cregit-Linux how code gets into the kernel

Release 4.12 lib/bch.c

Directory: lib
/*
 * Generic binary BCH encoding/decoding library
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Copyright © 2011 Parrot S.A.
 *
 * Author: Ivan Djelic <ivan.djelic@parrot.com>
 *
 * Description:
 *
 * This library provides runtime configurable encoding/decoding of binary
 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
 *
 * Call init_bch to get a pointer to a newly allocated bch_control structure for
 * the given m (Galois field order), t (error correction capability) and
 * (optional) primitive polynomial parameters.
 *
 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
 * Call decode_bch to detect and locate errors in received data.
 *
 * On systems supporting hw BCH features, intermediate results may be provided
 * to decode_bch in order to skip certain steps. See decode_bch() documentation
 * for details.
 *
 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
 * parameters m and t; thus allowing extra compiler optimizations and providing
 * better (up to 2x) encoding performance. Using this option makes sense when
 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
 * on a particular NAND flash device.
 *
 * Algorithmic details:
 *
 * Encoding is performed by processing 32 input bits in parallel, using 4
 * remainder lookup tables.
 *
 * The final stage of decoding involves the following internal steps:
 * a. Syndrome computation
 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
 * c. Error locator root finding (by far the most expensive step)
 *
 * In this implementation, step c is not performed using the usual Chien search.
 * Instead, an alternative approach described in [1] is used. It consists in
 * factoring the error locator polynomial using the Berlekamp Trace algorithm
 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
 * much better performance than Chien search for usual (m,t) values (typically
 * m >= 13, t < 32, see [1]).
 *
 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
 * of characteristic 2, in: Western European Workshop on Research in Cryptology
 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <asm/byteorder.h>
#include <linux/bch.h>

#if defined(CONFIG_BCH_CONST_PARAMS)

#define GF_M(_p)               (CONFIG_BCH_CONST_M)

#define GF_T(_p)               (CONFIG_BCH_CONST_T)

#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
#else

#define GF_M(_p)               ((_p)->m)

#define GF_T(_p)               ((_p)->t)

#define GF_N(_p)               ((_p)->n)
#endif


#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)

#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)

#ifndef dbg

#define dbg(_fmt, args...)     do {} while (0)
#endif

/*
 * represent a polynomial over GF(2^m)
 */

struct gf_poly {
	
unsigned int deg;    /* polynomial degree */
	
unsigned int c[0];   /* polynomial terms */
};

/* given its degree, compute a polynomial size in bytes */

#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))

/* polynomial of degree 1 */

struct gf_poly_deg1 {
	
struct gf_poly poly;
	
unsigned int   c[2];
};

/*
 * same as encode_bch(), but process input data one byte at a time
 */

static void encode_bch_unaligned(struct bch_control *bch, const unsigned char *data, unsigned int len, uint32_t *ecc) { int i; const uint32_t *p; const int l = BCH_ECC_WORDS(bch)-1; while (len--) { p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); for (i = 0; i < l; i++) ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); ecc[l] = (ecc[l] << 8)^(*p); } }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic149100.00%1100.00%
Total149100.00%1100.00%

/* * convert ecc bytes to aligned, zero-padded 32-bit ecc words */
static void load_ecc8(struct bch_control *bch, uint32_t *dst, const uint8_t *src) { uint8_t pad[4] = {0, 0, 0, 0}; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++, src += 4) dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic156100.00%1100.00%
Total156100.00%1100.00%

/* * convert 32-bit ecc words to ecc bytes */
static void store_ecc8(struct bch_control *bch, uint8_t *dst, const uint32_t *src) { uint8_t pad[4]; unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; for (i = 0; i < nwords; i++) { *dst++ = (src[i] >> 24); *dst++ = (src[i] >> 16) & 0xff; *dst++ = (src[i] >> 8) & 0xff; *dst++ = (src[i] >> 0) & 0xff; } pad[0] = (src[nwords] >> 24); pad[1] = (src[nwords] >> 16) & 0xff; pad[2] = (src[nwords] >> 8) & 0xff; pad[3] = (src[nwords] >> 0) & 0xff; memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic190100.00%1100.00%
Total190100.00%1100.00%

/** * encode_bch - calculate BCH ecc parity of data * @bch: BCH control structure * @data: data to encode * @len: data length in bytes * @ecc: ecc parity data, must be initialized by caller * * The @ecc parity array is used both as input and output parameter, in order to * allow incremental computations. It should be of the size indicated by member * @ecc_bytes of @bch, and should be initialized to 0 before the first call. * * The exact number of computed ecc parity bits is given by member @ecc_bits of * @bch; it may be less than m*t for large values of t. */
void encode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, uint8_t *ecc) { const unsigned int l = BCH_ECC_WORDS(bch)-1; unsigned int i, mlen; unsigned long m; uint32_t w, r[l+1]; const uint32_t * const tab0 = bch->mod8_tab; const uint32_t * const tab1 = tab0 + 256*(l+1); const uint32_t * const tab2 = tab1 + 256*(l+1); const uint32_t * const tab3 = tab2 + 256*(l+1); const uint32_t *pdata, *p0, *p1, *p2, *p3; if (ecc) { /* load ecc parity bytes into internal 32-bit buffer */ load_ecc8(bch, bch->ecc_buf, ecc); } else { memset(bch->ecc_buf, 0, sizeof(r)); } /* process first unaligned data bytes */ m = ((unsigned long)data) & 3; if (m) { mlen = (len < (4-m)) ? len : 4-m; encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); data += mlen; len -= mlen; } /* process 32-bit aligned data words */ pdata = (uint32_t *)data; mlen = len/4; data += 4*mlen; len -= 4*mlen; memcpy(r, bch->ecc_buf, sizeof(r)); /* * split each 32-bit word into 4 polynomials of weight 8 as follows: * * 31 ...24 23 ...16 15 ... 8 7 ... 0 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt * tttttttt mod g = r0 (precomputed) * zzzzzzzz 00000000 mod g = r1 (precomputed) * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 */ while (mlen--) { /* input data is read in big-endian format */ w = r[0]^cpu_to_be32(*pdata++); p0 = tab0 + (l+1)*((w >> 0) & 0xff); p1 = tab1 + (l+1)*((w >> 8) & 0xff); p2 = tab2 + (l+1)*((w >> 16) & 0xff); p3 = tab3 + (l+1)*((w >> 24) & 0xff); for (i = 0; i < l; i++) r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; r[l] = p0[l]^p1[l]^p2[l]^p3[l]; } memcpy(bch->ecc_buf, r, sizeof(r)); /* process last unaligned bytes */ if (len) encode_bch_unaligned(bch, data, len, bch->ecc_buf); /* store ecc parity bytes into original parity buffer */ if (ecc) store_ecc8(bch, ecc, bch->ecc_buf); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic485100.00%1100.00%
Total485100.00%1100.00%

EXPORT_SYMBOL_GPL(encode_bch);
static inline int modulo(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); while (v >= n) { v -= n; v = (v & n) + (v >> GF_M(bch)); } return v; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic58100.00%1100.00%
Total58100.00%1100.00%

/* * shorter and faster modulo function, only works when v < 2N. */
static inline int mod_s(struct bch_control *bch, unsigned int v) { const unsigned int n = GF_N(bch); return (v < n) ? v : v-n; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic39100.00%1100.00%
Total39100.00%1100.00%


static inline int deg(unsigned int poly) { /* polynomial degree is the most-significant bit index */ return fls(poly)-1; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic20100.00%1100.00%
Total20100.00%1100.00%


static inline int parity(unsigned int x) { /* * public domain code snippet, lifted from * http://www-graphics.stanford.edu/~seander/bithacks.html */ x ^= x >> 1; x ^= x >> 2; x = (x & 0x11111111U) * 0x11111111U; return (x >> 28) & 1; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic43100.00%1100.00%
Total43100.00%1100.00%

/* Galois field basic operations: multiply, divide, inverse, etc. */
static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, unsigned int b) { return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ bch->a_log_tab[b])] : 0; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic54100.00%1100.00%
Total54100.00%1100.00%


static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) { return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic41100.00%1100.00%
Total41100.00%1100.00%


static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, unsigned int b) { return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ GF_N(bch)-bch->a_log_tab[b])] : 0; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic55100.00%1100.00%
Total55100.00%1100.00%


static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) { return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic35100.00%1100.00%
Total35100.00%1100.00%


static inline unsigned int a_pow(struct bch_control *bch, int i) { return bch->a_pow_tab[modulo(bch, i)]; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic29100.00%1100.00%
Total29100.00%1100.00%


static inline int a_log(struct bch_control *bch, unsigned int x) { return bch->a_log_tab[x]; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic24100.00%1100.00%
Total24100.00%1100.00%


static inline int a_ilog(struct bch_control *bch, unsigned int x) { return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic34100.00%1100.00%
Total34100.00%1100.00%

/* * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t */
static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, unsigned int *syn) { int i, j, s; unsigned int m; uint32_t poly; const int t = GF_T(bch); s = bch->ecc_bits; /* make sure extra bits in last ecc word are cleared */ m = ((unsigned int)s) & 31; if (m) ecc[s/32] &= ~((1u << (32-m))-1); memset(syn, 0, 2*t*sizeof(*syn)); /* compute v(a^j) for j=1 .. 2t-1 */ do { poly = *ecc++; s -= 32; while (poly) { i = deg(poly); for (j = 0; j < 2*t; j += 2) syn[j] ^= a_pow(bch, (j+1)*(i+s)); poly ^= (1 << i); } } while (s > 0); /* v(a^(2j)) = v(a^j)^2 */ for (j = 0; j < t; j++) syn[2*j+1] = gf_sqr(bch, syn[j]); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic218100.00%1100.00%
Total218100.00%1100.00%


static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) { memcpy(dst, src, GF_POLY_SZ(src->deg)); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic30100.00%1100.00%
Total30100.00%1100.00%


static int compute_error_locator_polynomial(struct bch_control *bch, const unsigned int *syn) { const unsigned int t = GF_T(bch); const unsigned int n = GF_N(bch); unsigned int i, j, tmp, l, pd = 1, d = syn[0]; struct gf_poly *elp = bch->elp; struct gf_poly *pelp = bch->poly_2t[0]; struct gf_poly *elp_copy = bch->poly_2t[1]; int k, pp = -1; memset(pelp, 0, GF_POLY_SZ(2*t)); memset(elp, 0, GF_POLY_SZ(2*t)); pelp->deg = 0; pelp->c[0] = 1; elp->deg = 0; elp->c[0] = 1; /* use simplified binary Berlekamp-Massey algorithm */ for (i = 0; (i < t) && (elp->deg <= t); i++) { if (d) { k = 2*i-pp; gf_poly_copy(elp_copy, elp); /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ tmp = a_log(bch, d)+n-a_log(bch, pd); for (j = 0; j <= pelp->deg; j++) { if (pelp->c[j]) { l = a_log(bch, pelp->c[j]); elp->c[j+k] ^= a_pow(bch, tmp+l); } } /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ tmp = pelp->deg+k; if (tmp > elp->deg) { elp->deg = tmp; gf_poly_copy(pelp, elp_copy); pd = d; pp = 2*i; } } /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ if (i < t-1) { d = syn[2*i+2]; for (j = 1; j <= elp->deg; j++) d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); } } dbg("elp=%s\n", gf_poly_str(elp)); return (elp->deg > t) ? -1 : (int)elp->deg; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic416100.00%1100.00%
Total416100.00%1100.00%

/* * solve a m x m linear system in GF(2) with an expected number of solutions, * and return the number of found solutions */
static int solve_linear_system(struct bch_control *bch, unsigned int *rows, unsigned int *sol, int nsol) { const int m = GF_M(bch); unsigned int tmp, mask; int rem, c, r, p, k, param[m]; k = 0; mask = 1 << m; /* Gaussian elimination */ for (c = 0; c < m; c++) { rem = 0; p = c-k; /* find suitable row for elimination */ for (r = p; r < m; r++) { if (rows[r] & mask) { if (r != p) { tmp = rows[r]; rows[r] = rows[p]; rows[p] = tmp; } rem = r+1; break; } } if (rem) { /* perform elimination on remaining rows */ tmp = rows[p]; for (r = rem; r < m; r++) { if (rows[r] & mask) rows[r] ^= tmp; } } else { /* elimination not needed, store defective row index */ param[k++] = c; } mask >>= 1; } /* rewrite system, inserting fake parameter rows */ if (k > 0) { p = k; for (r = m-1; r >= 0; r--) { if ((r > m-1-k) && rows[r]) /* system has no solution */ return 0; rows[r] = (p && (r == param[p-1])) ? p--, 1u << (m-r) : rows[r-p]; } } if (nsol != (1 << k)) /* unexpected number of solutions */ return 0; for (p = 0; p < nsol; p++) { /* set parameters for p-th solution */ for (c = 0; c < k; c++) rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); /* compute unique solution */ tmp = 0; for (r = m-1; r >= 0; r--) { mask = rows[r] & (tmp|1); tmp |= parity(mask) << (m-r); } sol[p] = tmp >> 1; } return nsol; }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic441100.00%1100.00%
Total441100.00%1100.00%

/* * this function builds and solves a linear system for finding roots of a degree * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). */
static int find_affine4_roots(struct bch_control *bch, unsigned int a, unsigned int b, unsigned int c, unsigned int *roots) { int i, j, k; const int m = GF_M(bch); unsigned int mask = 0xff, t, rows[16] = {0,}; j = a_log(bch, b); k = a_log(bch, a); rows[0] = c; /* buid linear system to solve X^4+aX^2+bX+c = 0 */ for (i = 0; i < m; i++) { rows[i+1] = bch->a_pow_tab[4*i]^ (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); j++; k += 2; } /* * transpose 16x16 matrix before passing it to linear solver * warning: this code assumes m < 16 */ for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { for (k = 0; k < 16; k = (k+j+1) & ~j) { t = ((rows[k] >> j)^rows[k+j]) & mask; rows[k] ^= (t << j); rows[k+j] ^= t; } } return solve_linear_system(bch, rows, roots, 4); }

Contributors

PersonTokensPropCommitsCommitProp
Ivan Djelic265100.00%1100.00%
Total265100.00%1100.00%

/* * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) */
static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, unsigned int *roots) { int n = 0; if (poly->c[0]) /* poly[X] = bX+c with c!=0, root=c/b */ roots[n++