cregit-Linux how code gets into the kernel

Release 4.14 arch/ia64/include/asm/sn/shubio.h

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
 */

#ifndef _ASM_IA64_SN_SHUBIO_H

#define _ASM_IA64_SN_SHUBIO_H


#define HUB_WIDGET_ID_MAX	0xf

#define IIO_NUM_ITTES		7

#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)


#define		IIO_WID			0x00400000	
/* Crosstalk Widget Identification */
							/* This register is also accessible from
                                                         * Crosstalk at address 0x0.  */

#define		IIO_WSTAT		0x00400008	
/* Crosstalk Widget Status */

#define		IIO_WCR			0x00400020	
/* Crosstalk Widget Control Register */

#define		IIO_ILAPR		0x00400100	
/* IO Local Access Protection Register */

#define		IIO_ILAPO		0x00400108	
/* IO Local Access Protection Override */

#define		IIO_IOWA		0x00400110	
/* IO Outbound Widget Access */

#define		IIO_IIWA		0x00400118	
/* IO Inbound Widget Access */

#define		IIO_IIDEM		0x00400120	
/* IO Inbound Device Error Mask */

#define		IIO_ILCSR		0x00400128	
/* IO LLP Control and Status Register */

#define		IIO_ILLR		0x00400130	
/* IO LLP Log Register    */

#define		IIO_IIDSR		0x00400138	
/* IO Interrupt Destination */


#define		IIO_IGFX0		0x00400140	
/* IO Graphics Node-Widget Map 0 */

#define		IIO_IGFX1		0x00400148	
/* IO Graphics Node-Widget Map 1 */


#define		IIO_ISCR0		0x00400150	
/* IO Scratch Register 0 */

#define		IIO_ISCR1		0x00400158	
/* IO Scratch Register 1 */


#define		IIO_ITTE1		0x00400160	
/* IO Translation Table Entry 1 */

#define		IIO_ITTE2		0x00400168	
/* IO Translation Table Entry 2 */

#define		IIO_ITTE3		0x00400170	
/* IO Translation Table Entry 3 */

#define		IIO_ITTE4		0x00400178	
/* IO Translation Table Entry 4 */

#define		IIO_ITTE5		0x00400180	
/* IO Translation Table Entry 5 */

#define		IIO_ITTE6		0x00400188	
/* IO Translation Table Entry 6 */

#define		IIO_ITTE7		0x00400190	
/* IO Translation Table Entry 7 */


#define		IIO_IPRB0		0x00400198	
/* IO PRB Entry 0   */

#define		IIO_IPRB8		0x004001A0	
/* IO PRB Entry 8   */

#define		IIO_IPRB9		0x004001A8	
/* IO PRB Entry 9   */

#define		IIO_IPRBA		0x004001B0	
/* IO PRB Entry A   */

#define		IIO_IPRBB		0x004001B8	
/* IO PRB Entry B   */

#define		IIO_IPRBC		0x004001C0	
/* IO PRB Entry C   */

#define		IIO_IPRBD		0x004001C8	
/* IO PRB Entry D   */

#define		IIO_IPRBE		0x004001D0	
/* IO PRB Entry E   */

#define		IIO_IPRBF		0x004001D8	
/* IO PRB Entry F   */


#define		IIO_IXCC		0x004001E0	
/* IO Crosstalk Credit Count Timeout */

#define		IIO_IMEM		0x004001E8	
/* IO Miscellaneous Error Mask */

#define		IIO_IXTT		0x004001F0	
/* IO Crosstalk Timeout Threshold */

#define		IIO_IECLR		0x004001F8	
/* IO Error Clear Register */

#define		IIO_IBCR		0x00400200	
/* IO BTE Control Register */


#define		IIO_IXSM		0x00400208	
/* IO Crosstalk Spurious Message */

#define		IIO_IXSS		0x00400210	
/* IO Crosstalk Spurious Sideband */


#define		IIO_ILCT		0x00400218	
/* IO LLP Channel Test    */


#define		IIO_IIEPH1 		0x00400220	
/* IO Incoming Error Packet Header, Part 1 */

#define		IIO_IIEPH2 		0x00400228	
/* IO Incoming Error Packet Header, Part 2 */


#define		IIO_ISLAPR 		0x00400230	
/* IO SXB Local Access Protection Regster */

#define		IIO_ISLAPO 		0x00400238	
/* IO SXB Local Access Protection Override */


#define		IIO_IWI			0x00400240	
/* IO Wrapper Interrupt Register */

#define		IIO_IWEL		0x00400248	
/* IO Wrapper Error Log Register */

#define		IIO_IWC			0x00400250	
/* IO Wrapper Control Register */

#define		IIO_IWS			0x00400258	
/* IO Wrapper Status Register */

#define		IIO_IWEIM		0x00400260	
/* IO Wrapper Error Interrupt Masking Register */


#define		IIO_IPCA		0x00400300	
/* IO PRB Counter Adjust */


#define		IIO_IPRTE0_A		0x00400308	
/* IO PIO Read Address Table Entry 0, Part A */

#define		IIO_IPRTE1_A		0x00400310	
/* IO PIO Read Address Table Entry 1, Part A */

#define		IIO_IPRTE2_A		0x00400318	
/* IO PIO Read Address Table Entry 2, Part A */

#define		IIO_IPRTE3_A		0x00400320	
/* IO PIO Read Address Table Entry 3, Part A */

#define		IIO_IPRTE4_A		0x00400328	
/* IO PIO Read Address Table Entry 4, Part A */

#define		IIO_IPRTE5_A		0x00400330	
/* IO PIO Read Address Table Entry 5, Part A */

#define		IIO_IPRTE6_A		0x00400338	
/* IO PIO Read Address Table Entry 6, Part A */

#define		IIO_IPRTE7_A		0x00400340	
/* IO PIO Read Address Table Entry 7, Part A */


#define		IIO_IPRTE0_B		0x00400348	
/* IO PIO Read Address Table Entry 0, Part B */

#define		IIO_IPRTE1_B		0x00400350	
/* IO PIO Read Address Table Entry 1, Part B */

#define		IIO_IPRTE2_B		0x00400358	
/* IO PIO Read Address Table Entry 2, Part B */

#define		IIO_IPRTE3_B		0x00400360	
/* IO PIO Read Address Table Entry 3, Part B */

#define		IIO_IPRTE4_B		0x00400368	
/* IO PIO Read Address Table Entry 4, Part B */

#define		IIO_IPRTE5_B		0x00400370	
/* IO PIO Read Address Table Entry 5, Part B */

#define		IIO_IPRTE6_B		0x00400378	
/* IO PIO Read Address Table Entry 6, Part B */

#define		IIO_IPRTE7_B		0x00400380	
/* IO PIO Read Address Table Entry 7, Part B */


#define		IIO_IPDR		0x00400388	
/* IO PIO Deallocation Register */

#define		IIO_ICDR		0x00400390	
/* IO CRB Entry Deallocation Register */

#define		IIO_IFDR		0x00400398	
/* IO IOQ FIFO Depth Register */

#define		IIO_IIAP		0x004003A0	
/* IO IIQ Arbitration Parameters */

#define		IIO_ICMR		0x004003A8	
/* IO CRB Management Register */

#define		IIO_ICCR		0x004003B0	
/* IO CRB Control Register */

#define		IIO_ICTO		0x004003B8	
/* IO CRB Timeout   */

#define		IIO_ICTP		0x004003C0	
/* IO CRB Timeout Prescalar */


#define		IIO_ICRB0_A		0x00400400	
/* IO CRB Entry 0_A */

#define		IIO_ICRB0_B		0x00400408	
/* IO CRB Entry 0_B */

#define		IIO_ICRB0_C		0x00400410	
/* IO CRB Entry 0_C */

#define		IIO_ICRB0_D		0x00400418	
/* IO CRB Entry 0_D */

#define		IIO_ICRB0_E		0x00400420	
/* IO CRB Entry 0_E */


#define		IIO_ICRB1_A		0x00400430	
/* IO CRB Entry 1_A */

#define		IIO_ICRB1_B		0x00400438	
/* IO CRB Entry 1_B */

#define		IIO_ICRB1_C		0x00400440	
/* IO CRB Entry 1_C */

#define		IIO_ICRB1_D		0x00400448	
/* IO CRB Entry 1_D */

#define		IIO_ICRB1_E		0x00400450	
/* IO CRB Entry 1_E */


#define		IIO_ICRB2_A		0x00400460	
/* IO CRB Entry 2_A */

#define		IIO_ICRB2_B		0x00400468	
/* IO CRB Entry 2_B */

#define		IIO_ICRB2_C		0x00400470	
/* IO CRB Entry 2_C */

#define		IIO_ICRB2_D		0x00400478	
/* IO CRB Entry 2_D */

#define		IIO_ICRB2_E		0x00400480	
/* IO CRB Entry 2_E */


#define		IIO_ICRB3_A		0x00400490	
/* IO CRB Entry 3_A */

#define		IIO_ICRB3_B		0x00400498	
/* IO CRB Entry 3_B */

#define		IIO_ICRB3_C		0x004004a0	
/* IO CRB Entry 3_C */

#define		IIO_ICRB3_D		0x004004a8	
/* IO CRB Entry 3_D */

#define		IIO_ICRB3_E		0x004004b0	
/* IO CRB Entry 3_E */


#define		IIO_ICRB4_A		0x004004c0	
/* IO CRB Entry 4_A */

#define		IIO_ICRB4_B		0x004004c8	
/* IO CRB Entry 4_B */

#define		IIO_ICRB4_C		0x004004d0	
/* IO CRB Entry 4_C */

#define		IIO_ICRB4_D		0x004004d8	
/* IO CRB Entry 4_D */

#define		IIO_ICRB4_E		0x004004e0	
/* IO CRB Entry 4_E */


#define		IIO_ICRB5_A		0x004004f0	
/* IO CRB Entry 5_A */

#define		IIO_ICRB5_B		0x004004f8	
/* IO CRB Entry 5_B */

#define		IIO_ICRB5_C		0x00400500	
/* IO CRB Entry 5_C */

#define		IIO_ICRB5_D		0x00400508	
/* IO CRB Entry 5_D */

#define		IIO_ICRB5_E		0x00400510	
/* IO CRB Entry 5_E */


#define		IIO_ICRB6_A		0x00400520	
/* IO CRB Entry 6_A */

#define		IIO_ICRB6_B		0x00400528	
/* IO CRB Entry 6_B */

#define		IIO_ICRB6_C		0x00400530	
/* IO CRB Entry 6_C */

#define		IIO_ICRB6_D		0x00400538	
/* IO CRB Entry 6_D */

#define		IIO_ICRB6_E		0x00400540	
/* IO CRB Entry 6_E */


#define		IIO_ICRB7_A		0x00400550	
/* IO CRB Entry 7_A */

#define		IIO_ICRB7_B		0x00400558	
/* IO CRB Entry 7_B */

#define		IIO_ICRB7_C		0x00400560	
/* IO CRB Entry 7_C */

#define		IIO_ICRB7_D		0x00400568	
/* IO CRB Entry 7_D */

#define		IIO_ICRB7_E		0x00400570	
/* IO CRB Entry 7_E */


#define		IIO_ICRB8_A		0x00400580	
/* IO CRB Entry 8_A */

#define		IIO_ICRB8_B		0x00400588	
/* IO CRB Entry 8_B */

#define		IIO_ICRB8_C		0x00400590	
/* IO CRB Entry 8_C */

#define		IIO_ICRB8_D		0x00400598	
/* IO CRB Entry 8_D */

#define		IIO_ICRB8_E		0x004005a0	
/* IO CRB Entry 8_E */


#define		IIO_ICRB9_A		0x004005b0	
/* IO CRB Entry 9_A */

#define		IIO_ICRB9_B		0x004005b8	
/* IO CRB Entry 9_B */

#define		IIO_ICRB9_C		0x004005c0	
/* IO CRB Entry 9_C */

#define		IIO_ICRB9_D		0x004005c8	
/* IO CRB Entry 9_D */

#define		IIO_ICRB9_E		0x004005d0	
/* IO CRB Entry 9_E */


#define		IIO_ICRBA_A		0x004005e0	
/* IO CRB Entry A_A */

#define		IIO_ICRBA_B		0x004005e8	
/* IO CRB Entry A_B */

#define		IIO_ICRBA_C		0x004005f0	
/* IO CRB Entry A_C */

#define		IIO_ICRBA_D		0x004005f8	
/* IO CRB Entry A_D */

#define		IIO_ICRBA_E		0x00400600	
/* IO CRB Entry A_E */


#define		IIO_ICRBB_A		0x00400610	
/* IO CRB Entry B_A */

#define		IIO_ICRBB_B		0x00400618	
/* IO CRB Entry B_B */

#define		IIO_ICRBB_C		0x00400620	
/* IO CRB Entry B_C */

#define		IIO_ICRBB_D		0x00400628	
/* IO CRB Entry B_D */

#define		IIO_ICRBB_E		0x00400630	
/* IO CRB Entry B_E */


#define		IIO_ICRBC_A		0x00400640	
/* IO CRB Entry C_A */

#define		IIO_ICRBC_B		0x00400648	
/* IO CRB Entry C_B */

#define		IIO_ICRBC_C		0x00400650	
/* IO CRB Entry C_C */

#define		IIO_ICRBC_D		0x00400658	
/* IO CRB Entry C_D */

#define		IIO_ICRBC_E		0x00400660	
/* IO CRB Entry C_E */


#define		IIO_ICRBD_A		0x00400670	
/* IO CRB Entry D_A */

#define		IIO_ICRBD_B		0x00400678	
/* IO CRB Entry D_B */

#define		IIO_ICRBD_C		0x00400680	
/* IO CRB Entry D_C */

#define		IIO_ICRBD_D		0x00400688	
/* IO CRB Entry D_D */

#define		IIO_ICRBD_E		0x00400690	
/* IO CRB Entry D_E */


#define		IIO_ICRBE_A		0x004006a0	
/* IO CRB Entry E_A */

#define		IIO_ICRBE_B		0x004006a8	
/* IO CRB Entry E_B */

#define		IIO_ICRBE_C		0x004006b0	
/* IO CRB Entry E_C */

#define		IIO_ICRBE_D		0x004006b8	
/* IO CRB Entry E_D */

#define		IIO_ICRBE_E		0x004006c0	
/* IO CRB Entry E_E */


#define		IIO_ICSML		0x00400700	
/* IO CRB Spurious Message Low */

#define		IIO_ICSMM		0x00400708	
/* IO CRB Spurious Message Middle */

#define		IIO_ICSMH		0x00400710	
/* IO CRB Spurious Message High */


#define		IIO_IDBSS		0x00400718	
/* IO Debug Submenu Select */


#define		IIO_IBLS0		0x00410000	
/* IO BTE Length Status 0 */

#define		IIO_IBSA0		0x00410008	
/* IO BTE Source Address 0 */

#define		IIO_IBDA0		0x00410010	
/* IO BTE Destination Address 0 */

#define		IIO_IBCT0		0x00410018	
/* IO BTE Control Terminate 0 */

#define		IIO_IBNA0		0x00410020	
/* IO BTE Notification Address 0 */

#define		IIO_IBIA0		0x00410028	
/* IO BTE Interrupt Address 0 */

#define		IIO_IBLS1		0x00420000	
/* IO BTE Length Status 1 */

#define		IIO_IBSA1		0x00420008	
/* IO BTE Source Address 1 */

#define		IIO_IBDA1		0x00420010	
/* IO BTE Destination Address 1 */

#define		IIO_IBCT1		0x00420018	
/* IO BTE Control Terminate 1 */

#define		IIO_IBNA1		0x00420020	
/* IO BTE Notification Address 1 */

#define		IIO_IBIA1		0x00420028	
/* IO BTE Interrupt Address 1 */


#define		IIO_IPCR		0x00430000	
/* IO Performance Control */

#define		IIO_IPPR		0x00430008	
/* IO Performance Profiling */

/************************************************************************
 *                                                                      *
 * Description:  This register echoes some information from the         *
 * LB_REV_ID register. It is available through Crosstalk as described   *
 * above. The REV_NUM and MFG_NUM fields receive their values from      *
 * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
 * The PART_NUM field's value is the Crosstalk device ID number that    *
 * Steve Miller assigned to the SHub chip.                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_wid_u {
	
u64 ii_wid_regval;
	struct {
		
u64 w_rsvd_1:1;
		
u64 w_mfg_num:11;
		
u64 w_part_num:16;
		
u64 w_rev_num:4;
		
u64 w_rsvd:32;
	
} ii_wid_fld_s;

} ii_wid_u_t;

/************************************************************************
 *                                                                      *
 *  The fields in this register are set upon detection of an error      *
 * and cleared by various mechanisms, as explained in the               *
 * description.                                                         *
 *                                                                      *
 ************************************************************************/


typedef union ii_wstat_u {
	
u64 ii_wstat_regval;
	struct {
		
u64 w_pending:4;
		
u64 w_xt_crd_to:1;
		
u64 w_xt_tail_to:1;
		
u64 w_rsvd_3:3;
		
u64 w_tx_mx_rty:1;
		
u64 w_rsvd_2:6;
		
u64 w_llp_tx_cnt:8;
		
u64 w_rsvd_1:8;
		
u64 w_crazy:1;
		
u64 w_rsvd:31;
	
} ii_wstat_fld_s;

} ii_wstat_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This is a read-write enabled register. It controls     *
 * various aspects of the Crosstalk flow control.                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_wcr_u {
	
u64 ii_wcr_regval;
	struct {
		
u64 w_wid:4;
		
u64 w_tag:1;
		
u64 w_rsvd_1:8;
		
u64 w_dst_crd:3;
		
u64 w_f_bad_pkt:1;
		
u64 w_dir_con:1;
		
u64 w_e_thresh:5;
		
u64 w_rsvd:41;
	
} ii_wcr_fld_s;

} ii_wcr_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register's value is a bit vector that guards      *
 * access to local registers within the II as well as to external       *
 * Crosstalk widgets. Each bit in the register corresponds to a         *
 * particular region in the system; a region consists of one, two or    *
 * four nodes (depending on the value of the REGION_SIZE field in the   *
 * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
 * protection provided by this register applies to PIO read             *
 * operations as well as PIO write operations. The II will perform a    *
 * PIO read or write request only if the bit for the requestor's        *
 * region is set; otherwise, the II will not perform the requested      *
 * operation and will return an error response. When a PIO read or      *
 * write request targets an external Crosstalk widget, then not only    *
 * must the bit for the requestor's region be set in the ILAPR, but     *
 * also the target widget's bit in the IOWA register must be set in     *
 * order for the II to perform the requested operation; otherwise,      *
 * the II will return an error response. Hence, the protection          *
 * provided by the IOWA register supplements the protection provided    *
 * by the ILAPR for requests that target external Crosstalk widgets.    *
 * This register itself can be accessed only by the nodes whose         *
 * region ID bits are enabled in this same register. It can also be     *
 * accessed through the IAlias space by the local processors.           *
 * The reset value of this register allows access by all nodes.         *
 *                                                                      *
 ************************************************************************/


typedef union ii_ilapr_u {
	
u64 ii_ilapr_regval;
	struct {
		
u64 i_region:64;
	
} ii_ilapr_fld_s;

} ii_ilapr_u_t;

/************************************************************************
 *                                                                      *
 * Description:  A write to this register of the 64-bit value           *
 * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
 * corresponding to the region of the requestor to be set (allow        *
 * access). A write of any other value will be ignored. Access          *
 * protection for this register is "SGIrules".                          *
 * This register can also be accessed through the IAlias space.         *
 * However, this access will not change the access permissions in the   *
 * ILAPR.                                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_ilapo_u {
	
u64 ii_ilapo_regval;
	struct {
		
u64 i_io_ovrride:64;
	
} ii_ilapo_fld_s;

} ii_ilapo_u_t;

/************************************************************************
 *                                                                      *
 *  This register qualifies all the PIO and Graphics writes launched    *
 * from the SHUB towards a widget.                                      *
 *                                                                      *
 ************************************************************************/


typedef union ii_iowa_u {
	
u64 ii_iowa_regval;
	struct {
		
u64 i_w0_oac:1;
		
u64 i_rsvd_1:7;
		
u64 i_wx_oac:8;
		
u64 i_rsvd:48;
	
} ii_iowa_fld_s;

} ii_iowa_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register qualifies all the requests launched      *
 * from a widget towards the Shub. This register is intended to be      *
 * used by software in case of misbehaving widgets.                     *
 *                                                                      *
 *                                                                      *
 ************************************************************************/


typedef union ii_iiwa_u {
	
u64 ii_iiwa_regval;
	struct {
		
u64 i_w0_iac:1;
		
u64 i_rsvd_1:7;
		
u64 i_wx_iac:8;
		
u64 i_rsvd:48;
	
} ii_iiwa_fld_s;

} ii_iiwa_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register qualifies all the operations launched    *
 * from a widget towards the SHub. It allows individual access          *
 * control for up to 8 devices per widget. A device refers to           *
 * individual DMA master hosted by a widget.                            *
 * The bits in each field of this register are cleared by the Shub      *
 * upon detection of an error which requires the device to be           *
 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
 * Crosstalk). Whether or not a device has access rights to this        *
 * Shub is determined by an AND of the device enable bit in the         *
 * appropriate field of this register and the corresponding bit in      *
 * the Wx_IAC field (for the widget which this device belongs to).      *
 * The bits in this field are set by writing a 1 to them. Incoming      *
 * replies from Crosstalk are not subject to this access control        *
 * mechanism.                                                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_iidem_u {
	
u64 ii_iidem_regval;
	struct {
		
u64 i_w8_dxs:8;
		
u64 i_w9_dxs:8;
		
u64 i_wa_dxs:8;
		
u64 i_wb_dxs:8;
		
u64 i_wc_dxs:8;
		
u64 i_wd_dxs:8;
		
u64 i_we_dxs:8;
		
u64 i_wf_dxs:8;
	
} ii_iidem_fld_s;

} ii_iidem_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the various programmable fields necessary    *
 * for controlling and observing the LLP signals.                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_ilcsr_u {
	
u64 ii_ilcsr_regval;
	struct {
		
u64 i_nullto:6;
		
u64 i_rsvd_4:2;
		
u64 i_wrmrst:1;
		
u64 i_rsvd_3:1;
		
u64 i_llp_en:1;
		
u64 i_bm8:1;
		
u64 i_llp_stat:2;
		
u64 i_remote_power:1;
		
u64 i_rsvd_2:1;
		
u64 i_maxrtry:10;
		
u64 i_d_avail_sel:2;
		
u64 i_rsvd_1:4;
		
u64 i_maxbrst:10;
		
u64 i_rsvd:22;

	
} ii_ilcsr_fld_s;

} ii_ilcsr_u_t;

/************************************************************************
 *                                                                      *
 *  This is simply a status registers that monitors the LLP error       *
 * rate.                                                                *
 *                                                                      *
 ************************************************************************/


typedef union ii_illr_u {
	
u64 ii_illr_regval;
	struct {
		
u64 i_sn_cnt:16;
		
u64 i_cb_cnt:16;
		
u64 i_rsvd:32;
	
} ii_illr_fld_s;

} ii_illr_u_t;

/************************************************************************
 *                                                                      *
 * Description:  All II-detected non-BTE error interrupts are           *
 * specified via this register.                                         *
 * NOTE: The PI interrupt register address is hardcoded in the II. If   *
 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
 * packet) to address offset 0x0180_0090 within the local register      *
 * address space of PI0 on the node specified by the NODE field. If     *
 * PI_ID==1, then the II sends the interrupt request to address         *
 * offset 0x01A0_0090 within the local register address space of PI1    *
 * on the node specified by the NODE field.                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_iidsr_u {
	
u64 ii_iidsr_regval;
	struct {
		
u64 i_level:8;
		
u64 i_pi_id:1;
		
u64 i_node:11;
		
u64 i_rsvd_3:4;
		
u64 i_enable:1;
		
u64 i_rsvd_2:3;
		
u64 i_int_sent:2;
		
u64 i_rsvd_1:2;
		
u64 i_pi0_forward_int:1;
		
u64 i_pi1_forward_int:1;
		
u64 i_rsvd:30;
	
} ii_iidsr_fld_s;

} ii_iidsr_u_t;

/************************************************************************
 *                                                                      *
 *  There are two instances of this register. This register is used     *
 * for matching up the incoming responses from the graphics widget to   *
 * the processor that initiated the graphics operation. The             *
 * write-responses are converted to graphics credits and returned to    *
 * the processor so that the processor interface can manage the flow    *
 * control.                                                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_igfx0_u {
	
u64 ii_igfx0_regval;
	struct {
		
u64 i_w_num:4;
		
u64 i_pi_id:1;
		
u64 i_n_num:12;
		
u64 i_p_num:1;
		
u64 i_rsvd:46;
	
} ii_igfx0_fld_s;

} ii_igfx0_u_t;

/************************************************************************
 *                                                                      *
 *  There are two instances of this register. This register is used     *
 * for matching up the incoming responses from the graphics widget to   *
 * the processor that initiated the graphics operation. The             *
 * write-responses are converted to graphics credits and returned to    *
 * the processor so that the processor interface can manage the flow    *
 * control.                                                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_igfx1_u {
	
u64 ii_igfx1_regval;
	struct {
		
u64 i_w_num:4;
		
u64 i_pi_id:1;
		
u64 i_n_num:12;
		
u64 i_p_num:1;
		
u64 i_rsvd:46;
	
} ii_igfx1_fld_s;

} ii_igfx1_u_t;

/************************************************************************
 *                                                                      *
 *  There are two instances of this registers. These registers are      *
 * used as scratch registers for software use.                          *
 *                                                                      *
 ************************************************************************/


typedef union ii_iscr0_u {
	
u64 ii_iscr0_regval;
	struct {
		
u64 i_scratch:64;
	
} ii_iscr0_fld_s;

} ii_iscr0_u_t;

/************************************************************************
 *                                                                      *
 *  There are two instances of this registers. These registers are      *
 * used as scratch registers for software use.                          *
 *                                                                      *
 ************************************************************************/


typedef union ii_iscr1_u {
	
u64 ii_iscr1_regval;
	struct {
		
u64 i_scratch:64;
	
} ii_iscr1_fld_s;

} ii_iscr1_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the SHub is thus the lower 16 GBytes per widget       * 
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte1_u {
	
u64 ii_itte1_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte1_fld_s;

} ii_itte1_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte2_u {
	
u64 ii_itte2_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte2_fld_s;

} ii_itte2_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte3_u {
	
u64 ii_itte3_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte3_fld_s;

} ii_itte3_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a SHub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the SHub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte4_u {
	
u64 ii_itte4_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte4_fld_s;

} ii_itte4_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a SHub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte5_u {
	
u64 ii_itte5_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte5_fld_s;

} ii_itte5_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the Shub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte6_u {
	
u64 ii_itte6_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte6_fld_s;

} ii_itte6_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are seven instances of translation table entry   *
 * registers. Each register maps a Shub Big Window to a 48-bit          *
 * address on Crosstalk.                                                *
 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 * number) are used to select one of these 7 registers. The Widget      *
 * number field is then derived from the W_NUM field for synthesizing   *
 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 * are padded with zeros. Although the maximum Crosstalk space          *
 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 * space can be accessed.                                               *
 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 * Window number) are used to select one of these 7 registers. The      *
 * Widget number field is then derived from the W_NUM field for         *
 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 * Crosstalk space addressable by the SHub is thus the lower            *
 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 * of this space can be accessed.                                       *
 *                                                                      *
 ************************************************************************/


typedef union ii_itte7_u {
	
u64 ii_itte7_regval;
	struct {
		
u64 i_offset:5;
		
u64 i_rsvd_1:3;
		
u64 i_w_num:4;
		
u64 i_iosp:1;
		
u64 i_rsvd:51;
	
} ii_itte7_fld_s;

} ii_itte7_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprb0_u {
	
u64 ii_iprb0_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprb0_fld_s;

} ii_iprb0_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprb8_u {
	
u64 ii_iprb8_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprb8_fld_s;

} ii_iprb8_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprb9_u {
	
u64 ii_iprb9_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprb9_fld_s;

} ii_iprb9_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.        *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 *                                                                      *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprba_u {
	
u64 ii_iprba_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprba_fld_s;

} ii_iprba_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprbb_u {
	
u64 ii_iprbb_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprbb_fld_s;

} ii_iprbb_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprbc_u {
	
u64 ii_iprbc_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprbc_fld_s;

} ii_iprbc_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprbd_u {
	
u64 ii_iprbd_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprbd_fld_s;

} ii_iprbd_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of SHub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprbe_u {
	
u64 ii_iprbe_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprbe_fld_s;

} ii_iprbe_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 9 instances of this register, one per        *
 * actual widget in this implementation of Shub and Crossbow.           *
 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 * refers to Crossbow's internal space.                                 *
 * This register contains the state elements per widget that are        *
 * necessary to manage the PIO flow control on Crosstalk and on the     *
 * Router Network. See the PIO Flow Control chapter for a complete      *
 * description of this register                                         *
 * The SPUR_WR bit requires some explanation. When this register is     *
 * written, the new value of the C field is captured in an internal     *
 * register so the hardware can remember what the programmer wrote      *
 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 * increments above this stored value, which indicates that there       *
 * have been more responses received than requests sent. The SPUR_WR    *
 * bit cannot be cleared until a value is written to the IPRBx          *
 * register; the write will correct the C field and capture its new     *
 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 * .                                                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprbf_u {
	
u64 ii_iprbf_regval;
	struct {
		
u64 i_c:8;
		
u64 i_na:14;
		
u64 i_rsvd_2:2;
		
u64 i_nb:14;
		
u64 i_rsvd_1:2;
		
u64 i_m:2;
		
u64 i_f:1;
		
u64 i_of_cnt:5;
		
u64 i_error:1;
		
u64 i_rd_to:1;
		
u64 i_spur_wr:1;
		
u64 i_spur_rd:1;
		
u64 i_rsvd:11;
		
u64 i_mult_err:1;
	
} ii_iprbe_fld_s;

} ii_iprbf_u_t;

/************************************************************************
 *                                                                      *
 *  This register specifies the timeout value to use for monitoring     *
 * Crosstalk credits which are used outbound to Crosstalk. An           *
 * internal counter called the Crosstalk Credit Timeout Counter         *
 * increments every 128 II clocks. The counter starts counting          *
 * anytime the credit count drops below a threshold, and resets to      *
 * zero (stops counting) anytime the credit count is at or above the    *
 * threshold. The threshold is 1 credit in direct connect mode and 2    *
 * in Crossbow connect mode. When the internal Crosstalk Credit         *
 * Timeout Counter reaches the value programmed in this register, a     *
 * Crosstalk Credit Timeout has occurred. The internal counter is not   *
 * readable from software, and stops counting at its maximum value,     *
 * so it cannot cause more than one interrupt.                          *
 *                                                                      *
 ************************************************************************/


typedef union ii_ixcc_u {
	
u64 ii_ixcc_regval;
	struct {
		
u64 i_time_out:26;
		
u64 i_rsvd:38;
	
} ii_ixcc_fld_s;

} ii_ixcc_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register qualifies all the PIO and DMA            *
 * operations launched from widget 0 towards the SHub. In               *
 * addition, it also qualifies accesses by the BTE streams.             *
 * The bits in each field of this register are cleared by the SHub      *
 * upon detection of an error which requires widget 0 or the BTE        *
 * streams to be terminated. Whether or not widget x has access         *
 * rights to this SHub is determined by an AND of the device            *
 * enable bit in the appropriate field of this register and bit 0 in    *
 * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
 * them. Incoming replies from Crosstalk are not subject to this        *
 * access control mechanism.                                            *
 *                                                                      *
 ************************************************************************/


typedef union ii_imem_u {
	
u64 ii_imem_regval;
	struct {
		
u64 i_w0_esd:1;
		
u64 i_rsvd_3:3;
		
u64 i_b0_esd:1;
		
u64 i_rsvd_2:3;
		
u64 i_b1_esd:1;
		
u64 i_rsvd_1:3;
		
u64 i_clr_precise:1;
		
u64 i_rsvd:51;
	
} ii_imem_fld_s;

} ii_imem_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register specifies the timeout value to use for   *
 * monitoring Crosstalk tail flits coming into the Shub in the          *
 * TAIL_TO field. An internal counter associated with this register     *
 * is incremented every 128 II internal clocks (7 bits). The counter    *
 * starts counting anytime a header micropacket is received and stops   *
 * counting (and resets to zero) any time a micropacket with a Tail     *
 * bit is received. Once the counter reaches the threshold value        *
 * programmed in this register, it generates an interrupt to the        *
 * processor that is programmed into the IIDSR. The counter saturates   *
 * (does not roll over) at its maximum value, so it cannot cause        *
 * another interrupt until after it is cleared.                         *
 * The register also contains the Read Response Timeout values. The     *
 * Prescalar is 23 bits, and counts II clocks. An internal counter      *
 * increments on every II clock and when it reaches the value in the    *
 * Prescalar field, all IPRTE registers with their valid bits set       *
 * have their Read Response timers bumped. Whenever any of them match   *
 * the value in the RRSP_TO field, a Read Response Timeout has          *
 * occurred, and error handling occurs as described in the Error        *
 * Handling section of this document.                                   *
 *                                                                      *
 ************************************************************************/


typedef union ii_ixtt_u {
	
u64 ii_ixtt_regval;
	struct {
		
u64 i_tail_to:26;
		
u64 i_rsvd_1:6;
		
u64 i_rrsp_ps:23;
		
u64 i_rrsp_to:5;
		
u64 i_rsvd:4;
	
} ii_ixtt_fld_s;

} ii_ixtt_u_t;

/************************************************************************
 *                                                                      *
 *  Writing a 1 to the fields of this register clears the appropriate   *
 * error bits in other areas of SHub. Note that when the                *
 * E_PRB_x bits are used to clear error bits in PRB registers,          *
 * SPUR_RD and SPUR_WR may persist, because they require additional     *
 * action to clear them. See the IPRBx and IXSS Register                *
 * specifications.                                                      *
 *                                                                      *
 ************************************************************************/


typedef union ii_ieclr_u {
	
u64 ii_ieclr_regval;
	struct {
		
u64 i_e_prb_0:1;
		
u64 i_rsvd:7;
		
u64 i_e_prb_8:1;
		
u64 i_e_prb_9:1;
		
u64 i_e_prb_a:1;
		
u64 i_e_prb_b:1;
		
u64 i_e_prb_c:1;
		
u64 i_e_prb_d:1;
		
u64 i_e_prb_e:1;
		
u64 i_e_prb_f:1;
		
u64 i_e_crazy:1;
		
u64 i_e_bte_0:1;
		
u64 i_e_bte_1:1;
		
u64 i_reserved_1:10;
		
u64 i_spur_rd_hdr:1;
		
u64 i_cam_intr_to:1;
		
u64 i_cam_overflow:1;
		
u64 i_cam_read_miss:1;
		
u64 i_ioq_rep_underflow:1;
		
u64 i_ioq_req_underflow:1;
		
u64 i_ioq_rep_overflow:1;
		
u64 i_ioq_req_overflow:1;
		
u64 i_iiq_rep_overflow:1;
		
u64 i_iiq_req_overflow:1;
		
u64 i_ii_xn_rep_cred_overflow:1;
		
u64 i_ii_xn_req_cred_overflow:1;
		
u64 i_ii_xn_invalid_cmd:1;
		
u64 i_xn_ii_invalid_cmd:1;
		
u64 i_reserved_2:21;
	
} ii_ieclr_fld_s;

} ii_ieclr_u_t;

/************************************************************************
 *                                                                      *
 *  This register controls both BTEs. SOFT_RESET is intended for        *
 * recovery after an error. COUNT controls the total number of CRBs     *
 * that both BTEs (combined) can use, which affects total BTE           *
 * bandwidth.                                                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibcr_u {
	
u64 ii_ibcr_regval;
	struct {
		
u64 i_count:4;
		
u64 i_rsvd_1:4;
		
u64 i_soft_reset:1;
		
u64 i_rsvd:55;
	
} ii_ibcr_fld_s;

} ii_ibcr_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the header of a spurious read response       *
 * received from Crosstalk. A spurious read response is defined as a    *
 * read response received by II from a widget for which (1) the SIDN    *
 * has a value between 1 and 7, inclusive (II never sends requests to   *
 * these widgets (2) there is no valid IPRTE register which             *
 * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
 * not the same as the widget recorded in the IPRTE register            *
 * referenced by the TNUM. If this condition is true, and if the        *
 * IXSS[VALID] bit is clear, then the header of the spurious read       *
 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
 * errant header is thereby captured, and no further spurious read      *
 * respones are captured until IXSS[VALID] is cleared by setting the    *
 * appropriate bit in IECLR. Every time a spurious read response is     *
 * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
 * message's SIDN field is set. This always happens, regardless of       *
 * whether a header is captured. The programmer should check            *
 * IXSM[SIDN] to determine which widget sent the spurious response,     *
 * because there may be more than one SPUR_RD bit set in the PRB        *
 * registers. The widget indicated by IXSM[SIDN] was the first          *
 * spurious read response to be received since the last time            *
 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
 * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
 * spurious messages from other widets which were detected after the    *
 * header was captured..                                                *
 *                                                                      *
 ************************************************************************/


typedef union ii_ixsm_u {
	
u64 ii_ixsm_regval;
	struct {
		
u64 i_byte_en:32;
		
u64 i_reserved:1;
		
u64 i_tag:3;
		
u64 i_alt_pactyp:4;
		
u64 i_bo:1;
		
u64 i_error:1;
		
u64 i_vbpm:1;
		
u64 i_gbr:1;
		
u64 i_ds:2;
		
u64 i_ct:1;
		
u64 i_tnum:5;
		
u64 i_pactyp:4;
		
u64 i_sidn:4;
		
u64 i_didn:4;
	
} ii_ixsm_fld_s;

} ii_ixsm_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the sideband bits of a spurious read         *
 * response received from Crosstalk.                                    *
 *                                                                      *
 ************************************************************************/


typedef union ii_ixss_u {
	
u64 ii_ixss_regval;
	struct {
		
u64 i_sideband:8;
		
u64 i_rsvd:55;
		
u64 i_valid:1;
	
} ii_ixss_fld_s;

} ii_ixss_u_t;

/************************************************************************
 *                                                                      *
 *  This register enables software to access the II LLP's test port.    *
 * Refer to the LLP 2.5 documentation for an explanation of the test    *
 * port. Software can write to this register to program the values      *
 * for the control fields (TestErrCapture, TestClear, TestFlit,         *
 * TestMask and TestSeed). Similarly, software can read from this       *
 * register to obtain the values of the test port's status outputs      *
 * (TestCBerr, TestValid and TestData).                                 *
 *                                                                      *
 ************************************************************************/


typedef union ii_ilct_u {
	
u64 ii_ilct_regval;
	struct {
		
u64 i_test_seed:20;
		
u64 i_test_mask:8;
		
u64 i_test_data:20;
		
u64 i_test_valid:1;
		
u64 i_test_cberr:1;
		
u64 i_test_flit:3;
		
u64 i_test_clear:1;
		
u64 i_test_err_capture:1;
		
u64 i_rsvd:9;
	
} ii_ilct_fld_s;

} ii_ilct_u_t;

/************************************************************************
 *                                                                      *
 *  If the II detects an illegal incoming Duplonet packet (request or   *
 * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
 * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
 * and assigns a value to the ERR_TYPE field which indicates the        *
 * specific nature of the error. The II recognizes four different       *
 * types of errors: short request packets (ERR_TYPE==2), short reply    *
 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
 * reply packets (ERR_TYPE==5). The encodings for these types of        *
 * errors were chosen to be consistent with the same types of errors    *
 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
 * the LB unit). If the II detects an illegal incoming Duplonet         *
 * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
 * the OVERRUN bit to indicate that a subsequent error has happened,    *
 * and does nothing further.                                            *
 *                                                                      *
 ************************************************************************/


typedef union ii_iieph1_u {
	
u64 ii_iieph1_regval;
	struct {
		
u64 i_command:7;
		
u64 i_rsvd_5:1;
		
u64 i_suppl:14;
		
u64 i_rsvd_4:1;
		
u64 i_source:14;
		
u64 i_rsvd_3:1;
		
u64 i_err_type:4;
		
u64 i_rsvd_2:4;
		
u64 i_overrun:1;
		
u64 i_rsvd_1:3;
		
u64 i_valid:1;
		
u64 i_rsvd:13;
	
} ii_iieph1_fld_s;

} ii_iieph1_u_t;

/************************************************************************
 *                                                                      *
 *  This register holds the Address field from the header flit of an    *
 * incoming erroneous Duplonet packet, along with the tail bit which    *
 * accompanied this header flit. This register is essentially an        *
 * extension of IIEPH1. Two registers were necessary because the 64     *
 * bits available in only a single register were insufficient to        *
 * capture the entire header flit of an erroneous packet.               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iieph2_u {
	
u64 ii_iieph2_regval;
	struct {
		
u64 i_rsvd_0:3;
		
u64 i_address:47;
		
u64 i_rsvd_1:10;
		
u64 i_tail:1;
		
u64 i_rsvd:3;
	
} ii_iieph2_fld_s;

} ii_iieph2_u_t;

/******************************/

/************************************************************************
 *                                                                      *
 *  This register's value is a bit vector that guards access from SXBs  *
 * to local registers within the II as well as to external Crosstalk    *
 * widgets                                                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_islapr_u {
	
u64 ii_islapr_regval;
	struct {
		
u64 i_region:64;
	
} ii_islapr_fld_s;

} ii_islapr_u_t;

/************************************************************************
 *                                                                      *
 *  A write to this register of the 56-bit value "Pup+Bun" will cause   *
 * the bit in the ISLAPR register corresponding to the region of the    *
 * requestor to be set (access allowed).                                (
 *                                                                      *
 ************************************************************************/


typedef union ii_islapo_u {
	
u64 ii_islapo_regval;
	struct {
		
u64 i_io_sbx_ovrride:56;
		
u64 i_rsvd:8;
	
} ii_islapo_fld_s;

} ii_islapo_u_t;

/************************************************************************
 *                                                                      *
 *  Determines how long the wrapper will wait aftr an interrupt is      *
 * initially issued from the II before it times out the outstanding     *
 * interrupt and drops it from the interrupt queue.                     * 
 *                                                                      *
 ************************************************************************/


typedef union ii_iwi_u {
	
u64 ii_iwi_regval;
	struct {
		
u64 i_prescale:24;
		
u64 i_rsvd:8;
		
u64 i_timeout:8;
		
u64 i_rsvd1:8;
		
u64 i_intrpt_retry_period:8;
		
u64 i_rsvd2:8;
	
} ii_iwi_fld_s;

} ii_iwi_u_t;

/************************************************************************
 *                                                                      *
 *  Log errors which have occurred in the II wrapper. The errors are    *
 * cleared by writing to the IECLR register.                            * 
 *                                                                      *
 ************************************************************************/


typedef union ii_iwel_u {
	
u64 ii_iwel_regval;
	struct {
		
u64 i_intr_timed_out:1;
		
u64 i_rsvd:7;
		
u64 i_cam_overflow:1;
		
u64 i_cam_read_miss:1;
		
u64 i_rsvd1:2;
		
u64 i_ioq_rep_underflow:1;
		
u64 i_ioq_req_underflow:1;
		
u64 i_ioq_rep_overflow:1;
		
u64 i_ioq_req_overflow:1;
		
u64 i_iiq_rep_overflow:1;
		
u64 i_iiq_req_overflow:1;
		
u64 i_rsvd2:6;
		
u64 i_ii_xn_rep_cred_over_under:1;
		
u64 i_ii_xn_req_cred_over_under:1;
		
u64 i_rsvd3:6;
		
u64 i_ii_xn_invalid_cmd:1;
		
u64 i_xn_ii_invalid_cmd:1;
		
u64 i_rsvd4:30;
	
} ii_iwel_fld_s;

} ii_iwel_u_t;

/************************************************************************
 *                                                                      *
 *  Controls the II wrapper.                                            * 
 *                                                                      *
 ************************************************************************/


typedef union ii_iwc_u {
	
u64 ii_iwc_regval;
	struct {
		
u64 i_dma_byte_swap:1;
		
u64 i_rsvd:3;
		
u64 i_cam_read_lines_reset:1;
		
u64 i_rsvd1:3;
		
u64 i_ii_xn_cred_over_under_log:1;
		
u64 i_rsvd2:19;
		
u64 i_xn_rep_iq_depth:5;
		
u64 i_rsvd3:3;
		
u64 i_xn_req_iq_depth:5;
		
u64 i_rsvd4:3;
		
u64 i_iiq_depth:6;
		
u64 i_rsvd5:12;
		
u64 i_force_rep_cred:1;
		
u64 i_force_req_cred:1;
	
} ii_iwc_fld_s;

} ii_iwc_u_t;

/************************************************************************
 *                                                                      *
 *  Status in the II wrapper.                                           * 
 *                                                                      *
 ************************************************************************/


typedef union ii_iws_u {
	
u64 ii_iws_regval;
	struct {
		
u64 i_xn_rep_iq_credits:5;
		
u64 i_rsvd:3;
		
u64 i_xn_req_iq_credits:5;
		
u64 i_rsvd1:51;
	
} ii_iws_fld_s;

} ii_iws_u_t;

/************************************************************************
 *                                                                      *
 *  Masks errors in the IWEL register.                                  *
 *                                                                      *
 ************************************************************************/


typedef union ii_iweim_u {
	
u64 ii_iweim_regval;
	struct {
		
u64 i_intr_timed_out:1;
		
u64 i_rsvd:7;
		
u64 i_cam_overflow:1;
		
u64 i_cam_read_miss:1;
		
u64 i_rsvd1:2;
		
u64 i_ioq_rep_underflow:1;
		
u64 i_ioq_req_underflow:1;
		
u64 i_ioq_rep_overflow:1;
		
u64 i_ioq_req_overflow:1;
		
u64 i_iiq_rep_overflow:1;
		
u64 i_iiq_req_overflow:1;
		
u64 i_rsvd2:6;
		
u64 i_ii_xn_rep_cred_overflow:1;
		
u64 i_ii_xn_req_cred_overflow:1;
		
u64 i_rsvd3:6;
		
u64 i_ii_xn_invalid_cmd:1;
		
u64 i_xn_ii_invalid_cmd:1;
		
u64 i_rsvd4:30;
	
} ii_iweim_fld_s;

} ii_iweim_u_t;

/************************************************************************
 *                                                                      *
 *  A write to this register causes a particular field in the           *
 * corresponding widget's PRB entry to be adjusted up or down by 1.     *
 * This counter should be used when recovering from error and reset     *
 * conditions. Note that software would be capable of causing           *
 * inadvertent overflow or underflow of these counters.                 *
 *                                                                      *
 ************************************************************************/


typedef union ii_ipca_u {
	
u64 ii_ipca_regval;
	struct {
		
u64 i_wid:4;
		
u64 i_adjust:1;
		
u64 i_rsvd_1:3;
		
u64 i_field:2;
		
u64 i_rsvd:54;
	
} ii_ipca_fld_s;

} ii_ipca_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte0a_u {
	
u64 ii_iprte0a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte0a_fld_s;

} ii_iprte0a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte1a_u {
	
u64 ii_iprte1a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte1a_fld_s;

} ii_iprte1a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte2a_u {
	
u64 ii_iprte2a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte2a_fld_s;

} ii_iprte2a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte3a_u {
	
u64 ii_iprte3a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte3a_fld_s;

} ii_iprte3a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte4a_u {
	
u64 ii_iprte4a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte4a_fld_s;

} ii_iprte4a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte5a_u {
	
u64 ii_iprte5a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte5a_fld_s;

} ii_iprte5a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte6a_u {
	
u64 ii_iprte6a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprte6a_fld_s;

} ii_iprte6a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte7a_u {
	
u64 ii_iprte7a_regval;
	struct {
		
u64 i_rsvd_1:54;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} ii_iprtea7_fld_s;

} ii_iprte7a_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte0b_u {
	
u64 ii_iprte0b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte0b_fld_s;

} ii_iprte0b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte1b_u {
	
u64 ii_iprte1b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte1b_fld_s;

} ii_iprte1b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte2b_u {
	
u64 ii_iprte2b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte2b_fld_s;

} ii_iprte2b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte3b_u {
	
u64 ii_iprte3b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte3b_fld_s;

} ii_iprte3b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte4b_u {
	
u64 ii_iprte4b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte4b_fld_s;

} ii_iprte4b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte5b_u {
	
u64 ii_iprte5b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte5b_fld_s;

} ii_iprte5b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte6b_u {
	
u64 ii_iprte6b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;

	
} ii_iprte6b_fld_s;

} ii_iprte6b_u_t;

/************************************************************************
 *                                                                      *
 *  There are 8 instances of this register. This register contains      *
 * the information that the II has to remember once it has launched a   *
 * PIO Read operation. The contents are used to form the correct        *
 * Router Network packet and direct the Crosstalk reply to the          *
 * appropriate processor.                                               *
 *                                                                      *
 ************************************************************************/


typedef union ii_iprte7b_u {
	
u64 ii_iprte7b_regval;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_address:47;
		
u64 i_init:3;
		
u64 i_source:11;
	
} ii_iprte7b_fld_s;

} ii_iprte7b_u_t;

/************************************************************************
 *                                                                      *
 * Description:  SHub II contains a feature which did not exist in      *
 * the Hub which automatically cleans up after a Read Response          *
 * timeout, including deallocation of the IPRTE and recovery of IBuf    *
 * space. The inclusion of this register in SHub is for backward        *
 * compatibility                                                        *
 * A write to this register causes an entry from the table of           *
 * outstanding PIO Read Requests to be freed and returned to the        *
 * stack of free entries. This register is used in handling the         *
 * timeout errors that result in a PIO Reply never returning from       *
 * Crosstalk.                                                           *
 * Note that this register does not affect the contents of the IPRTE    *
 * registers. The Valid bits in those registers have to be              *
 * specifically turned off by software.                                 *
 *                                                                      *
 ************************************************************************/


typedef union ii_ipdr_u {
	
u64 ii_ipdr_regval;
	struct {
		
u64 i_te:3;
		
u64 i_rsvd_1:1;
		
u64 i_pnd:1;
		
u64 i_init_rpcnt:1;
		
u64 i_rsvd:58;
	
} ii_ipdr_fld_s;

} ii_ipdr_u_t;

/************************************************************************
 *                                                                      *
 *  A write to this register causes a CRB entry to be returned to the   *
 * queue of free CRBs. The entry should have previously been cleared    *
 * (mark bit) via backdoor access to the pertinent CRB entry. This      *
 * register is used in the last step of handling the errors that are    *
 * captured and marked in CRB entries.  Briefly: 1) first error for     *
 * DMA write from a particular device, and first error for a            *
 * particular BTE stream, lead to a marked CRB entry, and processor     *
 * interrupt, 2) software reads the error information captured in the   *
 * CRB entry, and presumably takes some corrective action, 3)           *
 * software clears the mark bit, and finally 4) software writes to      *
 * the ICDR register to return the CRB entry to the list of free CRB    *
 * entries.                                                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_icdr_u {
	
u64 ii_icdr_regval;
	struct {
		
u64 i_crb_num:4;
		
u64 i_pnd:1;
		
u64 i_rsvd:59;
	
} ii_icdr_fld_s;

} ii_icdr_u_t;

/************************************************************************
 *                                                                      *
 *  This register provides debug access to two FIFOs inside of II.      *
 * Both IOQ_MAX* fields of this register contain the instantaneous      *
 * depth (in units of the number of available entries) of the           *
 * associated IOQ FIFO.  A read of this register will return the        *
 * number of free entries on each FIFO at the time of the read.  So     *
 * when a FIFO is idle, the associated field contains the maximum       *
 * depth of the FIFO.  This register is writable for debug reasons      *
 * and is intended to be written with the maximum desired FIFO depth    *
 * while the FIFO is idle. Software must assure that II is idle when    *
 * this register is written. If there are any active entries in any     *
 * of these FIFOs when this register is written, the results are        *
 * undefined.                                                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ifdr_u {
	
u64 ii_ifdr_regval;
	struct {
		
u64 i_ioq_max_rq:7;
		
u64 i_set_ioq_rq:1;
		
u64 i_ioq_max_rp:7;
		
u64 i_set_ioq_rp:1;
		
u64 i_rsvd:48;
	
} ii_ifdr_fld_s;

} ii_ifdr_u_t;

/************************************************************************
 *                                                                      *
 *  This register allows the II to become sluggish in removing          *
 * messages from its inbound queue (IIQ). This will cause messages to   *
 * back up in either virtual channel. Disabling the "molasses" mode     *
 * subsequently allows the II to be tested under stress. In the         *
 * sluggish ("Molasses") mode, the localized effects of congestion      *
 * can be observed.                                                     *
 *                                                                      *
 ************************************************************************/


typedef union ii_iiap_u {
	
u64 ii_iiap_regval;
	struct {
		
u64 i_rq_mls:6;
		
u64 i_rsvd_1:2;
		
u64 i_rp_mls:6;
		
u64 i_rsvd:50;
	
} ii_iiap_fld_s;

} ii_iiap_u_t;

/************************************************************************
 *                                                                      *
 *  This register allows several parameters of CRB operation to be      *
 * set. Note that writing to this register can have catastrophic side   *
 * effects, if the CRB is not quiescent, i.e. if the CRB is             *
 * processing protocol messages when the write occurs.                  *
 *                                                                      *
 ************************************************************************/


typedef union ii_icmr_u {
	
u64 ii_icmr_regval;
	struct {
		
u64 i_sp_msg:1;
		
u64 i_rd_hdr:1;
		
u64 i_rsvd_4:2;
		
u64 i_c_cnt:4;
		
u64 i_rsvd_3:4;
		
u64 i_clr_rqpd:1;
		
u64 i_clr_rppd:1;
		
u64 i_rsvd_2:2;
		
u64 i_fc_cnt:4;
		
u64 i_crb_vld:15;
		
u64 i_crb_mark:15;
		
u64 i_rsvd_1:2;
		
u64 i_precise:1;
		
u64 i_rsvd:11;
	
} ii_icmr_fld_s;

} ii_icmr_u_t;

/************************************************************************
 *                                                                      *
 *  This register allows control of the table portion of the CRB        *
 * logic via software. Control operations from this register have       *
 * priority over all incoming Crosstalk or BTE requests.                *
 *                                                                      *
 ************************************************************************/


typedef union ii_iccr_u {
	
u64 ii_iccr_regval;
	struct {
		
u64 i_crb_num:4;
		
u64 i_rsvd_1:4;
		
u64 i_cmd:8;
		
u64 i_pending:1;
		
u64 i_rsvd:47;
	
} ii_iccr_fld_s;

} ii_iccr_u_t;

/************************************************************************
 *                                                                      *
 *  This register allows the maximum timeout value to be programmed.    *
 *                                                                      *
 ************************************************************************/


typedef union ii_icto_u {
	
u64 ii_icto_regval;
	struct {
		
u64 i_timeout:8;
		
u64 i_rsvd:56;
	
} ii_icto_fld_s;

} ii_icto_u_t;

/************************************************************************
 *                                                                      *
 *  This register allows the timeout prescalar to be programmed. An     *
 * internal counter is associated with this register. When the          *
 * internal counter reaches the value of the PRESCALE field, the        *
 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
 * field). The internal counter resets to zero, and then continues      *
 * counting.                                                            *
 *                                                                      *
 ************************************************************************/


typedef union ii_ictp_u {
	
u64 ii_ictp_regval;
	struct {
		
u64 i_prescale:24;
		
u64 i_rsvd:40;
	
} ii_ictp_fld_s;

} ii_ictp_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 * The CRB Entry registers can be conceptualized as rows and columns    *
 * (illustrated in the table above). Each row contains the 4            *
 * registers required for a single CRB Entry. The first doubleword      *
 * (column) for each entry is labeled A, and the second doubleword      *
 * (higher address) is labeled B, the third doubleword is labeled C,    *
 * the fourth doubleword is labeled D and the fifth doubleword is       *
 * labeled E. All CRB entries have their addresses on a quarter         *
 * cacheline aligned boundary.                   *
 * Upon reset, only the following fields are initialized: valid         *
 * (VLD), priority count, timeout, timeout valid, and context valid.    *
 * All other bits should be cleared by software before use (after       *
 * recovering any potential error state from before the reset).         *
 * The following four tables summarize the format for the four          *
 * registers that are used for each ICRB# Entry.                        *
 *                                                                      *
 ************************************************************************/


typedef union ii_icrb0_a_u {
	
u64 ii_icrb0_a_regval;
	struct {
		
u64 ia_iow:1;
		
u64 ia_vld:1;
		
u64 ia_addr:47;
		
u64 ia_tnum:5;
		
u64 ia_sidn:4;
		
u64 ia_rsvd:6;
	
} ii_icrb0_a_fld_s;

} ii_icrb0_a_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *                                                                      *
 ************************************************************************/


typedef union ii_icrb0_b_u {
	
u64 ii_icrb0_b_regval;
	struct {
		
u64 ib_xt_err:1;
		
u64 ib_mark:1;
		
u64 ib_ln_uce:1;
		
u64 ib_errcode:3;
		
u64 ib_error:1;
		
u64 ib_stall__bte_1:1;
		
u64 ib_stall__bte_0:1;
		
u64 ib_stall__intr:1;
		
u64 ib_stall_ib:1;
		
u64 ib_intvn:1;
		
u64 ib_wb:1;
		
u64 ib_hold:1;
		
u64 ib_ack:1;
		
u64 ib_resp:1;
		
u64 ib_ack_cnt:11;
		
u64 ib_rsvd:7;
		
u64 ib_exc:5;
		
u64 ib_init:3;
		
u64 ib_imsg:8;
		
u64 ib_imsgtype:2;
		
u64 ib_use_old:1;
		
u64 ib_rsvd_1:11;
	
} ii_icrb0_b_fld_s;

} ii_icrb0_b_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *                                                                      *
 ************************************************************************/


typedef union ii_icrb0_c_u {
	
u64 ii_icrb0_c_regval;
	struct {
		
u64 ic_source:15;
		
u64 ic_size:2;
		
u64 ic_ct:1;
		
u64 ic_bte_num:1;
		
u64 ic_gbr:1;
		
u64 ic_resprqd:1;
		
u64 ic_bo:1;
		
u64 ic_suppl:15;
		
u64 ic_rsvd:27;
	
} ii_icrb0_c_fld_s;

} ii_icrb0_c_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *                                                                      *
 ************************************************************************/


typedef union ii_icrb0_d_u {
	
u64 ii_icrb0_d_regval;
	struct {
		
u64 id_pa_be:43;
		
u64 id_bte_op:1;
		
u64 id_pr_psc:4;
		
u64 id_pr_cnt:4;
		
u64 id_sleep:1;
		
u64 id_rsvd:11;
	
} ii_icrb0_d_fld_s;

} ii_icrb0_d_u_t;

/************************************************************************
 *                                                                      *
 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
 * used for Crosstalk operations (both cacheline and partial            *
 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
 * registers (_A to _E) are required to read and write each entry.      *
 *                                                                      *
 ************************************************************************/


typedef union ii_icrb0_e_u {
	
u64 ii_icrb0_e_regval;
	struct {
		
u64 ie_timeout:8;
		
u64 ie_context:15;
		
u64 ie_rsvd:1;
		
u64 ie_tvld:1;
		
u64 ie_cvld:1;
		
u64 ie_rsvd_0:38;
	
} ii_icrb0_e_fld_s;

} ii_icrb0_e_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the lower 64 bits of the header of the       *
 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 * register is set.                                                     *
 *                                                                      *
 ************************************************************************/


typedef union ii_icsml_u {
	
u64 ii_icsml_regval;
	struct {
		
u64 i_tt_addr:47;
		
u64 i_newsuppl_ex:14;
		
u64 i_reserved:2;
		
u64 i_overflow:1;
	
} ii_icsml_fld_s;

} ii_icsml_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the middle 64 bits of the header of the      *
 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
 * register is set.                                                     *
 *                                                                      *
 ************************************************************************/


typedef union ii_icsmm_u {
	
u64 ii_icsmm_regval;
	struct {
		
u64 i_tt_ack_cnt:11;
		
u64 i_reserved:53;
	
} ii_icsmm_fld_s;

} ii_icsmm_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the microscopic state, all the inputs to     *
 * the protocol table, captured with the spurious message. Valid when   *
 * the SP_MSG bit in the ICMR register is set.                          *
 *                                                                      *
 ************************************************************************/


typedef union ii_icsmh_u {
	
u64 ii_icsmh_regval;
	struct {
		
u64 i_tt_vld:1;
		
u64 i_xerr:1;
		
u64 i_ft_cwact_o:1;
		
u64 i_ft_wact_o:1;
		
u64 i_ft_active_o:1;
		
u64 i_sync:1;
		
u64 i_mnusg:1;
		
u64 i_mnusz:1;
		
u64 i_plusz:1;
		
u64 i_plusg:1;
		
u64 i_tt_exc:5;
		
u64 i_tt_wb:1;
		
u64 i_tt_hold:1;
		
u64 i_tt_ack:1;
		
u64 i_tt_resp:1;
		
u64 i_tt_intvn:1;
		
u64 i_g_stall_bte1:1;
		
u64 i_g_stall_bte0:1;
		
u64 i_g_stall_il:1;
		
u64 i_g_stall_ib:1;
		
u64 i_tt_imsg:8;
		
u64 i_tt_imsgtype:2;
		
u64 i_tt_use_old:1;
		
u64 i_tt_respreqd:1;
		
u64 i_tt_bte_num:1;
		
u64 i_cbn:1;
		
u64 i_match:1;
		
u64 i_rpcnt_lt_34:1;
		
u64 i_rpcnt_ge_34:1;
		
u64 i_rpcnt_lt_18:1;
		
u64 i_rpcnt_ge_18:1;
		
u64 i_rpcnt_lt_2:1;
		
u64 i_rpcnt_ge_2:1;
		
u64 i_rqcnt_lt_18:1;
		
u64 i_rqcnt_ge_18:1;
		
u64 i_rqcnt_lt_2:1;
		
u64 i_rqcnt_ge_2:1;
		
u64 i_tt_device:7;
		
u64 i_tt_init:3;
		
u64 i_reserved:5;
	
} ii_icsmh_fld_s;

} ii_icsmh_u_t;

/************************************************************************
 *                                                                      *
 *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
 * II core and a 3-bit selection signal to the fsbclk domain in the II  *
 * wrapper.                                                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_idbss_u {
	
u64 ii_idbss_regval;
	struct {
		
u64 i_iioclk_core_submenu:3;
		
u64 i_rsvd:5;
		
u64 i_fsbclk_wrapper_submenu:3;
		
u64 i_rsvd_1:5;
		
u64 i_iioclk_menu:5;
		
u64 i_rsvd_2:43;
	
} ii_idbss_fld_s;

} ii_idbss_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register is used to set up the length for a       *
 * transfer and then to monitor the progress of that transfer. This     *
 * register needs to be initialized before a transfer is started. A     *
 * legitimate write to this register will set the Busy bit, clear the   *
 * Error bit, and initialize the length to the value desired.           *
 * While the transfer is in progress, hardware will decrement the       *
 * length field with each successful block that is copied. Once the     *
 * transfer completes, hardware will clear the Busy bit. The length     *
 * field will also contain the number of cache lines left to be         *
 * transferred.                                                         *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibls0_u {
	
u64 ii_ibls0_regval;
	struct {
		
u64 i_length:16;
		
u64 i_error:1;
		
u64 i_rsvd_1:3;
		
u64 i_busy:1;
		
u64 i_rsvd:43;
	
} ii_ibls0_fld_s;

} ii_ibls0_u_t;

/************************************************************************
 *                                                                      *
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibsa0_u {
	
u64 ii_ibsa0_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:42;
		
u64 i_rsvd:15;
	
} ii_ibsa0_fld_s;

} ii_ibsa0_u_t;

/************************************************************************
 *                                                                      *
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibda0_u {
	
u64 ii_ibda0_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:42;
		
u64 i_rsvd:15;
	
} ii_ibda0_fld_s;

} ii_ibda0_u_t;

/************************************************************************
 *                                                                      *
 *  Writing to this register sets up the attributes of the transfer     *
 * and initiates the transfer operation. Reading this register has      *
 * the side effect of terminating any transfer in progress. Note:       *
 * stopping a transfer midstream could have an adverse impact on the    *
 * other BTE. If a BTE stream has to be stopped (due to error           *
 * handling for example), both BTE streams should be stopped and        *
 * their transfers discarded.                                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibct0_u {
	
u64 ii_ibct0_regval;
	struct {
		
u64 i_zerofill:1;
		
u64 i_rsvd_2:3;
		
u64 i_notify:1;
		
u64 i_rsvd_1:3;
		
u64 i_poison:1;
		
u64 i_rsvd:55;
	
} ii_ibct0_fld_s;

} ii_ibct0_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the address to which the WINV is sent.       *
 * This address has to be cache line aligned.                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibna0_u {
	
u64 ii_ibna0_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:42;
		
u64 i_rsvd:15;
	
} ii_ibna0_fld_s;

} ii_ibna0_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the programmable level as well as the node   *
 * ID and PI unit of the processor to which the interrupt will be       *
 * sent.                                                                *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibia0_u {
	
u64 ii_ibia0_regval;
	struct {
		
u64 i_rsvd_2:1;
		
u64 i_node_id:11;
		
u64 i_rsvd_1:4;
		
u64 i_level:7;
		
u64 i_rsvd:41;
	
} ii_ibia0_fld_s;

} ii_ibia0_u_t;

/************************************************************************
 *                                                                      *
 * Description:  This register is used to set up the length for a       *
 * transfer and then to monitor the progress of that transfer. This     *
 * register needs to be initialized before a transfer is started. A     *
 * legitimate write to this register will set the Busy bit, clear the   *
 * Error bit, and initialize the length to the value desired.           *
 * While the transfer is in progress, hardware will decrement the       *
 * length field with each successful block that is copied. Once the     *
 * transfer completes, hardware will clear the Busy bit. The length     *
 * field will also contain the number of cache lines left to be         *
 * transferred.                                                         *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibls1_u {
	
u64 ii_ibls1_regval;
	struct {
		
u64 i_length:16;
		
u64 i_error:1;
		
u64 i_rsvd_1:3;
		
u64 i_busy:1;
		
u64 i_rsvd:43;
	
} ii_ibls1_fld_s;

} ii_ibls1_u_t;

/************************************************************************
 *                                                                      *
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibsa1_u {
	
u64 ii_ibsa1_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:33;
		
u64 i_rsvd:24;
	
} ii_ibsa1_fld_s;

} ii_ibsa1_u_t;

/************************************************************************
 *                                                                      *
 *  This register should be loaded before a transfer is started. The    *
 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
 * address as described in Section 1.3, Figure2 and Figure3. Since      *
 * the bottom 7 bits of the address are always taken to be zero, BTE    *
 * transfers are always cacheline-aligned.                              *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibda1_u {
	
u64 ii_ibda1_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:33;
		
u64 i_rsvd:24;
	
} ii_ibda1_fld_s;

} ii_ibda1_u_t;

/************************************************************************
 *                                                                      *
 *  Writing to this register sets up the attributes of the transfer     *
 * and initiates the transfer operation. Reading this register has      *
 * the side effect of terminating any transfer in progress. Note:       *
 * stopping a transfer midstream could have an adverse impact on the    *
 * other BTE. If a BTE stream has to be stopped (due to error           *
 * handling for example), both BTE streams should be stopped and        *
 * their transfers discarded.                                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibct1_u {
	
u64 ii_ibct1_regval;
	struct {
		
u64 i_zerofill:1;
		
u64 i_rsvd_2:3;
		
u64 i_notify:1;
		
u64 i_rsvd_1:3;
		
u64 i_poison:1;
		
u64 i_rsvd:55;
	
} ii_ibct1_fld_s;

} ii_ibct1_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the address to which the WINV is sent.       *
 * This address has to be cache line aligned.                           *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibna1_u {
	
u64 ii_ibna1_regval;
	struct {
		
u64 i_rsvd_1:7;
		
u64 i_addr:33;
		
u64 i_rsvd:24;
	
} ii_ibna1_fld_s;

} ii_ibna1_u_t;

/************************************************************************
 *                                                                      *
 *  This register contains the programmable level as well as the node   *
 * ID and PI unit of the processor to which the interrupt will be       *
 * sent.                                                                *
 *                                                                      *
 ************************************************************************/


typedef union ii_ibia1_u {
	
u64 ii_ibia1_regval;
	struct {
		
u64 i_pi_id:1;
		
u64 i_node_id:8;
		
u64 i_rsvd_1:7;
		
u64 i_level:7;
		
u64 i_rsvd:41;
	
} ii_ibia1_fld_s;

} ii_ibia1_u_t;

/************************************************************************
 *                                                                      *
 *  This register defines the resources that feed information into      *
 * the two performance counters located in the IO Performance           *
 * Profiling Register. There are 17 different quantities that can be    *
 * measured. Given these 17 different options, the two performance      *
 * counters have 15 of them in common; menu selections 0 through 0xE    *
 * are identical for each performance counter. As for the other two     *
 * options, one is available from one performance counter and the       *
 * other is available from the other performance counter. Hence, the    *
 * II supports all 17*16=272 possible combinations of quantities to     *
 * measure.                                                             *
 *                                                                      *
 ************************************************************************/


typedef union ii_ipcr_u {
	
u64 ii_ipcr_regval;
	struct {
		
u64 i_ippr0_c:4;
		
u64 i_ippr1_c:4;
		
u64 i_icct:8;
		
u64 i_rsvd:48;
	
} ii_ipcr_fld_s;

} ii_ipcr_u_t;

/************************************************************************
 *                                                                      *
 *                                                                      *
 *                                                                      *
 ************************************************************************/


typedef union ii_ippr_u {
	
u64 ii_ippr_regval;
	struct {
		
u64 i_ippr0:32;
		
u64 i_ippr1:32;
	
} ii_ippr_fld_s;

} ii_ippr_u_t;

/************************************************************************
 *                                                                      *
 * The following defines which were not formed into structures are      *
 * probably identical to another register, and the name of the          *
 * register is provided against each of these registers. This           *
 * information needs to be checked carefully                            *
 *                                                                      *
 *              IIO_ICRB1_A             IIO_ICRB0_A                     *
 *              IIO_ICRB1_B             IIO_ICRB0_B                     *
 *              IIO_ICRB1_C             IIO_ICRB0_C                     *
 *              IIO_ICRB1_D             IIO_ICRB0_D                     *
 *              IIO_ICRB1_E             IIO_ICRB0_E                     *
 *              IIO_ICRB2_A             IIO_ICRB0_A                     *
 *              IIO_ICRB2_B             IIO_ICRB0_B                     *
 *              IIO_ICRB2_C             IIO_ICRB0_C                     *
 *              IIO_ICRB2_D             IIO_ICRB0_D                     *
 *              IIO_ICRB2_E             IIO_ICRB0_E                     *
 *              IIO_ICRB3_A             IIO_ICRB0_A                     *
 *              IIO_ICRB3_B             IIO_ICRB0_B                     *
 *              IIO_ICRB3_C             IIO_ICRB0_C                     *
 *              IIO_ICRB3_D             IIO_ICRB0_D                     *
 *              IIO_ICRB3_E             IIO_ICRB0_E                     *
 *              IIO_ICRB4_A             IIO_ICRB0_A                     *
 *              IIO_ICRB4_B             IIO_ICRB0_B                     *
 *              IIO_ICRB4_C             IIO_ICRB0_C                     *
 *              IIO_ICRB4_D             IIO_ICRB0_D                     *
 *              IIO_ICRB4_E             IIO_ICRB0_E                     *
 *              IIO_ICRB5_A             IIO_ICRB0_A                     *
 *              IIO_ICRB5_B             IIO_ICRB0_B                     *
 *              IIO_ICRB5_C             IIO_ICRB0_C                     *
 *              IIO_ICRB5_D             IIO_ICRB0_D                     *
 *              IIO_ICRB5_E             IIO_ICRB0_E                     *
 *              IIO_ICRB6_A             IIO_ICRB0_A                     *
 *              IIO_ICRB6_B             IIO_ICRB0_B                     *
 *              IIO_ICRB6_C             IIO_ICRB0_C                     *
 *              IIO_ICRB6_D             IIO_ICRB0_D                     *
 *              IIO_ICRB6_E             IIO_ICRB0_E                     *
 *              IIO_ICRB7_A             IIO_ICRB0_A                     *
 *              IIO_ICRB7_B             IIO_ICRB0_B                     *
 *              IIO_ICRB7_C             IIO_ICRB0_C                     *
 *              IIO_ICRB7_D             IIO_ICRB0_D                     *
 *              IIO_ICRB7_E             IIO_ICRB0_E                     *
 *              IIO_ICRB8_A             IIO_ICRB0_A                     *
 *              IIO_ICRB8_B             IIO_ICRB0_B                     *
 *              IIO_ICRB8_C             IIO_ICRB0_C                     *
 *              IIO_ICRB8_D             IIO_ICRB0_D                     *
 *              IIO_ICRB8_E             IIO_ICRB0_E                     *
 *              IIO_ICRB9_A             IIO_ICRB0_A                     *
 *              IIO_ICRB9_B             IIO_ICRB0_B                     *
 *              IIO_ICRB9_C             IIO_ICRB0_C                     *
 *              IIO_ICRB9_D             IIO_ICRB0_D                     *
 *              IIO_ICRB9_E             IIO_ICRB0_E                     *
 *              IIO_ICRBA_A             IIO_ICRB0_A                     *
 *              IIO_ICRBA_B             IIO_ICRB0_B                     *
 *              IIO_ICRBA_C             IIO_ICRB0_C                     *
 *              IIO_ICRBA_D             IIO_ICRB0_D                     *
 *              IIO_ICRBA_E             IIO_ICRB0_E                     *
 *              IIO_ICRBB_A             IIO_ICRB0_A                     *
 *              IIO_ICRBB_B             IIO_ICRB0_B                     *
 *              IIO_ICRBB_C             IIO_ICRB0_C                     *
 *              IIO_ICRBB_D             IIO_ICRB0_D                     *
 *              IIO_ICRBB_E             IIO_ICRB0_E                     *
 *              IIO_ICRBC_A             IIO_ICRB0_A                     *
 *              IIO_ICRBC_B             IIO_ICRB0_B                     *
 *              IIO_ICRBC_C             IIO_ICRB0_C                     *
 *              IIO_ICRBC_D             IIO_ICRB0_D                     *
 *              IIO_ICRBC_E             IIO_ICRB0_E                     *
 *              IIO_ICRBD_A             IIO_ICRB0_A                     *
 *              IIO_ICRBD_B             IIO_ICRB0_B                     *
 *              IIO_ICRBD_C             IIO_ICRB0_C                     *
 *              IIO_ICRBD_D             IIO_ICRB0_D                     *
 *              IIO_ICRBD_E             IIO_ICRB0_E                     *
 *              IIO_ICRBE_A             IIO_ICRB0_A                     *
 *              IIO_ICRBE_B             IIO_ICRB0_B                     *
 *              IIO_ICRBE_C             IIO_ICRB0_C                     *
 *              IIO_ICRBE_D             IIO_ICRB0_D                     *
 *              IIO_ICRBE_E             IIO_ICRB0_E                     *
 *                                                                      *
 ************************************************************************/

/*
 * Slightly friendlier names for some common registers.
 */

#define IIO_WIDGET              IIO_WID		
/* Widget identification */

#define IIO_WIDGET_STAT         IIO_WSTAT	
/* Widget status register */

#define IIO_WIDGET_CTRL         IIO_WCR		
/* Widget control register */

#define IIO_PROTECT             IIO_ILAPR	
/* IO interface protection */

#define IIO_PROTECT_OVRRD       IIO_ILAPO	
/* IO protect override */

#define IIO_OUTWIDGET_ACCESS    IIO_IOWA	
/* Outbound widget access */

#define IIO_INWIDGET_ACCESS     IIO_IIWA	
/* Inbound widget access */

#define IIO_INDEV_ERR_MASK      IIO_IIDEM	
/* Inbound device error mask */

#define IIO_LLP_CSR             IIO_ILCSR	
/* LLP control and status */

#define IIO_LLP_LOG             IIO_ILLR	
/* LLP log */

#define IIO_XTALKCC_TOUT        IIO_IXCC	
/* Xtalk credit count timeout */

#define IIO_XTALKTT_TOUT        IIO_IXTT	
/* Xtalk tail timeout */

#define IIO_IO_ERR_CLR          IIO_IECLR	
/* IO error clear */

#define IIO_IGFX_0 		IIO_IGFX0

#define IIO_IGFX_1 		IIO_IGFX1

#define IIO_IBCT_0		IIO_IBCT0

#define IIO_IBCT_1		IIO_IBCT1

#define IIO_IBLS_0		IIO_IBLS0

#define IIO_IBLS_1		IIO_IBLS1

#define IIO_IBSA_0		IIO_IBSA0

#define IIO_IBSA_1		IIO_IBSA1

#define IIO_IBDA_0		IIO_IBDA0

#define IIO_IBDA_1		IIO_IBDA1

#define IIO_IBNA_0		IIO_IBNA0

#define IIO_IBNA_1		IIO_IBNA1

#define IIO_IBIA_0		IIO_IBIA0

#define IIO_IBIA_1		IIO_IBIA1

#define IIO_IOPRB_0		IIO_IPRB0


#define IIO_PRTE_A(_x)		(IIO_IPRTE0_A + (8 * (_x)))

#define IIO_PRTE_B(_x)		(IIO_IPRTE0_B + (8 * (_x)))

#define IIO_NUM_PRTES		8	
/* Total number of PRB table entries */

#define IIO_WIDPRTE_A(x)	IIO_PRTE_A(((x) - 8))	
/* widget ID to its PRTE num */

#define IIO_WIDPRTE_B(x)	IIO_PRTE_B(((x) - 8))	
/* widget ID to its PRTE num */


#define IIO_NUM_IPRBS 		9


#define IIO_LLP_CSR_IS_UP		0x00002000

#define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000

#define IIO_LLP_CSR_LLP_STAT_SHFT       12


#define IIO_LLP_CB_MAX  0xffff	
/* in ILLR CB_CNT, Max Check Bit errors */

#define IIO_LLP_SN_MAX  0xffff	
/* in ILLR SN_CNT, Max Sequence Number errors */

/* key to IIO_PROTECT_OVRRD */

#define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull	
/* "SGIrules" */

/* BTE register names */

#define IIO_BTE_STAT_0          IIO_IBLS_0	
/* Also BTE length/status 0 */

#define IIO_BTE_SRC_0           IIO_IBSA_0	
/* Also BTE source address  0 */

#define IIO_BTE_DEST_0          IIO_IBDA_0	
/* Also BTE dest. address 0 */

#define IIO_BTE_CTRL_0          IIO_IBCT_0	
/* Also BTE control/terminate 0 */

#define IIO_BTE_NOTIFY_0        IIO_IBNA_0	
/* Also BTE notification 0 */

#define IIO_BTE_INT_0           IIO_IBIA_0	
/* Also BTE interrupt 0 */

#define IIO_BTE_OFF_0           0	
/* Base offset from BTE 0 regs. */

#define IIO_BTE_OFF_1   	(IIO_IBLS_1 - IIO_IBLS_0)	
/* Offset from base to BTE 1 */

/* BTE register offsets from base */

#define BTEOFF_STAT             0

#define BTEOFF_SRC      	(IIO_BTE_SRC_0 - IIO_BTE_STAT_0)

#define BTEOFF_DEST     	(IIO_BTE_DEST_0 - IIO_BTE_STAT_0)

#define BTEOFF_CTRL     	(IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)

#define BTEOFF_NOTIFY   	(IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)

#define BTEOFF_INT      	(IIO_BTE_INT_0 - IIO_BTE_STAT_0)

/* names used in shub diags */

#define IIO_BASE_BTE0   IIO_IBLS_0

#define IIO_BASE_BTE1   IIO_IBLS_1

/*
 * Macro which takes the widget number, and returns the
 * IO PRB address of that widget.
 * value _x is expected to be a widget number in the range
 * 0, 8 - 0xF
 */

#define IIO_IOPRB(_x)	(IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
                        (_x) : \
                        (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )

/* GFX Flow Control Node/Widget Register */

#define IIO_IGFX_W_NUM_BITS	4	
/* size of widget num field */

#define IIO_IGFX_W_NUM_MASK	((1<<IIO_IGFX_W_NUM_BITS)-1)

#define IIO_IGFX_W_NUM_SHIFT	0

#define IIO_IGFX_PI_NUM_BITS	1	
/* size of PI num field */

#define IIO_IGFX_PI_NUM_MASK	((1<<IIO_IGFX_PI_NUM_BITS)-1)

#define IIO_IGFX_PI_NUM_SHIFT	4

#define IIO_IGFX_N_NUM_BITS	8	
/* size of node num field */

#define IIO_IGFX_N_NUM_MASK	((1<<IIO_IGFX_N_NUM_BITS)-1)

#define IIO_IGFX_N_NUM_SHIFT	5

#define IIO_IGFX_P_NUM_BITS	1	
/* size of processor num field */

#define IIO_IGFX_P_NUM_MASK	((1<<IIO_IGFX_P_NUM_BITS)-1)

#define IIO_IGFX_P_NUM_SHIFT	16

#define IIO_IGFX_INIT(widget, pi, node, cpu)				(\
        (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |     \
        (((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|     \
        (((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |     \
        (((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))

/* Scratch registers (all bits available) */

#define IIO_SCRATCH_REG0        IIO_ISCR0

#define IIO_SCRATCH_REG1        IIO_ISCR1

#define IIO_SCRATCH_MASK        0xffffffffffffffffUL


#define IIO_SCRATCH_BIT0_0      0x0000000000000001UL

#define IIO_SCRATCH_BIT0_1      0x0000000000000002UL

#define IIO_SCRATCH_BIT0_2      0x0000000000000004UL

#define IIO_SCRATCH_BIT0_3      0x0000000000000008UL

#define IIO_SCRATCH_BIT0_4      0x0000000000000010UL

#define IIO_SCRATCH_BIT0_5      0x0000000000000020UL

#define IIO_SCRATCH_BIT0_6      0x0000000000000040UL

#define IIO_SCRATCH_BIT0_7      0x0000000000000080UL

#define IIO_SCRATCH_BIT0_8      0x0000000000000100UL

#define IIO_SCRATCH_BIT0_9      0x0000000000000200UL

#define IIO_SCRATCH_BIT0_A      0x0000000000000400UL


#define IIO_SCRATCH_BIT1_0      0x0000000000000001UL

#define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
/* IO Translation Table Entries */

#define IIO_NUM_ITTES   7	
/* ITTEs numbered 0..6 */
					/* Hw manuals number them 1..7! */
/*
 * IIO_IMEM Register fields.
 */

#define IIO_IMEM_W0ESD  0x1UL	
/* Widget 0 shut down due to error */

#define IIO_IMEM_B0ESD	(1UL << 4)	
/* BTE 0 shut down due to error */

#define IIO_IMEM_B1ESD	(1UL << 8)	
/* BTE 1 Shut down due to error */

/*
 * As a permanent workaround for a bug in the PI side of the shub, we've
 * redefined big window 7 as small window 0.
 XXX does this still apply for SN1??
 */

#define HUB_NUM_BIG_WINDOW	(IIO_NUM_ITTES - 1)

/*
 * Use the top big window as a surrogate for the first small window
 */

#define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW


#define ILCSR_WARM_RESET        0x100

/*
 * CRB manipulation macros
 *      The CRB macros are slightly complicated, since there are up to
 *      four registers associated with each CRB entry.
 */

#define IIO_NUM_CRBS            15	
/* Number of CRBs */

#define IIO_NUM_PC_CRBS         4	
/* Number of partial cache CRBs */

#define IIO_ICRB_OFFSET         8

#define IIO_ICRB_0              IIO_ICRB0_A

#define IIO_ICRB_ADDR_SHFT	2	
/* Shift to get proper address */
/* XXX - This is now tuneable:
        #define IIO_FIRST_PC_ENTRY 12
 */


#define IIO_ICRB_A(_x)	((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))

#define IIO_ICRB_B(_x)	((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))

#define IIO_ICRB_C(_x)	((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))

#define IIO_ICRB_D(_x)	((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))

#define IIO_ICRB_E(_x)	((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))


#define TNUM_TO_WIDGET_DEV(_tnum)	(_tnum & 0x7)

/*
 * values for "ecode" field
 */

#define IIO_ICRB_ECODE_DERR     0	
/* Directory error due to IIO access */

#define IIO_ICRB_ECODE_PERR     1	
/* Poison error on IO access */

#define IIO_ICRB_ECODE_WERR     2	
/* Write error by IIO access
                                         * e.g. WINV to a Read only line. */

#define IIO_ICRB_ECODE_AERR     3	
/* Access error caused by IIO access */

#define IIO_ICRB_ECODE_PWERR    4	
/* Error on partial write */

#define IIO_ICRB_ECODE_PRERR    5	
/* Error on partial read  */

#define IIO_ICRB_ECODE_TOUT     6	
/* CRB timeout before deallocating */

#define IIO_ICRB_ECODE_XTERR    7	
/* Incoming xtalk pkt had error bit */

/*
 * Values for field imsgtype
 */

#define IIO_ICRB_IMSGT_XTALK    0	
/* Incoming message from Xtalk */

#define IIO_ICRB_IMSGT_BTE      1	
/* Incoming message from BTE    */

#define IIO_ICRB_IMSGT_SN1NET   2	
/* Incoming message from SN1 net */

#define IIO_ICRB_IMSGT_CRB      3	
/* Incoming message from CRB ???  */

/*
 * values for field initiator.
 */

#define IIO_ICRB_INIT_XTALK     0	
/* Message originated in xtalk  */

#define IIO_ICRB_INIT_BTE0      0x1	
/* Message originated in BTE 0  */

#define IIO_ICRB_INIT_SN1NET    0x2	
/* Message originated in SN1net */

#define IIO_ICRB_INIT_CRB       0x3	
/* Message originated in CRB ?  */

#define IIO_ICRB_INIT_BTE1      0x5	
/* MEssage originated in BTE 1  */

/*
 * Number of credits Hub widget has while sending req/response to
 * xbow.
 * Value of 3 is required by Xbow 1.1
 * We may be able to increase this to 4 with Xbow 1.2.
 */

#define		   HUBII_XBOW_CREDIT       3

#define		   HUBII_XBOW_REV2_CREDIT  4

/*
 * Number of credits that xtalk devices should use when communicating
 * with a SHub (depth of SHub's queue).
 */

#define HUB_CREDIT 4

/*
 * Some IIO_PRB fields
 */

#define IIO_PRB_MULTI_ERR	(1LL << 63)

#define IIO_PRB_SPUR_RD		(1LL << 51)

#define IIO_PRB_SPUR_WR		(1LL << 50)

#define IIO_PRB_RD_TO		(1LL << 49)

#define IIO_PRB_ERROR		(1LL << 48)

/*************************************************************************

 Some of the IIO field masks and shifts are defined here.
 This is in order to maintain compatibility in SN0 and SN1 code
 
**************************************************************************/

/*
 * ICMR register fields
 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
 * present in SHub)
 */


#define IIO_ICMR_CRB_VLD_SHFT   20

#define IIO_ICMR_CRB_VLD_MASK	(0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)


#define IIO_ICMR_FC_CNT_SHFT    16

#define IIO_ICMR_FC_CNT_MASK	(0xf << IIO_ICMR_FC_CNT_SHFT)


#define IIO_ICMR_C_CNT_SHFT     4

#define IIO_ICMR_C_CNT_MASK	(0xf << IIO_ICMR_C_CNT_SHFT)


#define IIO_ICMR_PRECISE	(1UL << 52)

#define IIO_ICMR_CLR_RPPD	(1UL << 13)

#define IIO_ICMR_CLR_RQPD	(1UL << 12)

/*
 * IIO PIO Deallocation register field masks : (IIO_IPDR)
 XXX present but not needed in bedrock?  See the manual.
 */

#define IIO_IPDR_PND    	(1 << 4)

/*
 * IIO CRB deallocation register field masks: (IIO_ICDR)
 */

#define IIO_ICDR_PND    	(1 << 4)

/* 
 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
 */

#define IBLS_BUSY		(0x1UL << 20)

#define IBLS_ERROR_SHFT		16

#define IBLS_ERROR		(0x1UL << IBLS_ERROR_SHFT)

#define IBLS_LENGTH_MASK	0xffff

/*
 * IO BTE Control/Terminate register (IBCT) register bit field definitions
 */

#define IBCT_POISON		(0x1UL << 8)

#define IBCT_NOTIFY		(0x1UL << 4)

#define IBCT_ZFIL_MODE		(0x1UL << 0)

/*
 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
 */

#define IIEPH1_VALID		(1UL << 44)

#define IIEPH1_OVERRUN		(1UL << 40)

#define IIEPH1_ERR_TYPE_SHFT	32

#define IIEPH1_ERR_TYPE_MASK	0xf

#define IIEPH1_SOURCE_SHFT	20

#define IIEPH1_SOURCE_MASK	11

#define IIEPH1_SUPPL_SHFT	8

#define IIEPH1_SUPPL_MASK	11

#define IIEPH1_CMD_SHFT		0

#define IIEPH1_CMD_MASK		7


#define IIEPH2_TAIL		(1UL << 40)

#define IIEPH2_ADDRESS_SHFT	0

#define IIEPH2_ADDRESS_MASK	38


#define IIEPH1_ERR_SHORT_REQ	2

#define IIEPH1_ERR_SHORT_REPLY	3

#define IIEPH1_ERR_LONG_REQ	4

#define IIEPH1_ERR_LONG_REPLY	5

/*
 * IO Error Clear register bit field definitions
 */

#define IECLR_PI1_FWD_INT	(1UL << 31)	
/* clear PI1_FORWARD_INT in iidsr */

#define IECLR_PI0_FWD_INT	(1UL << 30)	
/* clear PI0_FORWARD_INT in iidsr */

#define IECLR_SPUR_RD_HDR	(1UL << 29)	
/* clear valid bit in ixss reg */

#define IECLR_BTE1		(1UL << 18)	
/* clear bte error 1 */

#define IECLR_BTE0		(1UL << 17)	
/* clear bte error 0 */

#define IECLR_CRAZY		(1UL << 16)	
/* clear crazy bit in wstat reg */

#define IECLR_PRB_F		(1UL << 15)	
/* clear err bit in PRB_F reg */

#define IECLR_PRB_E		(1UL << 14)	
/* clear err bit in PRB_E reg */

#define IECLR_PRB_D		(1UL << 13)	
/* clear err bit in PRB_D reg */

#define IECLR_PRB_C		(1UL << 12)	
/* clear err bit in PRB_C reg */

#define IECLR_PRB_B		(1UL << 11)	
/* clear err bit in PRB_B reg */

#define IECLR_PRB_A		(1UL << 10)	
/* clear err bit in PRB_A reg */

#define IECLR_PRB_9		(1UL << 9)	
/* clear err bit in PRB_9 reg */

#define IECLR_PRB_8		(1UL << 8)	
/* clear err bit in PRB_8 reg */

#define IECLR_PRB_0		(1UL << 0)	
/* clear err bit in PRB_0 reg */

/*
 * IIO CRB control register Fields: IIO_ICCR 
 */

#define	IIO_ICCR_PENDING	0x10000

#define	IIO_ICCR_CMD_MASK	0xFF

#define	IIO_ICCR_CMD_SHFT	7

#define	IIO_ICCR_CMD_NOP	0x0	
/* No Op */

#define	IIO_ICCR_CMD_WAKE	0x100	
/* Reactivate CRB entry and process */

#define	IIO_ICCR_CMD_TIMEOUT	0x200	
/* Make CRB timeout & mark invalid */

#define	IIO_ICCR_CMD_EJECT	0x400	
/* Contents of entry written to memory
                                         * via a WB
                                         */

#define	IIO_ICCR_CMD_FLUSH	0x800

/*
 *
 * CRB Register description.
 *
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 *
 * Many of the fields in CRB are status bits used by hardware
 * for implementation of the protocol. It's very dangerous to
 * mess around with the CRB registers.
 *
 * It's OK to read the CRB registers and try to make sense out of the
 * fields in CRB.
 *
 * Updating CRB requires all activities in Hub IIO to be quiesced.
 * otherwise, a write to CRB could corrupt other CRB entries.
 * CRBs are here only as a back door peek to shub IIO's status.
 * Quiescing implies  no dmas no PIOs
 * either directly from the cpu or from sn0net.
 * this is not something that can be done easily. So, AVOID updating
 * CRBs.
 */

/*
 * Easy access macros for CRBs, all 5 registers (A-E)
 */

typedef ii_icrb0_a_u_t icrba_t;

#define a_sidn		ii_icrb0_a_fld_s.ia_sidn

#define a_tnum		ii_icrb0_a_fld_s.ia_tnum

#define a_addr          ii_icrb0_a_fld_s.ia_addr

#define a_valid         ii_icrb0_a_fld_s.ia_vld

#define a_iow           ii_icrb0_a_fld_s.ia_iow

#define a_regvalue	ii_icrb0_a_regval


typedef ii_icrb0_b_u_t icrbb_t;

#define b_use_old       ii_icrb0_b_fld_s.ib_use_old

#define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype

#define b_imsg          ii_icrb0_b_fld_s.ib_imsg

#define b_initiator     ii_icrb0_b_fld_s.ib_init

#define b_exc           ii_icrb0_b_fld_s.ib_exc

#define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt

#define b_resp          ii_icrb0_b_fld_s.ib_resp

#define b_ack           ii_icrb0_b_fld_s.ib_ack

#define b_hold          ii_icrb0_b_fld_s.ib_hold

#define b_wb            ii_icrb0_b_fld_s.ib_wb

#define b_intvn         ii_icrb0_b_fld_s.ib_intvn

#define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib

#define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr

#define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0

#define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1

#define b_error         ii_icrb0_b_fld_s.ib_error

#define b_ecode         ii_icrb0_b_fld_s.ib_errcode

#define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce

#define b_mark          ii_icrb0_b_fld_s.ib_mark

#define b_xerr          ii_icrb0_b_fld_s.ib_xt_err

#define b_regvalue	ii_icrb0_b_regval


typedef ii_icrb0_c_u_t icrbc_t;

#define c_suppl         ii_icrb0_c_fld_s.ic_suppl

#define c_barrop        ii_icrb0_c_fld_s.ic_bo

#define c_doresp        ii_icrb0_c_fld_s.ic_resprqd

#define c_gbr           ii_icrb0_c_fld_s.ic_gbr

#define c_btenum        ii_icrb0_c_fld_s.ic_bte_num

#define c_cohtrans      ii_icrb0_c_fld_s.ic_ct

#define c_xtsize        ii_icrb0_c_fld_s.ic_size

#define c_source        ii_icrb0_c_fld_s.ic_source

#define c_regvalue	ii_icrb0_c_regval


typedef ii_icrb0_d_u_t icrbd_t;

#define d_sleep         ii_icrb0_d_fld_s.id_sleep

#define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt

#define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc

#define d_bteop         ii_icrb0_d_fld_s.id_bte_op

#define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be	
/* ic_pa_be fld has 2 names */

#define d_benable       ii_icrb0_d_fld_s.id_pa_be	
/* ic_pa_be fld has 2 names */

#define d_regvalue	ii_icrb0_d_regval


typedef ii_icrb0_e_u_t icrbe_t;

#define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld

#define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld

#define icrbe_context   ii_icrb0_e_fld_s.ie_context

#define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout

#define e_regvalue	ii_icrb0_e_regval

/* Number of widgets supported by shub */

#define HUB_NUM_WIDGET          9

#define HUB_WIDGET_ID_MIN       0x8

#define HUB_WIDGET_ID_MAX       0xf


#define HUB_WIDGET_PART_NUM     0xc120

#define MAX_HUBS_PER_XBOW       2

/* A few more #defines for backwards compatibility */

#define iprb_t          ii_iprb0_u_t

#define iprb_regval     ii_iprb0_regval

#define iprb_mult_err	ii_iprb0_fld_s.i_mult_err

#define iprb_spur_rd	ii_iprb0_fld_s.i_spur_rd

#define iprb_spur_wr	ii_iprb0_fld_s.i_spur_wr

#define iprb_rd_to	ii_iprb0_fld_s.i_rd_to

#define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt

#define iprb_error      ii_iprb0_fld_s.i_error

#define iprb_ff         ii_iprb0_fld_s.i_f

#define iprb_mode       ii_iprb0_fld_s.i_m

#define iprb_bnakctr    ii_iprb0_fld_s.i_nb

#define iprb_anakctr    ii_iprb0_fld_s.i_na

#define iprb_xtalkctr   ii_iprb0_fld_s.i_c


#define LNK_STAT_WORKING        0x2		
/* LLP is working */


#define IIO_WSTAT_ECRAZY	(1ULL << 32)	
/* Hub gone crazy */

#define IIO_WSTAT_TXRETRY	(1ULL << 9)	
/* Hub Tx Retry timeout */

#define IIO_WSTAT_TXRETRY_MASK  0x7F		
/* should be 0xFF?? */

#define IIO_WSTAT_TXRETRY_SHFT  16

#define IIO_WSTAT_TXRETRY_CNT(w)	(((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
                                        IIO_WSTAT_TXRETRY_MASK)

/* Number of II perf. counters we can multiplex at once */


#define IO_PERF_SETS	32

/* Bit for the widget in inbound access register */

#define IIO_IIWA_WIDGET(_w)	((u64)(1ULL << _w))
/* Bit for the widget in outbound access register */

#define IIO_IOWA_WIDGET(_w)	((u64)(1ULL << _w))

/* NOTE: The following define assumes that we are going to get
 * widget numbers from 8 thru F and the device numbers within
 * widget from 0 thru 7.
 */

#define IIO_IIDEM_WIDGETDEV_MASK(w, d)	((u64)(1ULL << (8 * ((w) - 8) + (d))))

/* IO Interrupt Destination Register */

#define IIO_IIDSR_SENT_SHIFT    28

#define IIO_IIDSR_SENT_MASK     0x30000000

#define IIO_IIDSR_ENB_SHIFT     24

#define IIO_IIDSR_ENB_MASK      0x01000000

#define IIO_IIDSR_NODE_SHIFT    9

#define IIO_IIDSR_NODE_MASK     0x000ff700

#define IIO_IIDSR_PI_ID_SHIFT   8

#define IIO_IIDSR_PI_ID_MASK    0x00000100

#define IIO_IIDSR_LVL_SHIFT     0

#define IIO_IIDSR_LVL_MASK      0x000000ff

/* Xtalk timeout threshold register (IIO_IXTT) */

#define IXTT_RRSP_TO_SHFT	55	
/* read response timeout */

#define IXTT_RRSP_TO_MASK	(0x1FULL << IXTT_RRSP_TO_SHFT)

#define IXTT_RRSP_PS_SHFT	32	
/* read responsed TO prescalar */

#define IXTT_RRSP_PS_MASK	(0x7FFFFFULL << IXTT_RRSP_PS_SHFT)

#define IXTT_TAIL_TO_SHFT	0	
/* tail timeout counter threshold */

#define IXTT_TAIL_TO_MASK	(0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)

/*
 * The IO LLP control status register and widget control register
 */


typedef union hubii_wcr_u {
	
u64 wcr_reg_value;
	struct {
		
u64 wcr_widget_id:4,	/* LLP crossbar credit */
		 
wcr_tag_mode:1,	/* Tag mode */
		 
wcr_rsvd1:8,	/* Reserved */
		 
wcr_xbar_crd:3,	/* LLP crossbar credit */
		 
wcr_f_bad_pkt:1,	/* Force bad llp pkt enable */
		 
wcr_dir_con:1,	/* widget direct connect */
		 
wcr_e_thresh:5,	/* elasticity threshold */
		 
wcr_rsvd:41;	/* unused */
	
} wcr_fields_s;

} hubii_wcr_t;


#define iwcr_dir_con    wcr_fields_s.wcr_dir_con

/* The structures below are defined to extract and modify the ii
performance registers */

/* io_perf_sel allows the caller to specify what tests will be
   performed */


typedef union io_perf_sel {
	
u64 perf_sel_reg;
	struct {
		



u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
	
} perf_sel_bits;

} io_perf_sel_t;

/* io_perf_cnt is to extract the count from the shub registers. Due to
   hardware problems there is only one counter, not two. */


typedef union io_perf_cnt {
	
u64 perf_cnt;
	struct {
		


u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
	
} perf_cnt_bits;


} io_perf_cnt_t;


typedef union iprte_a {
	
u64 entry;
	struct {
		
u64 i_rsvd_1:3;
		
u64 i_addr:38;
		
u64 i_init:3;
		
u64 i_source:8;
		
u64 i_rsvd:2;
		
u64 i_widget:4;
		
u64 i_to_cnt:5;
		
u64 i_vld:1;
	
} iprte_fields;

} iprte_a_t;

#endif				/* _ASM_IA64_SN_SHUBIO_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Patrick Gefre621286.34%116.67%
Prarit Bhargava77610.79%116.67%
Jes Sorensen2032.82%116.67%
Adam Buchbinder20.03%116.67%
Lucas De Marchi10.01%116.67%
André Goddard Rosa10.01%116.67%
Total7195100.00%6100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.