cregit-Linux how code gets into the kernel

Release 4.14 arch/mips/math-emu/ieee754dp.c

/* IEEE754 floating point arithmetic
 * double precision: common utilities
 */
/*
 * MIPS floating point support
 * Copyright (C) 1994-2000 Algorithmics Ltd.
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
 */

#include <linux/compiler.h>

#include "ieee754dp.h"


int ieee754dp_class(union ieee754dp x) { COMPXDP; EXPLODEXDP; return xc; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds1593.75%150.00%
Ralf Bächle16.25%150.00%
Total16100.00%2100.00%


static inline int ieee754dp_isnan(union ieee754dp x) { return ieee754_class_nan(ieee754dp_class(x)); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds1470.00%125.00%
Maciej W. Rozycki525.00%250.00%
Ralf Bächle15.00%125.00%
Total20100.00%4100.00%


static inline int ieee754dp_issnan(union ieee754dp x) { int qbit; assert(ieee754dp_isnan(x)); qbit = (DPMANT(x) & DP_MBIT(DP_FBITS - 1)) == DP_MBIT(DP_FBITS - 1); return ieee754_csr.nan2008 ^ qbit; }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds2853.85%116.67%
Maciej W. Rozycki1223.08%116.67%
Ralf Bächle1223.08%466.67%
Total52100.00%6100.00%

/* * Raise the Invalid Operation IEEE 754 exception * and convert the signaling NaN supplied to a quiet NaN. */
union ieee754dp __cold ieee754dp_nanxcpt(union ieee754dp r) { assert(ieee754dp_issnan(r)); ieee754_setcx(IEEE754_INVALID_OPERATION); if (ieee754_csr.nan2008) { DPMANT(r) |= DP_MBIT(DP_FBITS - 1); } else { DPMANT(r) &= ~DP_MBIT(DP_FBITS - 1); if (!ieee754dp_isnan(r)) DPMANT(r) |= DP_MBIT(DP_FBITS - 2); } return r; }

Contributors

PersonTokensPropCommitsCommitProp
Maciej W. Rozycki6173.49%342.86%
Linus Torvalds1821.69%114.29%
Ralf Bächle44.82%342.86%
Total83100.00%7100.00%


static u64 ieee754dp_get_rounding(int sn, u64 xm) { /* inexact must round of 3 bits */ if (xm & (DP_MBIT(3) - 1)) { switch (ieee754_csr.rm) { case FPU_CSR_RZ: break; case FPU_CSR_RN: xm += 0x3 + ((xm >> 3) & 1); /* xm += (xm&0x8)?0x4:0x3 */ break; case FPU_CSR_RU: /* toward +Infinity */ if (!sn) /* ?? */ xm += 0x8; break; case FPU_CSR_RD: /* toward -Infinity */ if (sn) /* ?? */ xm += 0x8; break; } } return xm; }

Contributors

PersonTokensPropCommitsCommitProp
Ralf Bächle91100.00%3100.00%
Total91100.00%3100.00%

/* generate a normal/denormal number with over,under handling * sn is sign * xe is an unbiased exponent * xm is 3bit extended precision value. */
union ieee754dp ieee754dp_format(int sn, int xe, u64 xm) { assert(xm); /* we don't gen exact zeros (probably should) */ assert((xm >> (DP_FBITS + 1 + 3)) == 0); /* no excess */ assert(xm & (DP_HIDDEN_BIT << 3)); if (xe < DP_EMIN) { /* strip lower bits */ int es = DP_EMIN - xe; if (ieee754_csr.nod) { ieee754_setcx(IEEE754_UNDERFLOW); ieee754_setcx(IEEE754_INEXACT); switch(ieee754_csr.rm) { case FPU_CSR_RN: case FPU_CSR_RZ: return ieee754dp_zero(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754dp_min(0); else return ieee754dp_zero(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754dp_zero(0); else return ieee754dp_min(1); } } if (xe == DP_EMIN - 1 && ieee754dp_get_rounding(sn, xm) >> (DP_FBITS + 1 + 3)) { /* Not tiny after rounding */ ieee754_setcx(IEEE754_INEXACT); xm = ieee754dp_get_rounding(sn, xm); xm >>= 1; /* Clear grs bits */ xm &= ~(DP_MBIT(3) - 1); xe++; } else { /* sticky right shift es bits */ xm = XDPSRS(xm, es); xe += es; assert((xm & (DP_HIDDEN_BIT << 3)) == 0); assert(xe == DP_EMIN); } } if (xm & (DP_MBIT(3) - 1)) { ieee754_setcx(IEEE754_INEXACT); if ((xm & (DP_HIDDEN_BIT << 3)) == 0) { ieee754_setcx(IEEE754_UNDERFLOW); } /* inexact must round of 3 bits */ xm = ieee754dp_get_rounding(sn, xm); /* adjust exponent for rounding add overflowing */ if (xm >> (DP_FBITS + 3 + 1)) { /* add causes mantissa overflow */ xm >>= 1; xe++; } } /* strip grs bits */ xm >>= 3; assert((xm >> (DP_FBITS + 1)) == 0); /* no excess */ assert(xe >= DP_EMIN); if (xe > DP_EMAX) { ieee754_setcx(IEEE754_OVERFLOW); ieee754_setcx(IEEE754_INEXACT); /* -O can be table indexed by (rm,sn) */ switch (ieee754_csr.rm) { case FPU_CSR_RN: return ieee754dp_inf(sn); case FPU_CSR_RZ: return ieee754dp_max(sn); case FPU_CSR_RU: /* toward +Infinity */ if (sn == 0) return ieee754dp_inf(0); else return ieee754dp_max(1); case FPU_CSR_RD: /* toward -Infinity */ if (sn == 0) return ieee754dp_max(0); else return ieee754dp_inf(1); } } /* gen norm/denorm/zero */ if ((xm & DP_HIDDEN_BIT) == 0) { /* we underflow (tiny/zero) */ assert(xe == DP_EMIN); if (ieee754_csr.mx & IEEE754_UNDERFLOW) ieee754_setcx(IEEE754_UNDERFLOW); return builddp(sn, DP_EMIN - 1 + DP_EBIAS, xm); } else { assert((xm >> (DP_FBITS + 1)) == 0); /* no excess */ assert(xm & DP_HIDDEN_BIT); return builddp(sn, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); } }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds35065.91%111.11%
Ralf Bächle17733.33%666.67%
Adam Buchbinder30.56%111.11%
Michael Hayes10.19%111.11%
Total531100.00%9100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds42953.42%15.56%
Ralf Bächle29036.11%950.00%
Maciej W. Rozycki799.84%527.78%
Adam Buchbinder30.37%15.56%
Michael Hayes10.12%15.56%
Steven Cole10.12%15.56%
Total803100.00%18100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.