cregit-Linux how code gets into the kernel

Release 4.14 arch/ia64/include/asm/pgtable.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_IA64_PGTABLE_H

#define _ASM_IA64_PGTABLE_H

/*
 * This file contains the functions and defines necessary to modify and use
 * the IA-64 page table tree.
 *
 * This hopefully works with any (fixed) IA-64 page-size, as defined
 * in <asm/page.h>.
 *
 * Copyright (C) 1998-2005 Hewlett-Packard Co
 *      David Mosberger-Tang <davidm@hpl.hp.com>
 */


#include <asm/mman.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/types.h>


#define IA64_MAX_PHYS_BITS	50	
/* max. number of physical address bits (architected) */

/*
 * First, define the various bits in a PTE.  Note that the PTE format
 * matches the VHPT short format, the firt doubleword of the VHPD long
 * format, and the first doubleword of the TLB insertion format.
 */

#define _PAGE_P_BIT		0

#define _PAGE_A_BIT		5

#define _PAGE_D_BIT		6


#define _PAGE_P			(1 << _PAGE_P_BIT)	
/* page present bit */

#define _PAGE_MA_WB		(0x0 <<  2)	
/* write back memory attribute */

#define _PAGE_MA_UC		(0x4 <<  2)	
/* uncacheable memory attribute */

#define _PAGE_MA_UCE		(0x5 <<  2)	
/* UC exported attribute */

#define _PAGE_MA_WC		(0x6 <<  2)	
/* write coalescing memory attribute */

#define _PAGE_MA_NAT		(0x7 <<  2)	
/* not-a-thing attribute */

#define _PAGE_MA_MASK		(0x7 <<  2)

#define _PAGE_PL_0		(0 <<  7)	
/* privilege level 0 (kernel) */

#define _PAGE_PL_1		(1 <<  7)	
/* privilege level 1 (unused) */

#define _PAGE_PL_2		(2 <<  7)	
/* privilege level 2 (unused) */

#define _PAGE_PL_3		(3 <<  7)	
/* privilege level 3 (user) */

#define _PAGE_PL_MASK		(3 <<  7)

#define _PAGE_AR_R		(0 <<  9)	
/* read only */

#define _PAGE_AR_RX		(1 <<  9)	
/* read & execute */

#define _PAGE_AR_RW		(2 <<  9)	
/* read & write */

#define _PAGE_AR_RWX		(3 <<  9)	
/* read, write & execute */

#define _PAGE_AR_R_RW		(4 <<  9)	
/* read / read & write */

#define _PAGE_AR_RX_RWX		(5 <<  9)	
/* read & exec / read, write & exec */

#define _PAGE_AR_RWX_RW		(6 <<  9)	
/* read, write & exec / read & write */

#define _PAGE_AR_X_RX		(7 <<  9)	
/* exec & promote / read & exec */

#define _PAGE_AR_MASK		(7 <<  9)

#define _PAGE_AR_SHIFT		9

#define _PAGE_A			(1 << _PAGE_A_BIT)	
/* page accessed bit */

#define _PAGE_D			(1 << _PAGE_D_BIT)	
/* page dirty bit */

#define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)

#define _PAGE_ED		(__IA64_UL(1) << 52)	
/* exception deferral */

#define _PAGE_PROTNONE		(__IA64_UL(1) << 63)


#define _PFN_MASK		_PAGE_PPN_MASK
/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */

#define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)


#define _PAGE_SIZE_4K	12

#define _PAGE_SIZE_8K	13

#define _PAGE_SIZE_16K	14

#define _PAGE_SIZE_64K	16

#define _PAGE_SIZE_256K	18

#define _PAGE_SIZE_1M	20

#define _PAGE_SIZE_4M	22

#define _PAGE_SIZE_16M	24

#define _PAGE_SIZE_64M	26

#define _PAGE_SIZE_256M	28

#define _PAGE_SIZE_1G	30

#define _PAGE_SIZE_4G	32


#define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB

#define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB

#define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED

/*
 * How many pointers will a page table level hold expressed in shift
 */

#define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3)

/*
 * Definitions for fourth level:
 */

#define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))

/*
 * Definitions for third level:
 *
 * PMD_SHIFT determines the size of the area a third-level page table
 * can map.
 */

#define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))

#define PMD_SIZE	(1UL << PMD_SHIFT)

#define PMD_MASK	(~(PMD_SIZE-1))

#define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT))

#if CONFIG_PGTABLE_LEVELS == 4
/*
 * Definitions for second level:
 *
 * PUD_SHIFT determines the size of the area a second-level page table
 * can map.
 */

#define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))

#define PUD_SIZE	(1UL << PUD_SHIFT)

#define PUD_MASK	(~(PUD_SIZE-1))

#define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT))
#endif

/*
 * Definitions for first level:
 *
 * PGDIR_SHIFT determines what a first-level page table entry can map.
 */
#if CONFIG_PGTABLE_LEVELS == 4

#define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
#else

#define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
#endif

#define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)

#define PGDIR_MASK		(~(PGDIR_SIZE-1))

#define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT

#define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT)

#define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	
/* regions 0-4 are user regions */

#define FIRST_USER_ADDRESS	0UL

/*
 * All the normal masks have the "page accessed" bits on, as any time
 * they are used, the page is accessed. They are cleared only by the
 * page-out routines.
 */

#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)

#define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)

#define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)

#define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)

#define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)

#define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)

#define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)

#define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)

#define PAGE_KERNEL_UC	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX | \
                                 _PAGE_MA_UC)

# ifndef __ASSEMBLY__

#include <linux/sched/mm.h>	/* for mm_struct */
#include <linux/bitops.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>

/*
 * Next come the mappings that determine how mmap() protection bits
 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
 * _P version gets used for a private shared memory segment, the _S
 * version gets used for a shared memory segment with MAP_SHARED on.
 * In a private shared memory segment, we do a copy-on-write if a task
 * attempts to write to the page.
 */
	/* xwr */

#define __P000	PAGE_NONE

#define __P001	PAGE_READONLY

#define __P010	PAGE_READONLY	
/* write to priv pg -> copy & make writable */

#define __P011	PAGE_READONLY	
/* ditto */

#define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)

#define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)

#define __P110	PAGE_COPY_EXEC

#define __P111	PAGE_COPY_EXEC


#define __S000	PAGE_NONE

#define __S001	PAGE_READONLY

#define __S010	PAGE_SHARED	
/* we don't have (and don't need) write-only */

#define __S011	PAGE_SHARED

#define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)

#define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)

#define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)

#define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)


#define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
#if CONFIG_PGTABLE_LEVELS == 4

#define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
#endif

#define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))

#define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))


/*
 * Some definitions to translate between mem_map, PTEs, and page addresses:
 */


/* Quick test to see if ADDR is a (potentially) valid physical address. */

static inline long ia64_phys_addr_valid (unsigned long addr) { return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)2291.67%266.67%
Linus Torvalds28.33%133.33%
Total24100.00%3100.00%

/* * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel * memory. For the return value to be meaningful, ADDR must be >= * PAGE_OFFSET. This operation can be relatively expensive (e.g., * require a hash-, or multi-level tree-lookup or something of that * sort) but it guarantees to return TRUE only if accessing the page * at that address does not cause an error. Note that there may be * addresses for which kern_addr_valid() returns FALSE even though an * access would not cause an error (e.g., this is typically true for * memory mapped I/O regions. * * XXX Need to implement this for IA-64. */ #define kern_addr_valid(addr) (1) /* * Now come the defines and routines to manage and access the three-level * page table. */ #define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) #ifdef CONFIG_VIRTUAL_MEM_MAP # define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) extern unsigned long VMALLOC_END; #else #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) /* SPARSEMEM_VMEMMAP uses half of vmalloc... */ # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10))) # define vmemmap ((struct page *)VMALLOC_END) #else # define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) #endif #endif /* fs/proc/kcore.c */ #define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) #define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) #define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ /* * Conversion functions: convert page frame number (pfn) and a protection value to a page * table entry (pte). */ #define pfn_pte(pfn, pgprot) \ ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) /* Extract pfn from pte. */ #define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* This takes a physical page address that is used by the remapping functions */ #define mk_pte_phys(physpage, pgprot) \ ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) #define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) /* pte_page() returns the "struct page *" corresponding to the PTE: */ #define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) #define pmd_present(pmd) (pmd_val(pmd) != 0UL) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) #define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) #define pud_present(pud) (pud_val(pud) != 0UL) #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) #define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) #define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) #if CONFIG_PGTABLE_LEVELS == 4 #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) #define pgd_present(pgd) (pgd_val(pgd) != 0UL) #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) #define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) #define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) #endif /* * The following have defined behavior only work if pte_present() is true. */ #define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) #define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) #define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) #define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) #define pte_special(pte) 0 /* * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the * access rights: */ #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) #define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) #define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) #define pte_mkhuge(pte) (__pte(pte_val(pte))) #define pte_mkspecial(pte) (pte) /* * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to * sync icache and dcache when we insert *new* executable page. * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache * if necessary. * * set_pte() is also called by the kernel, but we can expect that the kernel * flushes icache explicitly if necessary. */ #define pte_present_exec_user(pte)\ ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \ (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)) extern void __ia64_sync_icache_dcache(pte_t pteval);
static inline void set_pte(pte_t *ptep, pte_t pteval) { /* page is present && page is user && page is executable * && (page swapin or new page or page migraton * || copy_on_write with page copying.) */ if (pte_present_exec_user(pteval) && (!pte_present(*ptep) || pte_pfn(*ptep) != pte_pfn(pteval))) /* load_module() calles flush_icache_range() explicitly*/ __ia64_sync_icache_dcache(pteval); *ptep = pteval; }

Contributors

PersonTokensPropCommitsCommitProp
Kamezawa Hiroyuki53100.00%1100.00%
Total53100.00%1100.00%

#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) /* * Make page protection values cacheable, uncacheable, or write- * combining. Note that "protection" is really a misnomer here as the * protection value contains the memory attribute bits, dirty bits, and * various other bits as well. */ #define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) #define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) struct file; extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); #define __HAVE_PHYS_MEM_ACCESS_PROT
static inline unsigned long pgd_index (unsigned long address) { unsigned long region = address >> 61; unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); return (region << (PAGE_SHIFT - 6)) | l1index; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)53100.00%4100.00%
Total53100.00%4100.00%

/* The offset in the 1-level directory is given by the 3 region bits (61..63) and the level-1 bits. */
static inline pgd_t* pgd_offset (const struct mm_struct *mm, unsigned long address) { return mm->pgd + pgd_index(address); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)2796.43%480.00%
Motohiro Kosaki13.57%120.00%
Total28100.00%5100.00%

/* In the kernel's mapped region we completely ignore the region number (since we know it's in region number 5). */ #define pgd_offset_k(addr) \ (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) /* Look up a pgd entry in the gate area. On IA-64, the gate-area resides in the kernel-mapped segment, hence we use pgd_offset_k() here. */ #define pgd_offset_gate(mm, addr) pgd_offset_k(addr) #if CONFIG_PGTABLE_LEVELS == 4 /* Find an entry in the second-level page table.. */ #define pud_offset(dir,addr) \ ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) #endif /* Find an entry in the third-level page table.. */ #define pmd_offset(dir,addr) \ ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* * Find an entry in the third-level page table. This looks more complicated than it * should be because some platforms place page tables in high memory. */ #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) #define pte_unmap(pte) do { } while (0) /* atomic versions of the some PTE manipulations: */
static inline int ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP if (!pte_young(*ptep)) return 0; return test_and_clear_bit(_PAGE_A_BIT, ptep); #else pte_t pte = *ptep; if (!pte_young(pte)) return 0; set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); return 1; #endif }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)5566.27%133.33%
David S. Miller1619.28%133.33%
Hugh Dickins1214.46%133.33%
Total83100.00%3100.00%


static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP return __pte(xchg((long *) ptep, 0)); #else pte_t pte = *ptep; pte_clear(mm, addr, ptep); return pte; #endif }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)4778.33%150.00%
David S. Miller1321.67%150.00%
Total60100.00%2100.00%


static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { #ifdef CONFIG_SMP unsigned long new, old; do { old = pte_val(*ptep); new = pte_val(pte_wrprotect(__pte (old))); } while (cmpxchg((unsigned long *) ptep, old, new) != old); #else pte_t old_pte = *ptep; set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); #endif }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)8386.46%150.00%
David S. Miller1313.54%150.00%
Total96100.00%2100.00%


static inline int pte_same (pte_t a, pte_t b) { return pte_val(a) == pte_val(b); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)24100.00%1100.00%
Total24100.00%1100.00%

#define update_mmu_cache(vma, address, ptep) do { } while (0) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void paging_init (void); /* * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of * bits in the swap-type field of the swap pte. It would be nice to * enforce that, but we can't easily include <linux/swap.h> here. * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). * * Format of swap pte: * bit 0 : present bit (must be zero) * bits 1- 7: swap-type * bits 8-62: swap offset * bit 63 : _PAGE_PROTNONE bit */ #define __swp_type(entry) (((entry).val >> 1) & 0x7f) #define __swp_offset(entry) (((entry).val << 1) >> 9) #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; extern struct page *zero_page_memmap_ptr; #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) /* We provide our own get_unmapped_area to cope with VA holes for userland */ #define HAVE_ARCH_UNMAPPED_AREA #ifdef CONFIG_HUGETLB_PAGE #define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) #define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) #endif #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* * Update PTEP with ENTRY, which is guaranteed to be a less * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and * WRITABLE bits turned on, when the value at PTEP did not. The * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. * * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without * having to worry about races. On SMP machines, there are only two * cases where this is true: * * (1) *PTEP has the PRESENT bit turned OFF * (2) ENTRY has the DIRTY bit turned ON * * On ia64, we could implement this routine with a cmpxchg()-loop * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. * However, like on x86, we can get a more streamlined version by * observing that it is OK to drop ACCESSED bit updates when * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is * result in an extra Access-bit fault, which would then turn on the * ACCESSED bit in the low-level fault handler (iaccess_bit or * daccess_bit in ivt.S). */ #ifdef CONFIG_SMP # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ ({ \ int __changed = !pte_same(*(__ptep), __entry); \ if (__changed && __safely_writable) { \ set_pte(__ptep, __entry); \ flush_tlb_page(__vma, __addr); \ } \ __changed; \ }) #else # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ ({ \ int __changed = !pte_same(*(__ptep), __entry); \ if (__changed) { \ set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ flush_tlb_page(__vma, __addr); \ } \ __changed; \ }) #endif # ifdef CONFIG_VIRTUAL_MEM_MAP /* arch mem_map init routine is needed due to holes in a virtual mem_map */ # define __HAVE_ARCH_MEMMAP_INIT extern void memmap_init (unsigned long size, int nid, unsigned long zone, unsigned long start_pfn); # endif /* CONFIG_VIRTUAL_MEM_MAP */ # endif /* !__ASSEMBLY__ */ /* * Identity-mapped regions use a large page size. We'll call such large pages * "granules". If you can think of a better name that's unambiguous, let me * know... */ #if defined(CONFIG_IA64_GRANULE_64MB) # define IA64_GRANULE_SHIFT _PAGE_SIZE_64M #elif defined(CONFIG_IA64_GRANULE_16MB) # define IA64_GRANULE_SHIFT _PAGE_SIZE_16M #endif #define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) /* * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): */ #define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M #define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) /* These tell get_user_pages() that the first gate page is accessible from user-level. */ #define FIXADDR_USER_START GATE_ADDR #ifdef HAVE_BUGGY_SEGREL # define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) #else # define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) #endif #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTE_SAME #define __HAVE_ARCH_PGD_OFFSET_GATE #if CONFIG_PGTABLE_LEVELS == 3 #define __ARCH_USE_5LEVEL_HACK #include <asm-generic/pgtable-nopud.h> #endif #include <asm-generic/5level-fixup.h> #include <asm-generic/pgtable.h> #endif /* _ASM_IA64_PGTABLE_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds (pre-git)95955.21%812.50%
David Mosberger-Tang20211.63%1523.44%
Robin Holt1297.43%11.56%
Kamezawa Hiroyuki834.78%11.56%
Linus Torvalds522.99%46.25%
David S. Miller462.65%11.56%
Kirill A. Shutemov412.36%46.25%
Andrew Morton392.25%69.38%
Björn Helgaas352.01%11.56%
Nicholas Piggin301.73%23.12%
Christoph Lameter241.38%11.56%
Dave McCracken201.15%11.56%
Rohit Seth181.04%23.12%
Tony Luck181.04%23.12%
Hugh Dickins120.69%11.56%
David Gibson60.35%11.56%
Peter Chubb50.29%11.56%
Jes Sorensen40.23%11.56%
Tim Schmielau30.17%11.56%
Jason Uhlenkott20.12%11.56%
Ingo Molnar10.06%11.56%
Benjamin Herrenschmidt10.06%11.56%
Tejun Heo10.06%11.56%
Russell King10.06%11.56%
Martin Schwidefsky10.06%11.56%
Motohiro Kosaki10.06%11.56%
Jiri Slaby10.06%11.56%
Greg Kroah-Hartman10.06%11.56%
Yanmin Zhang10.06%11.56%
Total1737100.00%64100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.