cregit-Linux how code gets into the kernel

Release 4.14 arch/powerpc/net/bpf_jit.h

Directory: arch/powerpc/net
/*
 * bpf_jit.h: BPF JIT compiler for PPC
 *
 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 *           2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */
#ifndef _BPF_JIT_H

#define _BPF_JIT_H

#ifndef __ASSEMBLY__

#include <asm/types.h>

#ifdef PPC64_ELF_ABI_v1

#define FUNCTION_DESCR_SIZE	24
#else

#define FUNCTION_DESCR_SIZE	0
#endif

/*
 * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
 * (e.g. LD, ADDI).  If the bottom 16 bits is "-ve", add another bit into the
 * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
 */

#define IMM_H(i)		((uintptr_t)(i)>>16)

#define IMM_HA(i)		(((uintptr_t)(i)>>16) +                       \
                                        (((uintptr_t)(i) & 0x8000) >> 15))

#define IMM_L(i)		((uintptr_t)(i) & 0xffff)


#define PLANT_INSTR(d, idx, instr)					      \
	do { if (d) { (d)[idx] = instr; } idx++; } while (0)

#define EMIT(instr)		PLANT_INSTR(image, ctx->idx, instr)


#define PPC_NOP()		EMIT(PPC_INST_NOP)

#define PPC_BLR()		EMIT(PPC_INST_BLR)

#define PPC_BLRL()		EMIT(PPC_INST_BLRL)

#define PPC_MTLR(r)		EMIT(PPC_INST_MTLR | ___PPC_RT(r))

#define PPC_BCTR()		EMIT(PPC_INST_BCTR)

#define PPC_MTCTR(r)		EMIT(PPC_INST_MTCTR | ___PPC_RT(r))

#define PPC_ADDI(d, a, i)	EMIT(PPC_INST_ADDI | ___PPC_RT(d) |           \
                                     ___PPC_RA(a) | IMM_L(i))

#define PPC_MR(d, a)		PPC_OR(d, a, a)

#define PPC_LI(r, i)		PPC_ADDI(r, 0, i)

#define PPC_ADDIS(d, a, i)	EMIT(PPC_INST_ADDIS |                         \
                                     ___PPC_RT(d) | ___PPC_RA(a) | IMM_L(i))

#define PPC_LIS(r, i)		PPC_ADDIS(r, 0, i)

#define PPC_STD(r, base, i)	EMIT(PPC_INST_STD | ___PPC_RS(r) |            \
                                     ___PPC_RA(base) | ((i) & 0xfffc))

#define PPC_STDU(r, base, i)	EMIT(PPC_INST_STDU | ___PPC_RS(r) |           \
                                     ___PPC_RA(base) | ((i) & 0xfffc))

#define PPC_STW(r, base, i)	EMIT(PPC_INST_STW | ___PPC_RS(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_STWU(r, base, i)	EMIT(PPC_INST_STWU | ___PPC_RS(r) |           \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_STH(r, base, i)	EMIT(PPC_INST_STH | ___PPC_RS(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_STB(r, base, i)	EMIT(PPC_INST_STB | ___PPC_RS(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))


#define PPC_LBZ(r, base, i)	EMIT(PPC_INST_LBZ | ___PPC_RT(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_LD(r, base, i)	EMIT(PPC_INST_LD | ___PPC_RT(r) |             \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_LWZ(r, base, i)	EMIT(PPC_INST_LWZ | ___PPC_RT(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_LHZ(r, base, i)	EMIT(PPC_INST_LHZ | ___PPC_RT(r) |            \
                                     ___PPC_RA(base) | IMM_L(i))

#define PPC_LHBRX(r, base, b)	EMIT(PPC_INST_LHBRX | ___PPC_RT(r) |          \
                                     ___PPC_RA(base) | ___PPC_RB(b))

#define PPC_LDBRX(r, base, b)	EMIT(PPC_INST_LDBRX | ___PPC_RT(r) |          \
                                     ___PPC_RA(base) | ___PPC_RB(b))


#define PPC_BPF_LDARX(t, a, b, eh) EMIT(PPC_INST_LDARX | ___PPC_RT(t) |          \
                                        ___PPC_RA(a) | ___PPC_RB(b) |         \
                                        __PPC_EH(eh))

#define PPC_BPF_LWARX(t, a, b, eh) EMIT(PPC_INST_LWARX | ___PPC_RT(t) |          \
                                        ___PPC_RA(a) | ___PPC_RB(b) |         \
                                        __PPC_EH(eh))

#define PPC_BPF_STWCX(s, a, b)	EMIT(PPC_INST_STWCX | ___PPC_RS(s) |          \
                                        ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_BPF_STDCX(s, a, b)	EMIT(PPC_INST_STDCX | ___PPC_RS(s) |          \
                                        ___PPC_RA(a) | ___PPC_RB(b))

#ifdef CONFIG_PPC64

#define PPC_BPF_LL(r, base, i) do { PPC_LD(r, base, i); } while(0)

#define PPC_BPF_STL(r, base, i) do { PPC_STD(r, base, i); } while(0)

#define PPC_BPF_STLU(r, base, i) do { PPC_STDU(r, base, i); } while(0)
#else

#define PPC_BPF_LL(r, base, i) do { PPC_LWZ(r, base, i); } while(0)

#define PPC_BPF_STL(r, base, i) do { PPC_STW(r, base, i); } while(0)

#define PPC_BPF_STLU(r, base, i) do { PPC_STWU(r, base, i); } while(0)
#endif


#define PPC_CMPWI(a, i)		EMIT(PPC_INST_CMPWI | ___PPC_RA(a) | IMM_L(i))

#define PPC_CMPDI(a, i)		EMIT(PPC_INST_CMPDI | ___PPC_RA(a) | IMM_L(i))

#define PPC_CMPW(a, b)		EMIT(PPC_INST_CMPW | ___PPC_RA(a) |           \
                                        ___PPC_RB(b))

#define PPC_CMPD(a, b)		EMIT(PPC_INST_CMPD | ___PPC_RA(a) |           \
                                        ___PPC_RB(b))

#define PPC_CMPLWI(a, i)	EMIT(PPC_INST_CMPLWI | ___PPC_RA(a) | IMM_L(i))

#define PPC_CMPLDI(a, i)	EMIT(PPC_INST_CMPLDI | ___PPC_RA(a) | IMM_L(i))

#define PPC_CMPLW(a, b)		EMIT(PPC_INST_CMPLW | ___PPC_RA(a) |          \
                                        ___PPC_RB(b))

#define PPC_CMPLD(a, b)		EMIT(PPC_INST_CMPLD | ___PPC_RA(a) |          \
                                        ___PPC_RB(b))


#define PPC_SUB(d, a, b)	EMIT(PPC_INST_SUB | ___PPC_RT(d) |            \
                                     ___PPC_RB(a) | ___PPC_RA(b))

#define PPC_ADD(d, a, b)	EMIT(PPC_INST_ADD | ___PPC_RT(d) |            \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_MULD(d, a, b)	EMIT(PPC_INST_MULLD | ___PPC_RT(d) |          \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_MULW(d, a, b)	EMIT(PPC_INST_MULLW | ___PPC_RT(d) |          \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_MULHWU(d, a, b)	EMIT(PPC_INST_MULHWU | ___PPC_RT(d) |         \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_MULI(d, a, i)	EMIT(PPC_INST_MULLI | ___PPC_RT(d) |          \
                                     ___PPC_RA(a) | IMM_L(i))

#define PPC_DIVWU(d, a, b)	EMIT(PPC_INST_DIVWU | ___PPC_RT(d) |          \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_DIVD(d, a, b)	EMIT(PPC_INST_DIVD | ___PPC_RT(d) |           \
                                     ___PPC_RA(a) | ___PPC_RB(b))

#define PPC_AND(d, a, b)	EMIT(PPC_INST_AND | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(b))

#define PPC_ANDI(d, a, i)	EMIT(PPC_INST_ANDI | ___PPC_RA(d) |           \
                                     ___PPC_RS(a) | IMM_L(i))

#define PPC_AND_DOT(d, a, b)	EMIT(PPC_INST_ANDDOT | ___PPC_RA(d) |         \
                                     ___PPC_RS(a) | ___PPC_RB(b))

#define PPC_OR(d, a, b)		EMIT(PPC_INST_OR | ___PPC_RA(d) |             \
                                     ___PPC_RS(a) | ___PPC_RB(b))

#define PPC_MR(d, a)		PPC_OR(d, a, a)

#define PPC_ORI(d, a, i)	EMIT(PPC_INST_ORI | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | IMM_L(i))

#define PPC_ORIS(d, a, i)	EMIT(PPC_INST_ORIS | ___PPC_RA(d) |           \
                                     ___PPC_RS(a) | IMM_L(i))

#define PPC_XOR(d, a, b)	EMIT(PPC_INST_XOR | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(b))

#define PPC_XORI(d, a, i)	EMIT(PPC_INST_XORI | ___PPC_RA(d) |           \
                                     ___PPC_RS(a) | IMM_L(i))

#define PPC_XORIS(d, a, i)	EMIT(PPC_INST_XORIS | ___PPC_RA(d) |          \
                                     ___PPC_RS(a) | IMM_L(i))

#define PPC_EXTSW(d, a)		EMIT(PPC_INST_EXTSW | ___PPC_RA(d) |          \
                                     ___PPC_RS(a))

#define PPC_SLW(d, a, s)	EMIT(PPC_INST_SLW | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(s))

#define PPC_SLD(d, a, s)	EMIT(PPC_INST_SLD | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(s))

#define PPC_SRW(d, a, s)	EMIT(PPC_INST_SRW | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(s))

#define PPC_SRD(d, a, s)	EMIT(PPC_INST_SRD | ___PPC_RA(d) |            \
                                     ___PPC_RS(a) | ___PPC_RB(s))

#define PPC_SRAD(d, a, s)	EMIT(PPC_INST_SRAD | ___PPC_RA(d) |           \
                                     ___PPC_RS(a) | ___PPC_RB(s))

#define PPC_SRADI(d, a, i)	EMIT(PPC_INST_SRADI | ___PPC_RA(d) |          \
                                     ___PPC_RS(a) | __PPC_SH64(i))

#define PPC_RLWINM(d, a, i, mb, me)	EMIT(PPC_INST_RLWINM | ___PPC_RA(d) | \
                                        ___PPC_RS(a) | __PPC_SH(i) |          \
                                        __PPC_MB(mb) | __PPC_ME(me))

#define PPC_RLWIMI(d, a, i, mb, me)	EMIT(PPC_INST_RLWIMI | ___PPC_RA(d) | \
                                        ___PPC_RS(a) | __PPC_SH(i) |          \
                                        __PPC_MB(mb) | __PPC_ME(me))

#define PPC_RLDICL(d, a, i, mb)		EMIT(PPC_INST_RLDICL | ___PPC_RA(d) | \
                                        ___PPC_RS(a) | __PPC_SH64(i) |        \
                                        __PPC_MB64(mb))

#define PPC_RLDICR(d, a, i, me)		EMIT(PPC_INST_RLDICR | ___PPC_RA(d) | \
                                        ___PPC_RS(a) | __PPC_SH64(i) |        \
                                        __PPC_ME64(me))

/* slwi = rlwinm Rx, Ry, n, 0, 31-n */

#define PPC_SLWI(d, a, i)	PPC_RLWINM(d, a, i, 0, 31-(i))
/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */

#define PPC_SRWI(d, a, i)	PPC_RLWINM(d, a, 32-(i), i, 31)
/* sldi = rldicr Rx, Ry, n, 63-n */

#define PPC_SLDI(d, a, i)	PPC_RLDICR(d, a, i, 63-(i))
/* sldi = rldicl Rx, Ry, 64-n, n */

#define PPC_SRDI(d, a, i)	PPC_RLDICL(d, a, 64-(i), i)


#define PPC_NEG(d, a)		EMIT(PPC_INST_NEG | ___PPC_RT(d) | ___PPC_RA(a))

/* Long jump; (unconditional 'branch') */

#define PPC_JMP(dest)		EMIT(PPC_INST_BRANCH |                        \
                                     (((dest) - (ctx->idx * 4)) & 0x03fffffc))
/* "cond" here covers BO:BI fields. */

#define PPC_BCC_SHORT(cond, dest)	EMIT(PPC_INST_BRANCH_COND |           \
                                             (((cond) & 0x3ff) << 16) |       \
                                             (((dest) - (ctx->idx * 4)) &     \
                                              0xfffc))
/* Sign-extended 32-bit immediate load */

#define PPC_LI32(d, i)		do {                                          \
                if ((int)(uintptr_t)(i) >= -32768 &&                          \
                                (int)(uintptr_t)(i) < 32768)                  \
                        PPC_LI(d, i);                                         \
                else {                                                        \
                        PPC_LIS(d, IMM_H(i));                                 \
                        if (IMM_L(i))                                         \
                                PPC_ORI(d, d, IMM_L(i));                      \
                } } while(0)


#define PPC_LI64(d, i)		do {                                          \
                if ((long)(i) >= -2147483648 &&                               \
                                (long)(i) < 2147483648)                       \
                        PPC_LI32(d, i);                                       \
                else {                                                        \
                        if (!((uintptr_t)(i) & 0xffff800000000000ULL))        \
                                PPC_LI(d, ((uintptr_t)(i) >> 32) & 0xffff);   \
                        else {                                                \
                                PPC_LIS(d, ((uintptr_t)(i) >> 48));           \
                                if ((uintptr_t)(i) & 0x0000ffff00000000ULL)   \
                                        PPC_ORI(d, d,                         \
                                          ((uintptr_t)(i) >> 32) & 0xffff);   \
                        }                                                     \
                        PPC_SLDI(d, d, 32);                                   \
                        if ((uintptr_t)(i) & 0x00000000ffff0000ULL)           \
                                PPC_ORIS(d, d,                                \
                                         ((uintptr_t)(i) >> 16) & 0xffff);    \
                        if ((uintptr_t)(i) & 0x000000000000ffffULL)           \
                                PPC_ORI(d, d, (uintptr_t)(i) & 0xffff);       \
                } } while (0)

#ifdef CONFIG_PPC64

#define PPC_FUNC_ADDR(d,i) do { PPC_LI64(d, i); } while(0)
#else

#define PPC_FUNC_ADDR(d,i) do { PPC_LI32(d, i); } while(0)
#endif


static inline bool is_nearbranch(int offset) { return (offset < 32768) && (offset >= -32768); }

Contributors

PersonTokensPropCommitsCommitProp
Matt Evans24100.00%1100.00%
Total24100.00%1100.00%

/* * The fly in the ointment of code size changing from pass to pass is * avoided by padding the short branch case with a NOP. If code size differs * with different branch reaches we will have the issue of code moving from * one pass to the next and will need a few passes to converge on a stable * state. */ #define PPC_BCC(cond, dest) do { \ if (is_nearbranch((dest) - (ctx->idx * 4))) { \ PPC_BCC_SHORT(cond, dest); \ PPC_NOP(); \ } else { \ /* Flip the 'T or F' bit to invert comparison */ \ PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4); \ PPC_JMP(dest); \ } } while(0) /* To create a branch condition, select a bit of cr0... */ #define CR0_LT 0 #define CR0_GT 1 #define CR0_EQ 2 /* ...and modify BO[3] */ #define COND_CMP_TRUE 0x100 #define COND_CMP_FALSE 0x000 /* Together, they make all required comparisons: */ #define COND_GT (CR0_GT | COND_CMP_TRUE) #define COND_GE (CR0_LT | COND_CMP_FALSE) #define COND_EQ (CR0_EQ | COND_CMP_TRUE) #define COND_NE (CR0_EQ | COND_CMP_FALSE) #define COND_LT (CR0_LT | COND_CMP_TRUE) #define COND_LE (CR0_GT | COND_CMP_FALSE) #endif #endif

Overall Contributors

PersonTokensPropCommitsCommitProp
Matt Evans49048.51%17.14%
Naveen N. Rao29829.50%750.00%
Denis Kirjanov15014.85%214.29%
Daniel Borkmann373.66%214.29%
Michael Neuling242.38%17.14%
Philippe Bergheaud111.09%17.14%
Total1010100.00%14100.00%
Directory: arch/powerpc/net
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.