cregit-Linux how code gets into the kernel

Release 4.14 arch/cris/arch-v10/mm/init.c

// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/arch/cris/arch-v10/mm/init.c
 *
 */
#include <linux/mmzone.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/types.h>
#include <asm/mmu.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <arch/svinto.h>

extern void tlb_init(void);

/*
 * The kernel is already mapped with a kernel segment at kseg_c so 
 * we don't need to map it with a page table. However head.S also
 * temporarily mapped it at kseg_4 so we should set up the ksegs again,
 * clear the TLB and do some other paging setup stuff.
 */


void __init paging_init(void) { int i; unsigned long zones_size[MAX_NR_ZONES]; printk("Setting up paging and the MMU.\n"); /* clear out the init_mm.pgd that will contain the kernel's mappings */ for(i = 0; i < PTRS_PER_PGD; i++) swapper_pg_dir[i] = __pgd(0); /* make sure the current pgd table points to something sane * (even if it is most probably not used until the next * switch_mm) */ per_cpu(current_pgd, smp_processor_id()) = init_mm.pgd; /* initialise the TLB (tlb.c) */ tlb_init(); /* see README.mm for details on the KSEG setup */ #ifdef CONFIG_CRIS_LOW_MAP /* Etrax-100 LX version 1 has a bug so that we cannot map anything * across the 0x80000000 boundary, so we need to shrink the user-virtual * area to 0x50000000 instead of 0xb0000000 and map things slightly * different. The unused areas are marked as paged so that we can catch * freak kernel accesses there. * * The ARTPEC chip is mapped at 0xa so we pass that segment straight * through. We cannot vremap it because the vmalloc area is below 0x8 * and Juliette needs an uncached area above 0x8. * * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards. * We map them straight over in LOW_MAP, but use vremap in LX version 2. */ #define CACHED_BOOTROM (KSEG_F | 0x08000000UL) *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* bootrom */ IO_STATE(R_MMU_KSEG, seg_e, page ) | IO_STATE(R_MMU_KSEG, seg_d, page ) | IO_STATE(R_MMU_KSEG, seg_c, page ) | IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ IO_STATE(R_MMU_KSEG, seg_a, page ) | IO_STATE(R_MMU_KSEG, seg_9, seg ) | /* LED's on some boards */ IO_STATE(R_MMU_KSEG, seg_8, seg ) | /* CSE0/1, flash and I/O */ IO_STATE(R_MMU_KSEG, seg_7, page ) | /* kernel vmalloc area */ IO_STATE(R_MMU_KSEG, seg_6, seg ) | /* kernel DRAM area */ IO_STATE(R_MMU_KSEG, seg_5, seg ) | /* cached flash */ IO_STATE(R_MMU_KSEG, seg_4, page ) | /* user area */ IO_STATE(R_MMU_KSEG, seg_3, page ) | /* user area */ IO_STATE(R_MMU_KSEG, seg_2, page ) | /* user area */ IO_STATE(R_MMU_KSEG, seg_1, page ) | /* user area */ IO_STATE(R_MMU_KSEG, seg_0, page ) ); /* user area */ *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x3 ) | IO_FIELD(R_MMU_KBASE_HI, base_e, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_c, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | IO_FIELD(R_MMU_KBASE_HI, base_a, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_9, 0x9 ) | IO_FIELD(R_MMU_KBASE_HI, base_8, 0x8 ) ); *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_6, 0x4 ) | IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); #else /* This code is for the corrected Etrax-100 LX version 2... */ #define CACHED_BOOTROM (KSEG_A | 0x08000000UL) *R_MMU_KSEG = ( IO_STATE(R_MMU_KSEG, seg_f, seg ) | /* cached flash */ IO_STATE(R_MMU_KSEG, seg_e, seg ) | /* uncached flash */ IO_STATE(R_MMU_KSEG, seg_d, page ) | /* vmalloc area */ IO_STATE(R_MMU_KSEG, seg_c, seg ) | /* kernel area */ IO_STATE(R_MMU_KSEG, seg_b, seg ) | /* kernel reg area */ IO_STATE(R_MMU_KSEG, seg_a, seg ) | /* bootrom */ IO_STATE(R_MMU_KSEG, seg_9, page ) | /* user area */ IO_STATE(R_MMU_KSEG, seg_8, page ) | IO_STATE(R_MMU_KSEG, seg_7, page ) | IO_STATE(R_MMU_KSEG, seg_6, page ) | IO_STATE(R_MMU_KSEG, seg_5, page ) | IO_STATE(R_MMU_KSEG, seg_4, page ) | IO_STATE(R_MMU_KSEG, seg_3, page ) | IO_STATE(R_MMU_KSEG, seg_2, page ) | IO_STATE(R_MMU_KSEG, seg_1, page ) | IO_STATE(R_MMU_KSEG, seg_0, page ) ); *R_MMU_KBASE_HI = ( IO_FIELD(R_MMU_KBASE_HI, base_f, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_e, 0x8 ) | IO_FIELD(R_MMU_KBASE_HI, base_d, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_c, 0x4 ) | IO_FIELD(R_MMU_KBASE_HI, base_b, 0xb ) | IO_FIELD(R_MMU_KBASE_HI, base_a, 0x3 ) | IO_FIELD(R_MMU_KBASE_HI, base_9, 0x0 ) | IO_FIELD(R_MMU_KBASE_HI, base_8, 0x0 ) ); *R_MMU_KBASE_LO = ( IO_FIELD(R_MMU_KBASE_LO, base_7, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_6, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_5, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_4, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_3, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_2, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_1, 0x0 ) | IO_FIELD(R_MMU_KBASE_LO, base_0, 0x0 ) ); #endif *R_MMU_CONTEXT = ( IO_FIELD(R_MMU_CONTEXT, page_id, 0 ) ); /* The MMU has been enabled ever since head.S but just to make * it totally obvious we do it here as well. */ *R_MMU_CTRL = ( IO_STATE(R_MMU_CTRL, inv_excp, enable ) | IO_STATE(R_MMU_CTRL, acc_excp, enable ) | IO_STATE(R_MMU_CTRL, we_excp, enable ) ); *R_MMU_ENABLE = IO_STATE(R_MMU_ENABLE, mmu_enable, enable); /* * initialize the bad page table and bad page to point * to a couple of allocated pages */ empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE); memset((void *)empty_zero_page, 0, PAGE_SIZE); /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */ zones_size[0] = ((unsigned long)high_memory - PAGE_OFFSET) >> PAGE_SHIFT; for (i = 1; i < MAX_NR_ZONES; i++) zones_size[i] = 0; /* Use free_area_init_node instead of free_area_init, because the former * is designed for systems where the DRAM starts at an address substantially * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the * mem_map page array. */ free_area_init_node(0, zones_size, PAGE_OFFSET >> PAGE_SHIFT, 0); }

Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik843100.00%2100.00%
Total843100.00%2100.00%

/* Initialize remaps of some I/O-ports. It is important that this * is called before any driver is initialized. */
static int __init init_ioremap(void) { /* Give the external I/O-port addresses their values */ #ifdef CONFIG_CRIS_LOW_MAP /* Simply a linear map (see the KSEG map above in paging_init) */ port_cse1_addr = (volatile unsigned long *)(MEM_CSE1_START | MEM_NON_CACHEABLE); port_csp0_addr = (volatile unsigned long *)(MEM_CSP0_START | MEM_NON_CACHEABLE); port_csp4_addr = (volatile unsigned long *)(MEM_CSP4_START | MEM_NON_CACHEABLE); #else /* Note that nothing blows up just because we do this remapping * it's ok even if the ports are not used or connected * to anything (or connected to a non-I/O thing) */ port_cse1_addr = (volatile unsigned long *) ioremap((unsigned long)(MEM_CSE1_START | MEM_NON_CACHEABLE), 16); port_csp0_addr = (volatile unsigned long *) ioremap((unsigned long)(MEM_CSP0_START | MEM_NON_CACHEABLE), 16); port_csp4_addr = (volatile unsigned long *) ioremap((unsigned long)(MEM_CSP4_START | MEM_NON_CACHEABLE), 16); #endif return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik133100.00%1100.00%
Total133100.00%1100.00%

__initcall(init_ioremap); /* Helper function for the two below */
static inline void flush_etrax_cacherange(void *startadr, int length) { /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which * we can use to get fast dummy-reads of cachelines */ volatile short *flushadr = (volatile short *)(((unsigned long)startadr & ~PAGE_MASK) | CACHED_BOOTROM); length = length > 8192 ? 8192 : length; /* No need to flush more than cache size */ while(length > 0) { *flushadr; /* dummy read to flush */ flushadr += (32/sizeof(short)); /* a cacheline is 32 bytes */ length -= 32; } }

Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik79100.00%1100.00%
Total79100.00%1100.00%

/* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers * will occasionally corrupt certain CPU writes if the DMA buffers * happen to be hot in the cache. * * As a workaround, we have to flush the relevant parts of the cache * before (re) inserting any receiving descriptor into the DMA HW. */
void prepare_rx_descriptor(struct etrax_dma_descr *desc) { flush_etrax_cacherange((void *)desc->buf, desc->sw_len ? desc->sw_len : 65536); }

Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik31100.00%1100.00%
Total31100.00%1100.00%

/* Do the same thing but flush the entire cache */
void flush_etrax_cache(void) { flush_etrax_cacherange(0, 8192); }

Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik14100.00%1100.00%
Total14100.00%1100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Mikael Starvik114999.74%240.00%
Jesper Nilsson10.09%120.00%
Greg Kroah-Hartman10.09%120.00%
Justin P. Mattock10.09%120.00%
Total1152100.00%5100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.