cregit-Linux how code gets into the kernel

Release 4.12 include/uapi/linux/perf_event.h

/*
 * Performance events:
 *
 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
 *
 * Data type definitions, declarations, prototypes.
 *
 *    Started by: Thomas Gleixner and Ingo Molnar
 *
 * For licencing details see kernel-base/COPYING
 */
#ifndef _UAPI_LINUX_PERF_EVENT_H

#define _UAPI_LINUX_PERF_EVENT_H

#include <linux/types.h>
#include <linux/ioctl.h>
#include <asm/byteorder.h>

/*
 * User-space ABI bits:
 */

/*
 * attr.type
 */

enum perf_type_id {
	
PERF_TYPE_HARDWARE			= 0,
	
PERF_TYPE_SOFTWARE			= 1,
	
PERF_TYPE_TRACEPOINT			= 2,
	
PERF_TYPE_HW_CACHE			= 3,
	
PERF_TYPE_RAW				= 4,
	
PERF_TYPE_BREAKPOINT			= 5,

	
PERF_TYPE_MAX,				/* non-ABI */
};

/*
 * Generalized performance event event_id types, used by the
 * attr.event_id parameter of the sys_perf_event_open()
 * syscall:
 */

enum perf_hw_id {
	/*
         * Common hardware events, generalized by the kernel:
         */
	
PERF_COUNT_HW_CPU_CYCLES		= 0,
	
PERF_COUNT_HW_INSTRUCTIONS		= 1,
	
PERF_COUNT_HW_CACHE_REFERENCES		= 2,
	
PERF_COUNT_HW_CACHE_MISSES		= 3,
	
PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
	
PERF_COUNT_HW_BRANCH_MISSES		= 5,
	
PERF_COUNT_HW_BUS_CYCLES		= 6,
	
PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
	
PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
	
PERF_COUNT_HW_REF_CPU_CYCLES		= 9,

	
PERF_COUNT_HW_MAX,			/* non-ABI */
};

/*
 * Generalized hardware cache events:
 *
 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
 *       { read, write, prefetch } x
 *       { accesses, misses }
 */

enum perf_hw_cache_id {
	
PERF_COUNT_HW_CACHE_L1D			= 0,
	
PERF_COUNT_HW_CACHE_L1I			= 1,
	
PERF_COUNT_HW_CACHE_LL			= 2,
	
PERF_COUNT_HW_CACHE_DTLB		= 3,
	
PERF_COUNT_HW_CACHE_ITLB		= 4,
	
PERF_COUNT_HW_CACHE_BPU			= 5,
	
PERF_COUNT_HW_CACHE_NODE		= 6,

	
PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
};


enum perf_hw_cache_op_id {
	
PERF_COUNT_HW_CACHE_OP_READ		= 0,
	
PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
	
PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,

	
PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
};


enum perf_hw_cache_op_result_id {
	
PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
	
PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,

	
PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
};

/*
 * Special "software" events provided by the kernel, even if the hardware
 * does not support performance events. These events measure various
 * physical and sw events of the kernel (and allow the profiling of them as
 * well):
 */

enum perf_sw_ids {
	
PERF_COUNT_SW_CPU_CLOCK			= 0,
	
PERF_COUNT_SW_TASK_CLOCK		= 1,
	
PERF_COUNT_SW_PAGE_FAULTS		= 2,
	
PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
	
PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
	
PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
	
PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
	
PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
	
PERF_COUNT_SW_EMULATION_FAULTS		= 8,
	
PERF_COUNT_SW_DUMMY			= 9,
	
PERF_COUNT_SW_BPF_OUTPUT		= 10,

	
PERF_COUNT_SW_MAX,			/* non-ABI */
};

/*
 * Bits that can be set in attr.sample_type to request information
 * in the overflow packets.
 */

enum perf_event_sample_format {
	
PERF_SAMPLE_IP				= 1U << 0,
	
PERF_SAMPLE_TID				= 1U << 1,
	
PERF_SAMPLE_TIME			= 1U << 2,
	
PERF_SAMPLE_ADDR			= 1U << 3,
	
PERF_SAMPLE_READ			= 1U << 4,
	
PERF_SAMPLE_CALLCHAIN			= 1U << 5,
	
PERF_SAMPLE_ID				= 1U << 6,
	
PERF_SAMPLE_CPU				= 1U << 7,
	
PERF_SAMPLE_PERIOD			= 1U << 8,
	
PERF_SAMPLE_STREAM_ID			= 1U << 9,
	
PERF_SAMPLE_RAW				= 1U << 10,
	
PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
	
PERF_SAMPLE_REGS_USER			= 1U << 12,
	
PERF_SAMPLE_STACK_USER			= 1U << 13,
	
PERF_SAMPLE_WEIGHT			= 1U << 14,
	
PERF_SAMPLE_DATA_SRC			= 1U << 15,
	
PERF_SAMPLE_IDENTIFIER			= 1U << 16,
	
PERF_SAMPLE_TRANSACTION			= 1U << 17,
	
PERF_SAMPLE_REGS_INTR			= 1U << 18,

	
PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
};

/*
 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
 *
 * If the user does not pass priv level information via branch_sample_type,
 * the kernel uses the event's priv level. Branch and event priv levels do
 * not have to match. Branch priv level is checked for permissions.
 *
 * The branch types can be combined, however BRANCH_ANY covers all types
 * of branches and therefore it supersedes all the other types.
 */

enum perf_branch_sample_type_shift {
	
PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
	
PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
	
PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */

	
PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
	
PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
	
PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
	
PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
	
PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
	
PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
	
PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
	
PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */

	
PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
	
PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
	
PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */

	
PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
	
PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */

	
PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
};


enum perf_branch_sample_type {
	
PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
	
PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
	
PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,

	
PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
	
PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
	
PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
	
PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
	
PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
	
PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
	
PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
	
PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,

	
PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
	
PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
	
PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,

	
PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
	
PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,

	
PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
};


#define PERF_SAMPLE_BRANCH_PLM_ALL \
	(PERF_SAMPLE_BRANCH_USER|\
         PERF_SAMPLE_BRANCH_KERNEL|\
         PERF_SAMPLE_BRANCH_HV)

/*
 * Values to determine ABI of the registers dump.
 */

enum perf_sample_regs_abi {
	
PERF_SAMPLE_REGS_ABI_NONE	= 0,
	
PERF_SAMPLE_REGS_ABI_32		= 1,
	
PERF_SAMPLE_REGS_ABI_64		= 2,
};

/*
 * Values for the memory transaction event qualifier, mostly for
 * abort events. Multiple bits can be set.
 */
enum {
	
PERF_TXN_ELISION        = (1 << 0), /* From elision */
	
PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
	
PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
	
PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
	
PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
	
PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
	
PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
	
PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */

	
PERF_TXN_MAX	        = (1 << 8), /* non-ABI */

	/* bits 32..63 are reserved for the abort code */

	
PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
	
PERF_TXN_ABORT_SHIFT = 32,
};

/*
 * The format of the data returned by read() on a perf event fd,
 * as specified by attr.read_format:
 *
 * struct read_format {
 *      { u64           value;
 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 *        { u64         id;           } && PERF_FORMAT_ID
 *      } && !PERF_FORMAT_GROUP
 *
 *      { u64           nr;
 *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 *        { u64         value;
 *          { u64       id;           } && PERF_FORMAT_ID
 *        }             cntr[nr];
 *      } && PERF_FORMAT_GROUP
 * };
 */

enum perf_event_read_format {
	
PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
	
PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
	
PERF_FORMAT_ID				= 1U << 2,
	
PERF_FORMAT_GROUP			= 1U << 3,

	
PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
};


#define PERF_ATTR_SIZE_VER0	64	
/* sizeof first published struct */

#define PERF_ATTR_SIZE_VER1	72	
/* add: config2 */

#define PERF_ATTR_SIZE_VER2	80	
/* add: branch_sample_type */

#define PERF_ATTR_SIZE_VER3	96	
/* add: sample_regs_user */
					/* add: sample_stack_user */

#define PERF_ATTR_SIZE_VER4	104	
/* add: sample_regs_intr */

#define PERF_ATTR_SIZE_VER5	112	
/* add: aux_watermark */

/*
 * Hardware event_id to monitor via a performance monitoring event:
 *
 * @sample_max_stack: Max number of frame pointers in a callchain,
 *                    should be < /proc/sys/kernel/perf_event_max_stack
 */

struct perf_event_attr {

	/*
         * Major type: hardware/software/tracepoint/etc.
         */
	
__u32			type;

	/*
         * Size of the attr structure, for fwd/bwd compat.
         */
	
__u32			size;

	/*
         * Type specific configuration information.
         */
	
__u64			config;

	union {
		
__u64		sample_period;
		
__u64		sample_freq;
	};

	
__u64			sample_type;
	
__u64			read_format;

	
__u64			disabled       :  1, /* off by default        */
				
inherit	       :  1, /* children inherit it   */
				
pinned	       :  1, /* must always be on PMU */
				
exclusive      :  1, /* only group on PMU     */
				
exclude_user   :  1, /* don't count user      */
				
exclude_kernel :  1, /* ditto kernel          */
				
exclude_hv     :  1, /* ditto hypervisor      */
				
exclude_idle   :  1, /* don't count when idle */
				
mmap           :  1, /* include mmap data     */
				
comm	       :  1, /* include comm data     */
				
freq           :  1, /* use freq, not period  */
				
inherit_stat   :  1, /* per task counts       */
				
enable_on_exec :  1, /* next exec enables     */
				
task           :  1, /* trace fork/exit       */
				
watermark      :  1, /* wakeup_watermark      */
				/*
                                 * precise_ip:
                                 *
                                 *  0 - SAMPLE_IP can have arbitrary skid
                                 *  1 - SAMPLE_IP must have constant skid
                                 *  2 - SAMPLE_IP requested to have 0 skid
                                 *  3 - SAMPLE_IP must have 0 skid
                                 *
                                 *  See also PERF_RECORD_MISC_EXACT_IP
                                 */
				
precise_ip     :  2, /* skid constraint       */
				
mmap_data      :  1, /* non-exec mmap data    */
				
sample_id_all  :  1, /* sample_type all events */

				
exclude_host   :  1, /* don't count in host   */
				
exclude_guest  :  1, /* don't count in guest  */

				
exclude_callchain_kernel : 1, /* exclude kernel callchains */
				
exclude_callchain_user   : 1, /* exclude user callchains */
				
mmap2          :  1, /* include mmap with inode data     */
				
comm_exec      :  1, /* flag comm events that are due to an exec */
				
use_clockid    :  1, /* use @clockid for time fields */
				
context_switch :  1, /* context switch data */
				
write_backward :  1, /* Write ring buffer from end to beginning */
				
namespaces     :  1, /* include namespaces data */
				
__reserved_1   : 35;

	union {
		
__u32		wakeup_events;	  /* wakeup every n events */
		
__u32		wakeup_watermark; /* bytes before wakeup   */
	};

	
__u32			bp_type;
	union {
		
__u64		bp_addr;
		
__u64		config1; /* extension of config */
	};
	union {
		
__u64		bp_len;
		
__u64		config2; /* extension of config1 */
	};
	
__u64	branch_sample_type; /* enum perf_branch_sample_type */

	/*
         * Defines set of user regs to dump on samples.
         * See asm/perf_regs.h for details.
         */
	
__u64	sample_regs_user;

	/*
         * Defines size of the user stack to dump on samples.
         */
	
__u32	sample_stack_user;

	
__s32	clockid;
	/*
         * Defines set of regs to dump for each sample
         * state captured on:
         *  - precise = 0: PMU interrupt
         *  - precise > 0: sampled instruction
         *
         * See asm/perf_regs.h for details.
         */
	
__u64	sample_regs_intr;

	/*
         * Wakeup watermark for AUX area
         */
	
__u32	aux_watermark;
	
__u16	sample_max_stack;
	
__u16	__reserved_2;	/* align to __u64 */
};


#define perf_flags(attr)	(*(&(attr)->read_format + 1))

/*
 * Ioctls that can be done on a perf event fd:
 */

#define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)

#define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)

#define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)

#define PERF_EVENT_IOC_RESET		_IO ('$', 3)

#define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)

#define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)

#define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)

#define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)

#define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)

#define PERF_EVENT_IOC_PAUSE_OUTPUT	_IOW('$', 9, __u32)


enum perf_event_ioc_flags {
	
PERF_IOC_FLAG_GROUP		= 1U << 0,
};

/*
 * Structure of the page that can be mapped via mmap
 */

struct perf_event_mmap_page {
	
__u32	version;		/* version number of this structure */
	
__u32	compat_version;		/* lowest version this is compat with */

	/*
         * Bits needed to read the hw events in user-space.
         *
         *   u32 seq, time_mult, time_shift, index, width;
         *   u64 count, enabled, running;
         *   u64 cyc, time_offset;
         *   s64 pmc = 0;
         *
         *   do {
         *     seq = pc->lock;
         *     barrier()
         *
         *     enabled = pc->time_enabled;
         *     running = pc->time_running;
         *
         *     if (pc->cap_usr_time && enabled != running) {
         *       cyc = rdtsc();
         *       time_offset = pc->time_offset;
         *       time_mult   = pc->time_mult;
         *       time_shift  = pc->time_shift;
         *     }
         *
         *     index = pc->index;
         *     count = pc->offset;
         *     if (pc->cap_user_rdpmc && index) {
         *       width = pc->pmc_width;
         *       pmc = rdpmc(index - 1);
         *     }
         *
         *     barrier();
         *   } while (pc->lock != seq);
         *
         * NOTE: for obvious reason this only works on self-monitoring
         *       processes.
         */
	
__u32	lock;			/* seqlock for synchronization */
	
__u32	index;			/* hardware event identifier */
	
__s64	offset;			/* add to hardware event value */
	
__u64	time_enabled;		/* time event active */
	
__u64	time_running;		/* time event on cpu */
	union {
		
__u64	capabilities;
		struct {
			
__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
				
cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */

				
cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
				
cap_user_time		: 1, /* The time_* fields are used */
				
cap_user_time_zero	: 1, /* The time_zero field is used */
				
cap_____res		: 59;
		};
	};

	/*
         * If cap_user_rdpmc this field provides the bit-width of the value
         * read using the rdpmc() or equivalent instruction. This can be used
         * to sign extend the result like:
         *
         *   pmc <<= 64 - width;
         *   pmc >>= 64 - width; // signed shift right
         *   count += pmc;
         */
	
__u16	pmc_width;

	/*
         * If cap_usr_time the below fields can be used to compute the time
         * delta since time_enabled (in ns) using rdtsc or similar.
         *
         *   u64 quot, rem;
         *   u64 delta;
         *
         *   quot = (cyc >> time_shift);
         *   rem = cyc & (((u64)1 << time_shift) - 1);
         *   delta = time_offset + quot * time_mult +
         *              ((rem * time_mult) >> time_shift);
         *
         * Where time_offset,time_mult,time_shift and cyc are read in the
         * seqcount loop described above. This delta can then be added to
         * enabled and possible running (if index), improving the scaling:
         *
         *   enabled += delta;
         *   if (index)
         *     running += delta;
         *
         *   quot = count / running;
         *   rem  = count % running;
         *   count = quot * enabled + (rem * enabled) / running;
         */
	
__u16	time_shift;
	
__u32	time_mult;
	
__u64	time_offset;
	/*
         * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
         * from sample timestamps.
         *
         *   time = timestamp - time_zero;
         *   quot = time / time_mult;
         *   rem  = time % time_mult;
         *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
         *
         * And vice versa:
         *
         *   quot = cyc >> time_shift;
         *   rem  = cyc & (((u64)1 << time_shift) - 1);
         *   timestamp = time_zero + quot * time_mult +
         *               ((rem * time_mult) >> time_shift);
         */
	
__u64	time_zero;
	
__u32	size;			/* Header size up to __reserved[] fields. */

		/*
                 * Hole for extension of the self monitor capabilities
                 */

	
__u8	__reserved[118*8+4];	/* align to 1k. */

	/*
         * Control data for the mmap() data buffer.
         *
         * User-space reading the @data_head value should issue an smp_rmb(),
         * after reading this value.
         *
         * When the mapping is PROT_WRITE the @data_tail value should be
         * written by userspace to reflect the last read data, after issueing
         * an smp_mb() to separate the data read from the ->data_tail store.
         * In this case the kernel will not over-write unread data.
         *
         * See perf_output_put_handle() for the data ordering.
         *
         * data_{offset,size} indicate the location and size of the perf record
         * buffer within the mmapped area.
         */
	
__u64   data_head;		/* head in the data section */
	
__u64	data_tail;		/* user-space written tail */
	
__u64	data_offset;		/* where the buffer starts */
	
__u64	data_size;		/* data buffer size */

	/*
         * AUX area is defined by aux_{offset,size} fields that should be set
         * by the userspace, so that
         *
         *   aux_offset >= data_offset + data_size
         *
         * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
         *
         * Ring buffer pointers aux_{head,tail} have the same semantics as
         * data_{head,tail} and same ordering rules apply.
         */
	
__u64	aux_head;
	
__u64	aux_tail;
	
__u64	aux_offset;
	
__u64	aux_size;
};


#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)

#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)

#define PERF_RECORD_MISC_KERNEL			(1 << 0)

#define PERF_RECORD_MISC_USER			(2 << 0)

#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)

#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)

#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)

/*
 * Indicates that /proc/PID/maps parsing are truncated by time out.
 */

#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
/*
 * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
 * different events so can reuse the same bit position.
 * Ditto PERF_RECORD_MISC_SWITCH_OUT.
 */

#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)

#define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)

#define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
/*
 * Indicates that the content of PERF_SAMPLE_IP points to
 * the actual instruction that triggered the event. See also
 * perf_event_attr::precise_ip.
 */

#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
/*
 * Reserve the last bit to indicate some extended misc field
 */

#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)


struct perf_event_header {
	
__u32	type;
	
__u16	misc;
	
__u16	size;
};


struct perf_ns_link_info {
	
__u64	dev;
	
__u64	ino;
};

enum {
	
NET_NS_INDEX		= 0,
	
UTS_NS_INDEX		= 1,
	
IPC_NS_INDEX		= 2,
	
PID_NS_INDEX		= 3,
	
USER_NS_INDEX		= 4,
	
MNT_NS_INDEX		= 5,
	
CGROUP_NS_INDEX		= 6,

	
NR_NAMESPACES,		/* number of available namespaces */
};


enum perf_event_type {

	/*
         * If perf_event_attr.sample_id_all is set then all event types will
         * have the sample_type selected fields related to where/when
         * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
         * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
         * just after the perf_event_header and the fields already present for
         * the existing fields, i.e. at the end of the payload. That way a newer
         * perf.data file will be supported by older perf tools, with these new
         * optional fields being ignored.
         *
         * struct sample_id {
         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
         *      { u64                   time;     } && PERF_SAMPLE_TIME
         *      { u64                   id;       } && PERF_SAMPLE_ID
         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
         * } && perf_event_attr::sample_id_all
         *
         * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
         * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
         * relative to header.size.
         */

	/*
         * The MMAP events record the PROT_EXEC mappings so that we can
         * correlate userspace IPs to code. They have the following structure:
         *
         * struct {
         *      struct perf_event_header        header;
         *
         *      u32                             pid, tid;
         *      u64                             addr;
         *      u64                             len;
         *      u64                             pgoff;
         *      char                            filename[];
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_MMAP			= 1,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u64                             id;
         *      u64                             lost;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_LOST			= 2,

	/*
         * struct {
         *      struct perf_event_header        header;
         *
         *      u32                             pid, tid;
         *      char                            comm[];
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_COMM			= 3,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u32                             pid, ppid;
         *      u32                             tid, ptid;
         *      u64                             time;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_EXIT			= 4,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u64                             time;
         *      u64                             id;
         *      u64                             stream_id;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_THROTTLE			= 5,
	
PERF_RECORD_UNTHROTTLE			= 6,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u32                             pid, ppid;
         *      u32                             tid, ptid;
         *      u64                             time;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_FORK			= 7,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u32                             pid, tid;
         *
         *      struct read_format              values;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_READ			= 8,

	/*
         * struct {
         *      struct perf_event_header        header;
         *
         *      #
         *      # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
         *      # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
         *      # is fixed relative to header.
         *      #
         *
         *      { u64                   id;       } && PERF_SAMPLE_IDENTIFIER
         *      { u64                   ip;       } && PERF_SAMPLE_IP
         *      { u32                   pid, tid; } && PERF_SAMPLE_TID
         *      { u64                   time;     } && PERF_SAMPLE_TIME
         *      { u64                   addr;     } && PERF_SAMPLE_ADDR
         *      { u64                   id;       } && PERF_SAMPLE_ID
         *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
         *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
         *      { u64                   period;   } && PERF_SAMPLE_PERIOD
         *
         *      { struct read_format    values;   } && PERF_SAMPLE_READ
         *
         *      { u64                   nr,
         *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
         *
         *      #
         *      # The RAW record below is opaque data wrt the ABI
         *      #
         *      # That is, the ABI doesn't make any promises wrt to
         *      # the stability of its content, it may vary depending
         *      # on event, hardware, kernel version and phase of
         *      # the moon.
         *      #
         *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
         *      #
         *
         *      { u32                   size;
         *        char                  data[size];}&& PERF_SAMPLE_RAW
         *
         *      { u64                   nr;
         *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
         *
         *      { u64                   abi; # enum perf_sample_regs_abi
         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
         *
         *      { u64                   size;
         *        char                  data[size];
         *        u64                   dyn_size; } && PERF_SAMPLE_STACK_USER
         *
         *      { u64                   weight;   } && PERF_SAMPLE_WEIGHT
         *      { u64                   data_src; } && PERF_SAMPLE_DATA_SRC
         *      { u64                   transaction; } && PERF_SAMPLE_TRANSACTION
         *      { u64                   abi; # enum perf_sample_regs_abi
         *        u64                   regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
         * };
         */
	
PERF_RECORD_SAMPLE			= 9,

	/*
         * The MMAP2 records are an augmented version of MMAP, they add
         * maj, min, ino numbers to be used to uniquely identify each mapping
         *
         * struct {
         *      struct perf_event_header        header;
         *
         *      u32                             pid, tid;
         *      u64                             addr;
         *      u64                             len;
         *      u64                             pgoff;
         *      u32                             maj;
         *      u32                             min;
         *      u64                             ino;
         *      u64                             ino_generation;
         *      u32                             prot, flags;
         *      char                            filename[];
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_MMAP2			= 10,

	/*
         * Records that new data landed in the AUX buffer part.
         *
         * struct {
         *      struct perf_event_header        header;
         *
         *      u64                             aux_offset;
         *      u64                             aux_size;
         *      u64                             flags;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_AUX				= 11,

	/*
         * Indicates that instruction trace has started
         *
         * struct {
         *      struct perf_event_header        header;
         *      u32                             pid;
         *      u32                             tid;
         * };
         */
	
PERF_RECORD_ITRACE_START		= 12,

	/*
         * Records the dropped/lost sample number.
         *
         * struct {
         *      struct perf_event_header        header;
         *
         *      u64                             lost;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_LOST_SAMPLES		= 13,

	/*
         * Records a context switch in or out (flagged by
         * PERF_RECORD_MISC_SWITCH_OUT). See also
         * PERF_RECORD_SWITCH_CPU_WIDE.
         *
         * struct {
         *      struct perf_event_header        header;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_SWITCH			= 14,

	/*
         * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
         * next_prev_tid that are the next (switching out) or previous
         * (switching in) pid/tid.
         *
         * struct {
         *      struct perf_event_header        header;
         *      u32                             next_prev_pid;
         *      u32                             next_prev_tid;
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_SWITCH_CPU_WIDE		= 15,

	/*
         * struct {
         *      struct perf_event_header        header;
         *      u32                             pid;
         *      u32                             tid;
         *      u64                             nr_namespaces;
         *      { u64                           dev, inode; } [nr_namespaces];
         *      struct sample_id                sample_id;
         * };
         */
	
PERF_RECORD_NAMESPACES			= 16,

	
PERF_RECORD_MAX,			/* non-ABI */
};


#define PERF_MAX_STACK_DEPTH		127

#define PERF_MAX_CONTEXTS_PER_STACK	  8


enum perf_callchain_context {
	
PERF_CONTEXT_HV			= (__u64)-32,
	
PERF_CONTEXT_KERNEL		= (__u64)-128,
	
PERF_CONTEXT_USER		= (__u64)-512,

	
PERF_CONTEXT_GUEST		= (__u64)-2048,
	
PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
	
PERF_CONTEXT_GUEST_USER		= (__u64)-2560,

	
PERF_CONTEXT_MAX		= (__u64)-4095,
};

/**
 * PERF_RECORD_AUX::flags bits
 */

#define PERF_AUX_FLAG_TRUNCATED		0x01	
/* record was truncated to fit */

#define PERF_AUX_FLAG_OVERWRITE		0x02	
/* snapshot from overwrite mode */

#define PERF_AUX_FLAG_PARTIAL		0x04	
/* record contains gaps */


#define PERF_FLAG_FD_NO_GROUP		(1UL << 0)

#define PERF_FLAG_FD_OUTPUT		(1UL << 1)

#define PERF_FLAG_PID_CGROUP		(1UL << 2) 
/* pid=cgroup id, per-cpu mode only */

#define PERF_FLAG_FD_CLOEXEC		(1UL << 3) 
/* O_CLOEXEC */

#if defined(__LITTLE_ENDIAN_BITFIELD)

union perf_mem_data_src {
	
__u64 val;
	struct {
		
__u64   mem_op:5,	/* type of opcode */
			
mem_lvl:14,	/* memory hierarchy level */
			
mem_snoop:5,	/* snoop mode */
			
mem_lock:2,	/* lock instr */
			
mem_dtlb:7,	/* tlb access */
			
mem_rsvd:31;
	};
};
#elif defined(__BIG_ENDIAN_BITFIELD)

union perf_mem_data_src {
	
__u64 val;
	struct {
		
__u64	mem_rsvd:31,
			
mem_dtlb:7,	/* tlb access */
			
mem_lock:2,	/* lock instr */
			
mem_snoop:5,	/* snoop mode */
			
mem_lvl:14,	/* memory hierarchy level */
			
mem_op:5;	/* type of opcode */
	};
};
#else
#error "Unknown endianness"
#endif

/* type of opcode (load/store/prefetch,code) */

#define PERF_MEM_OP_NA		0x01 
/* not available */

#define PERF_MEM_OP_LOAD	0x02 
/* load instruction */

#define PERF_MEM_OP_STORE	0x04 
/* store instruction */

#define PERF_MEM_OP_PFETCH	0x08 
/* prefetch */

#define PERF_MEM_OP_EXEC	0x10 
/* code (execution) */

#define PERF_MEM_OP_SHIFT	0

/* memory hierarchy (memory level, hit or miss) */

#define PERF_MEM_LVL_NA		0x01  
/* not available */

#define PERF_MEM_LVL_HIT	0x02  
/* hit level */

#define PERF_MEM_LVL_MISS	0x04  
/* miss level  */

#define PERF_MEM_LVL_L1		0x08  
/* L1 */

#define PERF_MEM_LVL_LFB	0x10  
/* Line Fill Buffer */

#define PERF_MEM_LVL_L2		0x20  
/* L2 */

#define PERF_MEM_LVL_L3		0x40  
/* L3 */

#define PERF_MEM_LVL_LOC_RAM	0x80  
/* Local DRAM */

#define PERF_MEM_LVL_REM_RAM1	0x100 
/* Remote DRAM (1 hop) */

#define PERF_MEM_LVL_REM_RAM2	0x200 
/* Remote DRAM (2 hops) */

#define PERF_MEM_LVL_REM_CCE1	0x400 
/* Remote Cache (1 hop) */

#define PERF_MEM_LVL_REM_CCE2	0x800 
/* Remote Cache (2 hops) */

#define PERF_MEM_LVL_IO		0x1000 
/* I/O memory */

#define PERF_MEM_LVL_UNC	0x2000 
/* Uncached memory */

#define PERF_MEM_LVL_SHIFT	5

/* snoop mode */

#define PERF_MEM_SNOOP_NA	0x01 
/* not available */

#define PERF_MEM_SNOOP_NONE	0x02 
/* no snoop */

#define PERF_MEM_SNOOP_HIT	0x04 
/* snoop hit */

#define PERF_MEM_SNOOP_MISS	0x08 
/* snoop miss */

#define PERF_MEM_SNOOP_HITM	0x10 
/* snoop hit modified */

#define PERF_MEM_SNOOP_SHIFT	19

/* locked instruction */

#define PERF_MEM_LOCK_NA	0x01 
/* not available */

#define PERF_MEM_LOCK_LOCKED	0x02 
/* locked transaction */

#define PERF_MEM_LOCK_SHIFT	24

/* TLB access */

#define PERF_MEM_TLB_NA		0x01 
/* not available */

#define PERF_MEM_TLB_HIT	0x02 
/* hit level */

#define PERF_MEM_TLB_MISS	0x04 
/* miss level */

#define PERF_MEM_TLB_L1		0x08 
/* L1 */

#define PERF_MEM_TLB_L2		0x10 
/* L2 */

#define PERF_MEM_TLB_WK		0x20 
/* Hardware Walker*/

#define PERF_MEM_TLB_OS		0x40 
/* OS fault handler */

#define PERF_MEM_TLB_SHIFT	26


#define PERF_MEM_S(a, s) \
	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)

/*
 * single taken branch record layout:
 *
 *      from: source instruction (may not always be a branch insn)
 *        to: branch target
 *   mispred: branch target was mispredicted
 * predicted: branch target was predicted
 *
 * support for mispred, predicted is optional. In case it
 * is not supported mispred = predicted = 0.
 *
 *     in_tx: running in a hardware transaction
 *     abort: aborting a hardware transaction
 *    cycles: cycles from last branch (or 0 if not supported)
 */

struct perf_branch_entry {
	
__u64	from;
	
__u64	to;
	
__u64	mispred:1,  /* target mispredicted */
		
predicted:1,/* target predicted */
		
in_tx:1,    /* in transaction */
		
abort:1,    /* transaction abort */
		
cycles:16,  /* cycle count to last branch */
		
reserved:44;
};

#endif /* _UAPI_LINUX_PERF_EVENT_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
David Howells93150.76%11.92%
Stéphane Eranian29916.30%713.46%
Andi Kleen1548.40%59.62%
Zheng Yan754.09%11.92%
Peter Zijlstra713.87%815.38%
Sukadev Bhattiprolu613.33%11.92%
Hari Bathini573.11%11.92%
Adrian Hunter522.84%713.46%
Alexander Shishkin472.56%611.54%
Vince Weaver361.96%23.85%
Kan Liang100.55%23.85%
Wang Nan90.49%23.85%
Arnaldo Carvalho de Melo90.49%23.85%
Alexei Starovoitov80.44%23.85%
Anshuman Khandual50.27%11.92%
Yann Droneaud40.22%11.92%
Jiri Olsa30.16%11.92%
Andrew Lutomirski20.11%11.92%
Mike Frysinger10.05%11.92%
Total1834100.00%52100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.