Release 4.14 arch/ia64/include/asm/bitops.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_IA64_BITOPS_H
#define _ASM_IA64_BITOPS_H
/*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*
* 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
* O(1) scheduler patch
*/
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif
#include <linux/compiler.h>
#include <linux/types.h>
#include <asm/intrinsics.h>
#include <asm/barrier.h>
/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*
* The address must be (at least) "long" aligned.
* Note that there are driver (e.g., eepro100) which use these operations to
* operate on hw-defined data-structures, so we can't easily change these
* operations to force a bigger alignment.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/
static __inline__ void
set_bit (int nr, volatile void *addr)
{
__u32 bit, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
bit = 1 << (nr & 31);
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old | bit;
} while (cmpxchg_acq(m, old, new) != old);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 86 | 100.00% | 4 | 100.00% |
Total | 86 | 100.00% | 4 | 100.00% |
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void
__set_bit (int nr, volatile void *addr)
{
*((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds | 40 | 100.00% | 1 | 100.00% |
Total | 40 | 100.00% | 1 | 100.00% |
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
* in order to ensure changes are visible on other processors.
*/
static __inline__ void
clear_bit (int nr, volatile void *addr)
{
__u32 mask, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
mask = ~(1 << (nr & 31));
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old & mask;
} while (cmpxchg_acq(m, old, new) != old);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 89 | 100.00% | 4 | 100.00% |
Total | 89 | 100.00% | 4 | 100.00% |
/**
* clear_bit_unlock - Clears a bit in memory with release
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit_unlock() is atomic and may not be reordered. It does
* contain a memory barrier suitable for unlock type operations.
*/
static __inline__ void
clear_bit_unlock (int nr, volatile void *addr)
{
__u32 mask, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
mask = ~(1 << (nr & 31));
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old & mask;
} while (cmpxchg_rel(m, old, new) != old);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Nicholas Piggin | 89 | 100.00% | 1 | 100.00% |
Total | 89 | 100.00% | 1 | 100.00% |
/**
* __clear_bit_unlock - Non-atomically clears a bit in memory with release
* @nr: Bit to clear
* @addr: Address to start counting from
*
* Similarly to clear_bit_unlock, the implementation uses a store
* with release semantics. See also arch_spin_unlock().
*/
static __inline__ void
__clear_bit_unlock(int nr, void *addr)
{
__u32 * const m = (__u32 *) addr + (nr >> 5);
__u32 const new = *m & ~(1 << (nr & 31));
ia64_st4_rel_nta(m, new);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Christoph Lameter | 44 | 78.57% | 1 | 33.33% |
Menyhart Zoltan | 11 | 19.64% | 1 | 33.33% |
Nicholas Piggin | 1 | 1.79% | 1 | 33.33% |
Total | 56 | 100.00% | 3 | 100.00% |
/**
* __clear_bit - Clears a bit in memory (non-atomic version)
* @nr: the bit to clear
* @addr: the address to start counting from
*
* Unlike clear_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void
__clear_bit (int nr, volatile void *addr)
{
*((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
David Mosberger-Tang | 34 | 82.93% | 1 | 50.00% |
Menyhart Zoltan | 7 | 17.07% | 1 | 50.00% |
Total | 41 | 100.00% | 2 | 100.00% |
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to toggle
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static __inline__ void
change_bit (int nr, volatile void *addr)
{
__u32 bit, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
bit = (1 << (nr & 31));
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old ^ bit;
} while (cmpxchg_acq(m, old, new) != old);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 88 | 100.00% | 4 | 100.00% |
Total | 88 | 100.00% | 4 | 100.00% |
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to toggle
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static __inline__ void
__change_bit (int nr, volatile void *addr)
{
*((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds | 40 | 100.00% | 1 | 100.00% |
Total | 40 | 100.00% | 1 | 100.00% |
/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies the acquisition side of the memory barrier.
*/
static __inline__ int
test_and_set_bit (int nr, volatile void *addr)
{
__u32 bit, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
bit = 1 << (nr & 31);
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old | bit;
} while (cmpxchg_acq(m, old, new) != old);
return (old & bit) != 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 95 | 100.00% | 4 | 100.00% |
Total | 95 | 100.00% | 4 | 100.00% |
/**
* test_and_set_bit_lock - Set a bit and return its old value for lock
* @nr: Bit to set
* @addr: Address to count from
*
* This is the same as test_and_set_bit on ia64
*/
#define test_and_set_bit_lock test_and_set_bit
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int
__test_and_set_bit (int nr, volatile void *addr)
{
__u32 *p = (__u32 *) addr + (nr >> 5);
__u32 m = 1 << (nr & 31);
int oldbitset = (*p & m) != 0;
*p |= m;
return oldbitset;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds | 62 | 100.00% | 1 | 100.00% |
Total | 62 | 100.00% | 1 | 100.00% |
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies the acquisition side of the memory barrier.
*/
static __inline__ int
test_and_clear_bit (int nr, volatile void *addr)
{
__u32 mask, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
mask = ~(1 << (nr & 31));
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old & mask;
} while (cmpxchg_acq(m, old, new) != old);
return (old & ~mask) != 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 99 | 100.00% | 4 | 100.00% |
Total | 99 | 100.00% | 4 | 100.00% |
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static __inline__ int
__test_and_clear_bit(int nr, volatile void * addr)
{
__u32 *p = (__u32 *) addr + (nr >> 5);
__u32 m = 1 << (nr & 31);
int oldbitset = (*p & m) != 0;
*p &= ~m;
return oldbitset;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds | 59 | 93.65% | 1 | 50.00% |
Johannes Weiner | 4 | 6.35% | 1 | 50.00% |
Total | 63 | 100.00% | 2 | 100.00% |
/**
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies the acquisition side of the memory barrier.
*/
static __inline__ int
test_and_change_bit (int nr, volatile void *addr)
{
__u32 bit, old, new;
volatile __u32 *m;
CMPXCHG_BUGCHECK_DECL
m = (volatile __u32 *) addr + (nr >> 5);
bit = (1 << (nr & 31));
do {
CMPXCHG_BUGCHECK(m);
old = *m;
new = old ^ bit;
} while (cmpxchg_acq(m, old, new) != old);
return (old & bit) != 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 97 | 100.00% | 4 | 100.00% |
Total | 97 | 100.00% | 4 | 100.00% |
/**
* __test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
*/
static __inline__ int
__test_and_change_bit (int nr, void *addr)
{
__u32 old, bit = (1 << (nr & 31));
__u32 *m = (__u32 *) addr + (nr >> 5);
old = *m;
*m = old ^ bit;
return (old & bit) != 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds | 66 | 100.00% | 1 | 100.00% |
Total | 66 | 100.00% | 1 | 100.00% |
static __inline__ int
test_bit (int nr, const volatile void *addr)
{
return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 41 | 97.62% | 3 | 75.00% |
Peter Chubb | 1 | 2.38% | 1 | 25.00% |
Total | 42 | 100.00% | 4 | 100.00% |
/**
* ffz - find the first zero bit in a long word
* @x: The long word to find the bit in
*
* Returns the bit-number (0..63) of the first (least significant) zero bit.
* Undefined if no zero exists, so code should check against ~0UL first...
*/
static inline unsigned long
ffz (unsigned long x)
{
unsigned long result;
result = ia64_popcnt(x & (~x - 1));
return result;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 19 | 57.58% | 2 | 66.67% |
Suresh B. Siddha | 14 | 42.42% | 1 | 33.33% |
Total | 33 | 100.00% | 3 | 100.00% |
/**
* __ffs - find first bit in word.
* @x: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static __inline__ unsigned long
__ffs (unsigned long x)
{
unsigned long result;
result = ia64_popcnt((x-1) & ~x);
return result;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
David Mosberger-Tang | 19 | 57.58% | 1 | 50.00% |
Suresh B. Siddha | 14 | 42.42% | 1 | 50.00% |
Total | 33 | 100.00% | 2 | 100.00% |
#ifdef __KERNEL__
/*
* Return bit number of last (most-significant) bit set. Undefined
* for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
*/
static inline unsigned long
ia64_fls (unsigned long x)
{
long double d = x;
long exp;
exp = ia64_getf_exp(d);
return exp - 0xffff;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 25 | 75.76% | 1 | 33.33% |
Suresh B. Siddha | 7 | 21.21% | 1 | 33.33% |
David Mosberger-Tang | 1 | 3.03% | 1 | 33.33% |
Total | 33 | 100.00% | 3 | 100.00% |
/*
* Find the last (most significant) bit set. Returns 0 for x==0 and
* bits are numbered from 1..32 (e.g., fls(9) == 4).
*/
static inline int
fls (int t)
{
unsigned long x = t & 0xffffffffu;
if (!x)
return 0;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ia64_popcnt(x);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
David Mosberger-Tang | 62 | 100.00% | 3 | 100.00% |
Total | 62 | 100.00% | 3 | 100.00% |
/*
* Find the last (most significant) bit set. Undefined for x==0.
* Bits are numbered from 0..63 (e.g., __fls(9) == 3).
*/
static inline unsigned long
__fls (unsigned long x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x |= x >> 32;
return ia64_popcnt(x) - 1;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Alexander van Heukelum | 56 | 100.00% | 1 | 100.00% |
Total | 56 | 100.00% | 1 | 100.00% |
#include <asm-generic/bitops/fls64.h>
#include <asm-generic/bitops/builtin-ffs.h>
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
static __inline__ unsigned long __arch_hweight64(unsigned long x)
{
unsigned long result;
result = ia64_popcnt(x);
return result;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 18 | 69.23% | 2 | 50.00% |
Suresh B. Siddha | 7 | 26.92% | 1 | 25.00% |
Peter Zijlstra | 1 | 3.85% | 1 | 25.00% |
Total | 26 | 100.00% | 4 | 100.00% |
#define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
#define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
#define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful))
#include <asm-generic/bitops/const_hweight.h>
#endif /* __KERNEL__ */
#include <asm-generic/bitops/find.h>
#ifdef __KERNEL__
#include <asm-generic/bitops/le.h>
#include <asm-generic/bitops/ext2-atomic-setbit.h>
#include <asm-generic/bitops/sched.h>
#endif /* __KERNEL__ */
#endif /* _ASM_IA64_BITOPS_H */
Overall Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 696 | 49.50% | 4 | 13.79% |
Linus Torvalds | 269 | 19.13% | 1 | 3.45% |
David Mosberger-Tang | 126 | 8.96% | 8 | 27.59% |
Nicholas Piggin | 96 | 6.83% | 1 | 3.45% |
Alexander van Heukelum | 57 | 4.05% | 1 | 3.45% |
Christoph Lameter | 44 | 3.13% | 1 | 3.45% |
Suresh B. Siddha | 42 | 2.99% | 1 | 3.45% |
Menyhart Zoltan | 26 | 1.85% | 1 | 3.45% |
Akinobu Mita | 21 | 1.49% | 4 | 13.79% |
Peter Zijlstra | 14 | 1.00% | 2 | 6.90% |
Jiri Slaby | 8 | 0.57% | 1 | 3.45% |
Johannes Weiner | 4 | 0.28% | 1 | 3.45% |
Thomas Gleixner | 1 | 0.07% | 1 | 3.45% |
Greg Kroah-Hartman | 1 | 0.07% | 1 | 3.45% |
Peter Chubb | 1 | 0.07% | 1 | 3.45% |
Total | 1406 | 100.00% | 29 | 100.00% |
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.