cregit-Linux how code gets into the kernel

Release 4.12 lib/zlib_deflate/deftree.c

Directory: lib/zlib_deflate
/* +++ trees.c */
/* trees.c -- output deflated data using Huffman coding
 * Copyright (C) 1995-1996 Jean-loup Gailly
 * For conditions of distribution and use, see copyright notice in zlib.h 
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process uses several Huffman trees. The more
 *      common source values are represented by shorter bit sequences.
 *
 *      Each code tree is stored in a compressed form which is itself
 * a Huffman encoding of the lengths of all the code strings (in
 * ascending order by source values).  The actual code strings are
 * reconstructed from the lengths in the inflate process, as described
 * in the deflate specification.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 *
 *      Storer, James A.
 *          Data Compression:  Methods and Theory, pp. 49-50.
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 *
 *      Sedgewick, R.
 *          Algorithms, p290.
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 */

/* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */

/* #include "deflate.h" */

#include <linux/zutil.h>
#include <linux/bitrev.h>
#include "defutil.h"

#ifdef DEBUG_ZLIB
#  include <ctype.h>
#endif

/* ===========================================================================
 * Constants
 */


#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */


#define END_BLOCK 256
/* end of block literal code */


#define REP_3_6      16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */


#define REPZ_3_10    17
/* repeat a zero length 3-10 times  (3 bits of repeat count) */


#define REPZ_11_138  18
/* repeat a zero length 11-138 times  (7 bits of repeat count) */


static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};


static const int extra_dbits[D_CODES] /* extra bits for each distance code */
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};


static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};


static const uch bl_order[BL_CODES]
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */


#define Buf_size (8 * 2*sizeof(char))
/* Number of bits used within bi_buf. (bi_buf might be implemented on
 * more than 16 bits on some systems.)
 */

/* ===========================================================================
 * Local data. These are initialized only once.
 */


static ct_data static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init
 * below).
 */


static ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */


static uch dist_code[512];
/* distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */


static uch length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */


static int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */


static int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */


struct static_tree_desc_s {
    
const ct_data *static_tree;  /* static tree or NULL */
    
const int *extra_bits;       /* extra bits for each code or NULL */
    
int     extra_base;          /* base index for extra_bits */
    
int     elems;               /* max number of elements in the tree */
    
int     max_length;          /* max bit length for the codes */
};


static static_tree_desc  static_l_desc =
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};


static static_tree_desc  static_d_desc =
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};


static static_tree_desc  static_bl_desc =
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};

/* ===========================================================================
 * Local (static) routines in this file.
 */

static void tr_static_init (void);
static void init_block     (deflate_state *s);
static void pqdownheap     (deflate_state *s, ct_data *tree, int k);
static void gen_bitlen     (deflate_state *s, tree_desc *desc);
static void gen_codes      (ct_data *tree, int max_code, ush *bl_count);
static void build_tree     (deflate_state *s, tree_desc *desc);
static void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
static void send_tree      (deflate_state *s, ct_data *tree, int max_code);
static int  build_bl_tree  (deflate_state *s);
static void send_all_trees (deflate_state *s, int lcodes, int dcodes,
                           int blcodes);
static void compress_block (deflate_state *s, ct_data *ltree,
                           ct_data *dtree);
static void set_data_type  (deflate_state *s);
static void bi_windup      (deflate_state *s);
static void bi_flush       (deflate_state *s);
static void copy_block     (deflate_state *s, char *buf, unsigned len,
                           int header);

#ifndef DEBUG_ZLIB

#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   /* Send a code of the given tree. c and tree must not have side effects */

#else /* DEBUG_ZLIB */

#  define send_code(s, c, tree) \
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
       send_bits(s, tree[c].Code, tree[c].Len); }
#endif


#define d_code(dist) \
   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
/* Mapping from a distance to a distance code. dist is the distance - 1 and
 * must not have side effects. dist_code[256] and dist_code[257] are never
 * used.
 */

/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
#ifdef DEBUG_ZLIB
static void send_bits      (deflate_state *s, int value, int length);


static void send_bits( deflate_state *s, int value, /* value to send */ int length /* number of bits */ ) { Tracevv((stderr," l %2d v %4x ", length, value)); Assert(length > 0 && length <= 15, "invalid length"); s->bits_sent += (ulg)length; /* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if (s->bi_valid > (int)Buf_size - length) { s->bi_buf |= (value << s->bi_valid); put_short(s, s->bi_buf); s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); s->bi_valid += length - Buf_size; } else { s->bi_buf |= value << s->bi_valid; s->bi_valid += length; } }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds13097.01%133.33%
Steven Cole32.24%133.33%
Jörn Engel10.75%133.33%
Total134100.00%3100.00%

#else /* !DEBUG_ZLIB */ #define send_bits(s, value, length) \ { int len = length;\ if (s->bi_valid > (int)Buf_size - len) {\ int val = value;\ s->bi_buf |= (val << s->bi_valid);\ put_short(s, s->bi_buf);\ s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ s->bi_valid += len - Buf_size;\ } else {\ s->bi_buf |= (value) << s->bi_valid;\ s->bi_valid += len;\ }\ } #endif /* DEBUG_ZLIB */ /* =========================================================================== * Initialize the various 'constant' tables. In a multi-threaded environment, * this function may be called by two threads concurrently, but this is * harmless since both invocations do exactly the same thing. */
static void tr_static_init(void) { static int static_init_done; int n; /* iterates over tree elements */ int bits; /* bit counter */ int length; /* length value */ int code; /* code value */ int dist; /* distance index */ ush bl_count[MAX_BITS+1]; /* number of codes at each bit length for an optimal tree */ if (static_init_done) return; /* Initialize the mapping length (0..255) -> length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES-1; code++) { base_length[code] = length; for (n = 0; n < (1<<extra_lbits[code]); n++) { length_code[length++] = (uch)code; } } Assert (length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ length_code[length-1] = (uch)code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0 ; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1<<extra_dbits[code]); n++) { dist_code[dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for ( ; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { dist_code[256 + dist++] = (uch)code; } } Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; n = 0; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n].Len = 5; static_dtree[n].Code = bitrev32((u32)n) >> (32 - 5); } static_init_done = 1; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds44097.35%125.00%
Yalin Wang81.77%125.00%
Steven Cole30.66%125.00%
Jörn Engel10.22%125.00%
Total452100.00%4100.00%

/* =========================================================================== * Initialize the tree data structures for a new zlib stream. */
void zlib_tr_init( deflate_state *s ) { tr_static_init(); s->compressed_len = 0L; s->l_desc.dyn_tree = s->dyn_ltree; s->l_desc.stat_desc = &static_l_desc; s->d_desc.dyn_tree = s->dyn_dtree; s->d_desc.stat_desc = &static_d_desc; s->bl_desc.dyn_tree = s->bl_tree; s->bl_desc.stat_desc = &static_bl_desc; s->bi_buf = 0; s->bi_valid = 0; s->last_eob_len = 8; /* enough lookahead for inflate */ #ifdef DEBUG_ZLIB s->bits_sent = 0L; #endif /* Initialize the first block of the first file: */ init_block(s); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds11099.10%150.00%
Steven Cole10.90%150.00%
Total111100.00%2100.00%

/* =========================================================================== * Initialize a new block. */
static void init_block( deflate_state *s ) { int n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; s->dyn_ltree[END_BLOCK].Freq = 1; s->opt_len = s->static_len = 0L; s->last_lit = s->matches = 0; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds11698.31%133.33%
Steven Cole10.85%133.33%
Jörn Engel10.85%133.33%
Total118100.00%3100.00%

#define SMALLEST 1 /* Index within the heap array of least frequent node in the Huffman tree */ /* =========================================================================== * Remove the smallest element from the heap and recreate the heap with * one less element. Updates heap and heap_len. */ #define pqremove(s, tree, top) \ {\ top = s->heap[SMALLEST]; \ s->heap[SMALLEST] = s->heap[s->heap_len--]; \ pqdownheap(s, tree, SMALLEST); \ } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ #define smaller(tree, n, m, depth) \ (tree[n].Freq < tree[m].Freq || \ (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */
static void pqdownheap( deflate_state *s, ct_data *tree, /* the tree to restore */ int k /* node to move down */ ) { int v = s->heap[k]; int j = k << 1; /* left son of k */ while (j <= s->heap_len) { /* Set j to the smallest of the two sons: */ if (j < s->heap_len && smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s->heap[j], s->depth)) break; /* Exchange v with the smallest son */ s->heap[k] = s->heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s->heap[k] = v; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds13797.16%133.33%
Steven Cole32.13%133.33%
Jörn Engel10.71%133.33%
Total141100.00%3100.00%

/* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */
static void gen_bitlen( deflate_state *s, tree_desc *desc /* the tree descriptor */ ) { ct_data *tree = desc->dyn_tree; int max_code = desc->max_code; const ct_data *stree = desc->stat_desc->static_tree; const int *extra = desc->stat_desc->extra_bits; int base = desc->stat_desc->extra_base; int max_length = desc->stat_desc->max_length; int h; /* heap index */ int n, m; /* iterate over the tree elements */ int bits; /* bit length */ int xbits; /* extra bits */ ush f; /* frequency */ int overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ for (h = s->heap_max+1; h < HEAP_SIZE; h++) { n = s->heap[h]; bits = tree[tree[n].Dad].Len + 1; if (bits > max_length) bits = max_length, overflow++; tree[n].Len = (ush)bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) continue; /* not a leaf node */ s->bl_count[bits]++; xbits = 0; if (n >= base) xbits = extra[n-base]; f = tree[n].Freq; s->opt_len += (ulg)f * (bits + xbits); if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); } if (overflow == 0) return; Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length-1; while (s->bl_count[bits] == 0) bits--; s->bl_count[bits]--; /* move one leaf down the tree */ s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ s->bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits != 0; bits--) { n = s->bl_count[bits]; while (n != 0) { m = s->heap[--h]; if (m > max_code) continue; if (tree[m].Len != (unsigned) bits) { Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s->opt_len += ((long)bits - (long)tree[m].Len) *(long)tree[m].Freq; tree[m].Len = (ush)bits; } n--; } } }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds50199.21%125.00%
Steven Cole20.40%125.00%
Jörn Engel20.40%250.00%
Total505100.00%4100.00%

/* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */
static void gen_codes( ct_data *tree, /* the tree to decorate */ int max_code, /* largest code with non zero frequency */ ush *bl_count /* number of codes at each bit length */ ) { ush next_code[MAX_BITS+1]; /* next code value for each bit length */ ush code = 0; /* running code value */ int bits; /* bit index */ int n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits-1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, "inconsistent bit counts"); Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); for (n = 0; n <= max_code; n++) { int len = tree[n].Len; if (len == 0) continue; /* Now reverse the bits */ tree[n].Code = bitrev32((u32)(next_code[len]++)) >> (32 - len); Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); } }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds19892.09%120.00%
Yalin Wang125.58%120.00%
Steven Cole31.40%120.00%
Jörn Engel20.93%240.00%
Total215100.00%5100.00%

/* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */
static void build_tree( deflate_state *s, tree_desc *desc /* the tree descriptor */ ) { ct_data *tree = desc->dyn_tree; const ct_data *stree = desc->stat_desc->static_tree; int elems = desc->stat_desc->elems; int n, m; /* iterate over heap elements */ int max_code = -1; /* largest code with non zero frequency */ int node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s->heap_len = 0, s->heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n].Freq != 0) { s->heap[++(s->heap_len)] = max_code = n; s->depth[n] = 0; } else { tree[n].Len = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s->heap_len < 2) { node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); tree[node].Freq = 1; s->depth[node] = 0; s->opt_len--; if (stree) s->static_len -= stree[node].Len; /* node is 0 or 1 so it does not have extra bits */ } desc->max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { pqremove(s, tree, n); /* n = node of least frequency */ m = s->heap[SMALLEST]; /* m = node of next least frequency */ s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ s->heap[--(s->heap_max)] = m; /* Create a new node father of n and m */ tree[node].Freq = tree[n].Freq + tree[m].Freq; s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); tree[n].Dad = tree[m].Dad = (ush)node; #ifdef DUMP_BL_TREE if (tree == s->bl_tree) { fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); } #endif /* and insert the new node in the heap */ s->heap[SMALLEST] = node++; pqdownheap(s, tree, SMALLEST); } while (s->heap_len >= 2); s->heap[--(s->heap_max)] = s->heap[SMALLEST]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, (tree_desc *)desc); /* The field len is now set, we can generate the bit codes */ gen_codes ((ct_data *)tree, max_code, s->bl_count); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds49799.20%125.00%
Steven Cole20.40%125.00%
Jörn Engel10.20%125.00%
Andrew Morton10.20%125.00%
Total501100.00%4100.00%

/* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */
static void scan_tree( deflate_state *s, ct_data *tree, /* the tree to be scanned */ int max_code /* and its largest code of non zero frequency */ ) { int n; /* iterates over all tree elements */ int prevlen = -1; /* last emitted length */ int curlen; /* length of current code */ int nextlen = tree[0].Len; /* length of next code */ int count = 0; /* repeat count of the current code */ int max_count = 7; /* max repeat count */ int min_count = 4; /* min repeat count */ if (nextlen == 0) max_count = 138, min_count = 3; tree[max_code+1].Len = (