Release 4.13 arch/cris/arch-v32/mach-fs/arbiter.c
  
  
  
/*
 * Memory arbiter functions. Allocates bandwidth through the
 * arbiter and sets up arbiter breakpoints.
 *
 * The algorithm first assigns slots to the clients that has specified
 * bandwidth (e.g. ethernet) and then the remaining slots are divided
 * on all the active clients.
 *
 * Copyright (c) 2004-2007 Axis Communications AB.
 */
#include <hwregs/reg_map.h>
#include <hwregs/reg_rdwr.h>
#include <hwregs/marb_defs.h>
#include <arbiter.h>
#include <hwregs/intr_vect.h>
#include <linux/interrupt.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <asm/io.h>
#include <asm/irq_regs.h>
struct crisv32_watch_entry {
	
unsigned long instance;
	
watch_callback *cb;
	
unsigned long start;
	
unsigned long end;
	
int used;
};
#define NUMBER_OF_BP 4
#define NBR_OF_CLIENTS 14
#define NBR_OF_SLOTS 64
#define SDRAM_BANDWIDTH 100000000	
/* Some kind of expected value */
#define INTMEM_BANDWIDTH 400000000
#define NBR_OF_REGIONS 2
static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
	{regi_marb_bp0},
	{regi_marb_bp1},
	{regi_marb_bp2},
	{regi_marb_bp3}
};
static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
static int max_bandwidth[NBR_OF_REGIONS] =
    { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
DEFINE_SPINLOCK(arbiter_lock);
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
/*
 * "I'm the arbiter, I know the score.
 *  From square one I'll be watching all 64."
 * (memory arbiter slots, that is)
 *
 *  Or in other words:
 * Program the memory arbiter slots for "region" according to what's
 * in requested_slots[] and active_clients[], while minimizing
 * latency. A caller may pass a non-zero positive amount for
 * "unused_slots", which must then be the unallocated, remaining
 * number of slots, free to hand out to any client.
 */
static void crisv32_arbiter_config(int region, int unused_slots)
{
	int slot;
	int client;
	int interval = 0;
	/*
         * This vector corresponds to the hardware arbiter slots (see
         * the hardware documentation for semantics). We initialize
         * each slot with a suitable sentinel value outside the valid
         * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
         * client indexes. Then it's fed to the hardware.
         */
	s8 val[NBR_OF_SLOTS];
	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
		val[slot] = -1;
	for (client = 0; client < NBR_OF_CLIENTS; client++) {
		int pos;
		/* Allocate the requested non-zero number of slots, but
                 * also give clients with zero-requests one slot each
                 * while stocks last. We do the latter here, in client
                 * order. This makes sure zero-request clients are the
                 * first to get to any spare slots, else those slots
                 * could, when bandwidth is allocated close to the limit,
                 * all be allocated to low-index non-zero-request clients
                 * in the default-fill loop below. Another positive but
                 * secondary effect is a somewhat better spread of the
                 * zero-bandwidth clients in the vector, avoiding some of
                 * the latency that could otherwise be caused by the
                 * partitioning of non-zero-bandwidth clients at low
                 * indexes and zero-bandwidth clients at high
                 * indexes. (Note that this spreading can only affect the
                 * unallocated bandwidth.)  All the above only matters for
                 * memory-intensive situations, of course.
                 */
		if (!requested_slots[region][client]) {
			/*
                         * Skip inactive clients. Also skip zero-slot
                         * allocations in this pass when there are no known
                         * free slots.
                         */
			if (!active_clients[region][client]
			    || unused_slots <= 0)
				continue;
			unused_slots--;
			/* Only allocate one slot for this client. */
			interval = NBR_OF_SLOTS;
		} else
			interval =
			    NBR_OF_SLOTS / requested_slots[region][client];
		pos = 0;
		while (pos < NBR_OF_SLOTS) {
			if (val[pos] >= 0)
				pos++;
			else {
				val[pos] = client;
				pos += interval;
			}
		}
	}
	client = 0;
	for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
		/*
                 * Allocate remaining slots in round-robin
                 * client-number order for active clients. For this
                 * pass, we ignore requested bandwidth and previous
                 * allocations.
                 */
		if (val[slot] < 0) {
			int first = client;
			while (!active_clients[region][client]) {
				client = (client + 1) % NBR_OF_CLIENTS;
				if (client == first)
					break;
			}
			val[slot] = client;
			client = (client + 1) % NBR_OF_CLIENTS;
		}
		if (region == EXT_REGION)
			REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
					val[slot]);
		else if (region == INT_REGION)
			REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
					val[slot]);
	}
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 287 | 100.00% | 1 | 100.00% | 
| Total | 287 | 100.00% | 1 | 100.00% | 
extern char _stext, _etext;
static void crisv32_arbiter_init(void)
{
	static int initialized;
	if (initialized)
		return;
	initialized = 1;
	/*
         * CPU caches are always set to active, but with zero
         * bandwidth allocated. It should be ok to allocate zero
         * bandwidth for the caches, because DMA for other channels
         * will supposedly finish, once their programmed amount is
         * done, and then the caches will get access according to the
         * "fixed scheme" for unclaimed slots. Though, if for some
         * use-case somewhere, there's a maximum CPU latency for
         * e.g. some interrupt, we have to start allocating specific
         * bandwidth for the CPU caches too.
         */
	active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
	crisv32_arbiter_config(EXT_REGION, 0);
	crisv32_arbiter_config(INT_REGION, 0);
	if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, 0,
			"arbiter", NULL))
		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
#ifndef CONFIG_ETRAX_KGDB
	/* Global watch for writes to kernel text segment. */
	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
			      arbiter_all_clients, arbiter_all_write, NULL);
#endif
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 101 | 99.02% | 1 | 50.00% | 
| Michael Opdenacker | 1 | 0.98% | 1 | 50.00% | 
| Total | 102 | 100.00% | 2 | 100.00% | 
/* Main entry for bandwidth allocation. */
int crisv32_arbiter_allocate_bandwidth(int client, int region,
				       unsigned long bandwidth)
{
	int i;
	int total_assigned = 0;
	int total_clients = 0;
	int req;
	crisv32_arbiter_init();
	for (i = 0; i < NBR_OF_CLIENTS; i++) {
		total_assigned += requested_slots[region][i];
		total_clients += active_clients[region][i];
	}
	/* Avoid division by 0 for 0-bandwidth requests. */
	req = bandwidth == 0
	    ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
	/*
         * We make sure that there are enough slots only for non-zero
         * requests. Requesting 0 bandwidth *may* allocate slots,
         * though if all bandwidth is allocated, such a client won't
         * get any and will have to rely on getting memory access
         * according to the fixed scheme that's the default when one
         * of the slot-allocated clients doesn't claim their slot.
         */
	if (total_assigned + req > NBR_OF_SLOTS)
		return -ENOMEM;
	active_clients[region][client] = 1;
	requested_slots[region][client] = req;
	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 134 | 100.00% | 1 | 100.00% | 
| Total | 134 | 100.00% | 1 | 100.00% | 
/*
 * Main entry for bandwidth deallocation.
 *
 * Strictly speaking, for a somewhat constant set of clients where
 * each client gets a constant bandwidth and is just enabled or
 * disabled (somewhat dynamically), no action is necessary here to
 * avoid starvation for non-zero-allocation clients, as the allocated
 * slots will just be unused. However, handing out those unused slots
 * to active clients avoids needless latency if the "fixed scheme"
 * would give unclaimed slots to an eager low-index client.
 */
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
{
	int i;
	int total_assigned = 0;
	requested_slots[region][client] = 0;
	active_clients[region][client] = 0;
	for (i = 0; i < NBR_OF_CLIENTS; i++)
		total_assigned += requested_slots[region][i];
	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 71 | 100.00% | 1 | 100.00% | 
| Total | 71 | 100.00% | 1 | 100.00% | 
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
			  unsigned long clients, unsigned long accesses,
			  watch_callback *cb)
{
	int i;
	crisv32_arbiter_init();
	if (start > 0x80000000) {
		printk(KERN_ERR "Arbiter: %lX doesn't look like a "
			"physical address", start);
		return -EFAULT;
	}
	spin_lock(&arbiter_lock);
	for (i = 0; i < NUMBER_OF_BP; i++) {
		if (!watches[i].used) {
			reg_marb_rw_intr_mask intr_mask =
			    REG_RD(marb, regi_marb, rw_intr_mask);
			watches[i].used = 1;
			watches[i].start = start;
			watches[i].end = start + size;
			watches[i].cb = cb;
			REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
				   watches[i].start);
			REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
				   watches[i].end);
			REG_WR_INT(marb_bp, watches[i].instance, rw_op,
				   accesses);
			REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
				   clients);
			if (i == 0)
				intr_mask.bp0 = regk_marb_yes;
			else if (i == 1)
				intr_mask.bp1 = regk_marb_yes;
			else if (i == 2)
				intr_mask.bp2 = regk_marb_yes;
			else if (i == 3)
				intr_mask.bp3 = regk_marb_yes;
			REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
			spin_unlock(&arbiter_lock);
			return i;
		}
	}
	spin_unlock(&arbiter_lock);
	return -ENOMEM;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 290 | 100.00% | 1 | 100.00% | 
| Total | 290 | 100.00% | 1 | 100.00% | 
int crisv32_arbiter_unwatch(int id)
{
	reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
	crisv32_arbiter_init();
	spin_lock(&arbiter_lock);
	if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
		spin_unlock(&arbiter_lock);
		return -EINVAL;
	}
	memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
	if (id == 0)
		intr_mask.bp0 = regk_marb_no;
	else if (id == 1)
		intr_mask.bp1 = regk_marb_no;
	else if (id == 2)
		intr_mask.bp2 = regk_marb_no;
	else if (id == 3)
		intr_mask.bp3 = regk_marb_no;
	REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
	spin_unlock(&arbiter_lock);
	return 0;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 152 | 99.35% | 1 | 50.00% | 
| Roel Kluin | 1 | 0.65% | 1 | 50.00% | 
| Total | 153 | 100.00% | 2 | 100.00% | 
extern void show_registers(struct pt_regs *regs);
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
{
	reg_marb_r_masked_intr masked_intr =
	    REG_RD(marb, regi_marb, r_masked_intr);
	reg_marb_bp_r_brk_clients r_clients;
	reg_marb_bp_r_brk_addr r_addr;
	reg_marb_bp_r_brk_op r_op;
	reg_marb_bp_r_brk_first_client r_first;
	reg_marb_bp_r_brk_size r_size;
	reg_marb_bp_rw_ack ack = { 0 };
	reg_marb_rw_ack_intr ack_intr = {
		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
	};
	struct crisv32_watch_entry *watch;
	if (masked_intr.bp0) {
		watch = &watches[0];
		ack_intr.bp0 = regk_marb_yes;
	} else if (masked_intr.bp1) {
		watch = &watches[1];
		ack_intr.bp1 = regk_marb_yes;
	} else if (masked_intr.bp2) {
		watch = &watches[2];
		ack_intr.bp2 = regk_marb_yes;
	} else if (masked_intr.bp3) {
		watch = &watches[3];
		ack_intr.bp3 = regk_marb_yes;
	} else {
		return IRQ_NONE;
	}
	/* Retrieve all useful information and print it. */
	r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
	r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
	r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
	r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
	r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
	printk(KERN_INFO "Arbiter IRQ\n");
	printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
	REG_WR(marb_bp, watch->instance, rw_ack, ack);
	REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
	printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
	if (watch->cb)
		watch->cb();
	return IRQ_HANDLED;
}
Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 345 | 99.71% | 1 | 50.00% | 
| Lucas De Marchi | 1 | 0.29% | 1 | 50.00% | 
| Total | 346 | 100.00% | 2 | 100.00% | 
Overall Contributors
| Person | Tokens | Prop | Commits | CommitProp | 
| Jesper Nilsson | 1558 | 99.81% | 1 | 25.00% | 
| Michael Opdenacker | 1 | 0.06% | 1 | 25.00% | 
| Roel Kluin | 1 | 0.06% | 1 | 25.00% | 
| Lucas De Marchi | 1 | 0.06% | 1 | 25.00% | 
| Total | 1561 | 100.00% | 4 | 100.00% | 
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.