_avg() in kernel/sched/fair.c).
 * [load_avg definition]
 *   load_avg = runnable% * scale_load_down(load)
 * where runnable% is the time ratio that a sched_entity is runnable.
 * For cfs_rq, it is the aggregated load_avg of all runnable and
 * blocked sched_entities.
 * load_avg may also take frequency scaling into account:
 *   load_avg = runnable% * scale_load_down(load) * freq%
 * where freq% is the CPU frequency normalized to the highest frequency.
 * [util_avg definition]
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 * where running% is the time ratio that a sched_entity is running on
 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 * and blocked sched_entities.
 * util_avg may also factor frequency scaling and CPU capacity scaling:
 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
 * where freq% is the same as above, and capacity% is the CPU capacity
 * normalized to the greatest capacity (due to uarch differences, etc).
 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
 * we therefore scale them to as large a range as necessary. This is for
 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
 * [Overflow issue]
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *    Max(load_avg) <= Max(load.weight)
 * Then it is the load_weight's responsibility to consider overflow
 * issues.

struct sched_avg {
u64				last_update_time;
u64				load_sum;
u32				util_sum;
u32				period_contrib;
unsigned long			load_avg;
unsigned long			util_avg;

struct sched_statistics {
u64				wait_start;
u64				wait_max;
u64				wait_count;
u64				wait_sum;
u64				iowait_count;
u64				iowait_sum;

u64				sleep_start;
u64				sleep_max;
s64				sum_sleep_runtime;

u64				block_start;
u64				block_max;
u64				exec_max;
u64				slice_max;

u64				nr_migrations_cold;
u64				nr_failed_migrations_affine;
u64				nr_failed_migrations_running;
u64				nr_failed_migrations_hot;
u64				nr_forced_migrations;

u64				nr_wakeups;
u64				nr_wakeups_sync;
u64				nr_wakeups_migrate;
u64				nr_wakeups_local;
u64				nr_wakeups_remote;
u64				nr_wakeups_affine;
u64				nr_wakeups_affine_attempts;
u64				nr_wakeups_passive;
u64				nr_wakeups_idle;

struct sched_entity {
	/* For load-balancing: */
struct load_weight		load;
struct rb_node			run_node;
struct list_head		group_node;
unsigned int			on_rq;

u64				exec_start;
u64				sum_exec_runtime;
u64				vruntime;
u64				prev_sum_exec_runtime;

u64				nr_migrations;

struct sched_statistics		statistics;

int				depth;
struct sched_entity		*parent;
	/* rq on which this entity is (to be) queued: */
struct cfs_rq			*cfs_rq;
	/* rq "owned" by this entity/group: */
struct cfs_rq			*my_q;

         * Per entity load average tracking.
         * Put into separate cache line so it does not
         * collide with read-mostly values above.
struct sched_avg		avg ____cacheline_aligned_in_smp;

struct sched_rt_entity {
struct list_head		run_list;
unsigned long			timeout;
unsigned long			watchdog_stamp;
unsigned int			time_slice;
unsigned short			on_rq;
unsigned short			on_list;

struct sched_rt_entity		*back;
struct sched_rt_entity		*parent;
	/* rq on which this entity is (to be) queued: */
struct rt_rq			*rt_rq;
	/* rq "owned" by this entity/group: */
struct rt_rq			*my_q;

struct sched_dl_entity {
struct rb_node			rb_node;

         * Original scheduling parameters. Copied here from sched_attr
         * during sched_setattr(), they will remain the same until
         * the next sched_setattr().
u64				dl_runtime;	/* Maximum runtime for each instance    */
u64				dl_deadline;	/* Relative deadline of each instance   */
u64				dl_period;	/* Separation of two instances (period) */
u64				dl_bw;		/* dl_runtime / dl_deadline             */

         * Actual scheduling parameters. Initialized with the values above,
         * they are continously updated during task execution. Note that
         * the remaining runtime could be < 0 in case we are in overrun.
s64				runtime;	/* Remaining runtime for this instance  */
u64				deadline;	/* Absolute deadline for this instance  */
unsigned int			flags;		/* Specifying the scheduler behaviour   */

         * Some bool flags:
         * @dl_throttled tells if we exhausted the runtime. If so, the
         * task has to wait for a replenishment to be performed at the
         * next firing of dl_timer.
         * @dl_boosted tells if we are boosted due to DI. If so we are
         * outside bandwidth enforcement mechanism (but only until we
         * exit the critical section);
         * @dl_yielded tells if task gave up the CPU before consuming
         * all its available runtime during the last job.
int				dl_throttled;
int				dl_boosted;
int				dl_yielded;

         * Bandwidth enforcement timer. Each -deadline task has its
         * own bandwidth to be enforced, thus we need one timer per task.
struct hrtimer			dl_timer;

union rcu_special {
	struct {
u8			blocked;
u8			need_qs;
u8			exp_need_qs;

		/* Otherwise the compiler can store garbage here: */
u8			pad;
} b; /* Bits. */
u32 s; /* Set of bits. */

enum perf_event_task_context {
perf_invalid_context = -1,
perf_hw_context = 0,

struct wake_q_node {
struct wake_q_node *next;

struct task_struct {
         * For reasons of header soup (see current_thread_info()), this
         * must be the first element of task_struct.
struct thread_info		thread_info;
	/* -1 unrunnable, 0 runnable, >0 stopped: */
volatile long			state;
void				*stack;
atomic_t			usage;
	/* Per task flags (PF_*), defined further below: */
unsigned int			flags;
unsigned int			ptrace;

struct llist_node		wake_entry;
int				on_cpu;
	/* Current CPU: */
unsigned int			cpu;
unsigned int			wakee_flips;
unsigned long			wakee_flip_decay_ts;
struct task_struct		*last_wakee;

int				wake_cpu;
int				on_rq;

int				prio;
int				static_prio;
int				normal_prio;
unsigned int			rt_priority;

const struct sched_class	*sched_class;
struct sched_entity		se;
struct sched_rt_entity		rt;
struct task_group		*sched_task_group;
struct sched_dl_entity		dl;

	/* List of struct preempt_notifier: */
struct hlist_head		preempt_notifiers;

unsigned int			btrace_seq;

unsigned int			policy;
int				nr_cpus_allowed;
cpumask_t			cpus_allowed;

int				rcu_read_lock_nesting;
union rcu_special		rcu_read_unlock_special;
struct list_head		rcu_node_entry;
struct rcu_node			*rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

unsigned long			rcu_tasks_nvcsw;
bool				rcu_tasks_holdout;
struct list_head		rcu_tasks_holdout_list;
int				rcu_tasks_idle_cpu;
#endif /* #ifdef CONFIG_TASKS_RCU */

struct sched_info		sched_info;

struct list_head		tasks;
struct plist_node		pushable_tasks;
struct rb_node			pushable_dl_tasks;

struct mm_struct		*mm;
struct mm_struct		*active_mm;

	/* Per-thread vma caching: */
struct vmacache			vmacache;

struct task_rss_stat		rss_stat;
int				exit_state;
int				exit_code;
int				exit_signal;
	/* The signal sent when the parent dies: */
int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
unsigned			sched_reset_on_fork:1;
unsigned			sched_contributes_to_load:1;
unsigned			sched_migrated:1;
unsigned			sched_remote_wakeup:1;
	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
unsigned			in_execve:1;
unsigned			in_iowait:1;
unsigned			restore_sigmask:1;
unsigned			memcg_may_oom:1;
unsigned			memcg_kmem_skip_account:1;
unsigned			brk_randomized:1;
	/* disallow userland-initiated cgroup migration */
unsigned			no_cgroup_migration:1;

unsigned long			atomic_flags; /* Flags requiring atomic access. */

struct restart_block		restart_block;

pid_t				pid;
pid_t				tgid;

	/* Canary value for the -fstack-protector GCC feature: */
unsigned long			stack_canary;
         * Pointers to the (original) parent process, youngest child, younger sibling,
         * older sibling, respectively.  (p->father can be replaced with
         * p->real_parent->pid)

	/* Real parent process: */
struct task_struct __rcu	*real_parent;

	/* Recipient of SIGCHLD, wait4() reports: */
struct task_struct __rcu	*parent;

         * Children/sibling form the list of natural children:
struct list_head		children;
struct list_head		sibling;
struct task_struct		*group_leader;

         * 'ptraced' is the list of tasks this task is using ptrace() on.
         * This includes both natural children and PTRACE_ATTACH targets.
         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
struct list_head		ptraced;
struct list_head		ptrace_entry;

	/* PID/PID hash table linkage. */
struct pid_link			pids[PIDTYPE_MAX];
struct list_head		thread_group;
struct list_head		thread_node;

struct completion		*vfork_done;

int __user			*set_child_tid;

int __user			*clear_child_tid;

u64				utime;
u64				stime;
u64				utimescaled;
u64				stimescaled;
u64				gtime;
struct prev_cputime		prev_cputime;
seqcount_t			vtime_seqcount;
unsigned long long		vtime_snap;
	enum {
		/* Task is sleeping or running in a CPU with VTIME inactive: */
		/* Task runs in userspace in a CPU with VTIME active: */
		/* Task runs in kernelspace in a CPU with VTIME active: */

atomic_t			tick_dep_mask;
	/* Context switch counts: */
unsigned long			nvcsw;
unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
u64				start_time;

	/* Boot based time in nsecs: */
u64				real_start_time;

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
unsigned long			min_flt;
unsigned long			maj_flt;

struct task_cputime		cputime_expires;
struct list_head		cpu_timers[3];

	/* Process credentials: */

	/* Tracer's credentials at attach: */
const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
const struct cred __rcu		*cred;

         * executable name, excluding path.
         * - normally initialized setup_new_exec()
         * - access it with [gs]et_task_comm()
         * - lock it with task_lock()
char				comm[TASK_COMM_LEN];

struct nameidata		*nameidata;

struct sysv_sem			sysvsem;
struct sysv_shm			sysvshm;
unsigned long			last_switch_count;
	/* Filesystem information: */
struct fs_struct		*fs;

	/* Open file information: */
struct files_struct		*files;

	/* Namespaces: */
struct nsproxy			*nsproxy;

	/* Signal handlers: */
struct signal_struct		*signal;
struct sighand_struct		*sighand;
sigset_t			blocked;
sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
sigset_t			saved_sigmask;
struct sigpending		pending;
unsigned long			sas_ss_sp;
size_t				sas_ss_size;
unsigned int			sas_ss_flags;

struct callback_head		*task_works;

struct audit_context		*audit_context;
kuid_t				loginuid;
unsigned int			sessionid;
struct seccomp			seccomp;

	/* Thread group tracking: */
u32				parent_exec_id;
u32				self_exec_id;

	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
spinlock_t			alloc_lock;

	/* Protection of the PI data structures: */
raw_spinlock_t			pi_lock;

struct wake_q_node		wake_q;

	/* PI waiters blocked on a rt_mutex held by this task: */
struct rb_root			pi_waiters;
struct rb_node			*pi_waiters_leftmost;
	/* Updated under owner's pi_lock and rq lock */
struct task_struct		*pi_top_task;
	/* Deadlock detection and priority inheritance handling: */
struct rt_mutex_waiter		*pi_blocked_on;

	/* Mutex deadlock detection: */
struct mutex_waiter		*blocked_on;

unsigned int			irq_events;
unsigned long			hardirq_enable_ip;
unsigned long			hardirq_disable_ip;
unsigned int			hardirq_enable_event;
unsigned int			hardirq_disable_event;
int				hardirqs_enabled;
int				hardirq_context;
unsigned long			softirq_disable_ip;
unsigned long			softirq_enable_ip;
unsigned int			softirq_disable_event;
unsigned int			softirq_enable_event;
int				softirqs_enabled;
int				softirq_context;


# define MAX_LOCK_DEPTH			48UL
u64				curr_chain_key;
int				lockdep_depth;
unsigned int			lockdep_recursion;
struct held_lock		held_locks[MAX_LOCK_DEPTH];
gfp_t				lockdep_reclaim_gfp;

unsigned int			in_ubsan;

	/* Journalling filesystem info: */
void				*journal_info;

	/* Stacked block device info: */
struct bio_list			*bio_list;

	/* Stack plugging: */
struct blk_plug			*plug;

	/* VM state: */
struct reclaim_state		*reclaim_state;

struct backing_dev_info		*backing_dev_info;

struct io_context		*io_context;

	/* Ptrace state: */
unsigned long			ptrace_message;
siginfo_t			*last_siginfo;

struct task_io_accounting	ioac;
	/* Accumulated RSS usage: */
u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
u64				acct_vm_mem1;
	/* stime + utime since last update: */
u64				acct_timexpd;
	/* Protected by ->alloc_lock: */
nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
seqcount_t			mems_allowed_seq;
int				cpuset_mem_spread_rotor;
int				cpuset_slab_spread_rotor;
	/* Control Group info protected by css_set_lock: */
struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head		cg_list;
int				closid;
struct robust_list_head __user	*robust_list;
struct compat_robust_list_head __user *compat_robust_list;
struct list_head		pi_state_list;
struct futex_pi_state		*pi_state_cache;
struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
struct mutex			perf_event_mutex;
struct list_head		perf_event_list;
unsigned long			preempt_disable_ip;
	/* Protected by alloc_lock: */
struct mempolicy		*mempolicy;
short				il_next;
short				pref_node_fork;
int				numa_scan_seq;
unsigned int			numa_scan_period;
unsigned int			numa_scan_period_max;
int				numa_preferred_nid;
unsigned long			numa_migrate_retry;
	/* Migration stamp: */
u64				node_stamp;
u64				last_task_numa_placement;
u64				last_sum_exec_runtime;
struct callback_head		numa_work;

struct list_head		numa_entry;
struct numa_group		*numa_group;

         * numa_faults is an array split into four regions:
         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
         * in this precise order.
         * faults_memory: Exponential decaying average of faults on a per-node
         * basis. Scheduling placement decisions are made based on these
         * counts. The values remain static for the duration of a PTE scan.
         * faults_cpu: Track the nodes the process was running on when a NUMA
         * hinting fault was incurred.
         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
         * during the current scan window. When the scan completes, the counts
         * in faults_memory and faults_cpu decay and these values are copied.
unsigned long			*numa_faults;
unsigned long			total_numa_faults;

         * numa_faults_locality tracks if faults recorded during the last
         * scan window were remote/local or failed to migrate. The task scan
         * period is adapted based on the locality of the faults with different
         * weights depending on whether they were shared or private faults
unsigned long			numa_faults_locality[3];

unsigned long			numa_pages_migrated;

struct tlbflush_unmap_batch	tlb_ubc;

struct rcu_head			rcu;

	/* Cache last used pipe for splice(): */
struct pipe_inode_info		*splice_pipe;

struct page_frag		task_frag;

struct task_delay_info		*delays;

int				make_it_fail;
         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
         * balance_dirty_pages() for a dirty throttling pause:
int				nr_dirtied;
int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
unsigned long			dirty_paused_when;

int				latency_record_count;
struct latency_record		latency_record[LT_SAVECOUNT];
         * Time slack values; these are used to round up poll() and
         * select() etc timeout values. These are in nanoseconds.
u64				timer_slack_ns;
u64				default_timer_slack_ns;

unsigned int			kasan_depth;

	/* Index of current stored address in ret_stack: */
int				curr_ret_stack;

	/* Stack of return addresses for return function tracing: */
struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
unsigned long long		ftrace_timestamp;

         * Number of functions that haven't been traced
         * because of depth overrun:
atomic_t			trace_overrun;

	/* Pause tracing: */
atomic_t			tracing_graph_pause;

	/* State flags for use by tracers: */
unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
unsigned long			trace_recursion;
#endif /* CONFIG_TRACING */

	/* Coverage collection mode enabled for this task (0 if disabled): */
enum kcov_mode			kcov_mode;

	/* Size of the kcov_area: */
unsigned int			kcov_size;

	/* Buffer for coverage collection: */
void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
struct kcov			*kcov;

struct mem_cgroup		*memcg_in_oom;
gfp_t				memcg_oom_gfp_mask;
int				memcg_oom_order;

	/* Number of pages to reclaim on returning to userland: */
unsigned int			memcg_nr_pages_over_high;

struct uprobe_task		*utask;
unsigned int			sequential_io;
unsigned int			sequential_io_avg;
unsigned long			task_state_change;
int				pagefault_disabled;
struct task_struct		*oom_reaper_list;
struct vm_struct		*stack_vm_area;
	/* A live task holds one reference: */
atomic_t			stack_refcount;
int patch_state;
	/* Used by LSM modules for access restriction: */
void				*security;
	/* CPU-specific state of this task: */
struct thread_struct		thread;

         * WARNING: on x86, 'thread_struct' contains a variable-sized
         * structure.  It *MUST* be at the end of 'task_struct'.
         * Do not put anything below here!

static inline struct pid *task_pid(struct task_struct *task) { return task->pids[PIDTYPE_PID].pid; }


Eric W. Biedermann24100.00%1100.00%

static inline struct pid *task_tgid(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PID].pid; }


Eric W. Biedermann26100.00%1100.00%

/* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */
static inline struct pid *task_pgrp(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PGID].pid; }


Eric W. Biedermann26100.00%1100.00%

static inline struct pid *task_session(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_SID].pid; }


Eric W. Biedermann26100.00%1100.00%

/* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * set_task_vxid() : assigns a virtual id to a task; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; }


Pavel Emelyanov17100.00%1100.00%

static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); }


Oleg Nesterov1451.85%150.00%
Pavel Emelyanov1348.15%150.00%

static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); }


Pavel Emelyanov1777.27%150.00%
Oleg Nesterov522.73%150.00%

static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; }


Pavel Emelyanov17100.00%1100.00%

extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return pid_vnr(task_tgid(tsk)); }


Pavel Emelyanov21100.00%1100.00%

/** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */
static inline int pid_alive(const struct task_struct *