cregit-Linux how code gets into the kernel

Release 4.14 arch/mips/math-emu/sp_maddf.c

/*
 * IEEE754 floating point arithmetic
 * single precision: MADDF.f (Fused Multiply Add)
 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
 *
 * MIPS floating point support
 * Copyright (C) 2015 Imagination Technologies, Ltd.
 * Author: Markos Chandras <markos.chandras@imgtec.com>
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; version 2 of the License.
 */

#include "ieee754sp.h"



static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y, enum maddf_flags flags) { int re; int rs; unsigned rm; uint64_t rm64; uint64_t zm64; int s; COMPXSP; COMPYSP; COMPZSP; EXPLODEXSP; EXPLODEYSP; EXPLODEZSP; FLUSHXSP; FLUSHYSP; FLUSHZSP; ieee754_clearcx(); /* * Handle the cases when at least one of x, y or z is a NaN. * Order of precedence is sNaN, qNaN and z, x, y. */ if (zc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(z); if (xc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(x); if (yc == IEEE754_CLASS_SNAN) return ieee754sp_nanxcpt(y); if (zc == IEEE754_CLASS_QNAN) return z; if (xc == IEEE754_CLASS_QNAN) return x; if (yc == IEEE754_CLASS_QNAN) return y; if (zc == IEEE754_CLASS_DNORM) SPDNORMZ; /* ZERO z cases are handled separately below */ switch (CLPAIR(xc, yc)) { /* * Infinity handling */ case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): if ((zc == IEEE754_CLASS_INF) && ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) || ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) { /* * Cases of addition of infinities with opposite signs * or subtraction of infinities with same signs. */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754sp_indef(); } /* * z is here either not an infinity, or an infinity having the * same sign as product (x*y) (in case of MADDF.D instruction) * or product -(x*y) (in MSUBF.D case). The result must be an * infinity, and its sign is determined only by the value of * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y. */ if (flags & MADDF_NEGATE_PRODUCT) return ieee754sp_inf(1 ^ (xs ^ ys)); else return ieee754sp_inf(xs ^ ys); case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); if (zc == IEEE754_CLASS_ZERO) { /* Handle cases +0 + (-0) and similar ones. */ if ((!(flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))) || ((flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys)))) /* * Cases of addition of zeros of equal signs * or subtraction of zeroes of opposite signs. * The sign of the resulting zero is in any * such case determined only by the sign of z. */ return z; return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); } /* x*y is here 0, and z is not 0, so just return z */ return z; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): SPDNORMX; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMY; break; case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); SPDNORMX; break; case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): if (zc == IEEE754_CLASS_INF) return ieee754sp_inf(zs); /* fall through to real computations */ } /* Finally get to do some computation */ /* * Do the multiplication bit first * * rm = xm * ym, re = xe + ye basically * * At this point xm and ym should have been normalized. */ /* rm = xm * ym, re = xe+ye basically */ assert(xm & SP_HIDDEN_BIT); assert(ym & SP_HIDDEN_BIT); re = xe + ye; rs = xs ^ ys; if (flags & MADDF_NEGATE_PRODUCT) rs ^= 1; /* Multiple 24 bit xm and ym to give 48 bit results */ rm64 = (uint64_t)xm * ym; /* Shunt to top of word */ rm64 = rm64 << 16; /* Put explicit bit at bit 62 if necessary */ if ((int64_t) rm64 < 0) { rm64 = rm64 >> 1; re++; } assert(rm64 & (1 << 62)); if (zc == IEEE754_CLASS_ZERO) { /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ rm = XSPSRS64(rm64, (62 - 26)); return ieee754sp_format(rs, re, rm); } /* Move explicit bit from bit 23 to bit 62 */ zm64 = (uint64_t)zm << (62 - 23); assert(zm64 & (1 << 62)); /* Make the exponents the same */ if (ze > re) { /* * Have to shift r fraction right to align. */ s = ze - re; rm64 = XSPSRS64(rm64, s); re += s; } else if (re > ze) { /* * Have to shift z fraction right to align. */ s = re - ze; zm64 = XSPSRS64(zm64, s); ze += s; } assert(ze == re); assert(ze <= SP_EMAX); /* Do the addition */ if (zs == rs) { /* * Generate 64 bit result by adding two 63 bit numbers * leaving result in zm64, zs and ze. */ zm64 = zm64 + rm64; if ((int64_t)zm64 < 0) { /* carry out */ zm64 = XSPSRS1(zm64); ze++; } } else { if (zm64 >= rm64) { zm64 = zm64 - rm64; } else { zm64 = rm64 - zm64; zs = rs; } if (zm64 == 0) return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD); /* * Put explicit bit at bit 62 if necessary. */ while ((zm64 >> 62) == 0) { zm64 <<= 1; ze--; } } /* * Move explicit bit from bit 62 to bit 26 since the * ieee754sp_format code expects the mantissa to be * 27 bits wide (24 + 3 rounding bits). */ zm = XSPSRS64(zm64, (62 - 26)); return ieee754sp_format(zs, ze, zm); }

Contributors

PersonTokensPropCommitsCommitProp
Markos Chandras48958.28%110.00%
Aleksandar Markovic20824.79%550.00%
Douglas Leung10112.04%110.00%
Paul Burton414.89%330.00%
Total839100.00%10100.00%


union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, 0); }

Contributors

PersonTokensPropCommitsCommitProp
Paul Burton30100.00%1100.00%
Total30100.00%1100.00%


union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x, union ieee754sp y) { return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT); }

Contributors

PersonTokensPropCommitsCommitProp
Paul Burton2996.67%150.00%
Aleksandar Markovic13.33%150.00%
Total30100.00%2100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Markos Chandras49354.60%110.00%
Aleksandar Markovic20923.15%550.00%
Douglas Leung10111.18%110.00%
Paul Burton10011.07%330.00%
Total903100.00%10100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.