cregit-Linux how code gets into the kernel

Release 4.14 arch/powerpc/xmon/ppc.h

/* ppc.h -- Header file for PowerPC opcode table
   Copyright (C) 1994-2016 Free Software Foundation, Inc.
   Written by Ian Lance Taylor, Cygnus Support

This file is part of GDB, GAS, and the GNU binutils.

GDB, GAS, and the GNU binutils are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version
1, or (at your option) any later version.

GDB, GAS, and the GNU binutils are distributed in the hope that they
will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this file; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */

#ifndef PPC_H

#define PPC_H

#ifdef __cplusplus
extern "C" {
#endif


typedef uint64_t ppc_cpu_t;

/* The opcode table is an array of struct powerpc_opcode.  */


struct powerpc_opcode
{
  /* The opcode name.  */
  
const char *name;

  /* The opcode itself.  Those bits which will be filled in with
     operands are zeroes.  */
  
unsigned long opcode;

  /* The opcode mask.  This is used by the disassembler.  This is a
     mask containing ones indicating those bits which must match the
     opcode field, and zeroes indicating those bits which need not
     match (and are presumably filled in by operands).  */
  
unsigned long mask;

  /* One bit flags for the opcode.  These are used to indicate which
     specific processors support the instructions.  The defined values
     are listed below.  */
  
ppc_cpu_t flags;

  /* One bit flags for the opcode.  These are used to indicate which
     specific processors no longer support the instructions.  The defined
     values are listed below.  */
  
ppc_cpu_t deprecated;

  /* An array of operand codes.  Each code is an index into the
     operand table.  They appear in the order which the operands must
     appear in assembly code, and are terminated by a zero.  */
  
unsigned char operands[8];
};

/* The table itself is sorted by major opcode number, and is otherwise
   in the order in which the disassembler should consider
   instructions.  */
extern const struct powerpc_opcode powerpc_opcodes[];
extern const int powerpc_num_opcodes;
extern const struct powerpc_opcode vle_opcodes[];
extern const int vle_num_opcodes;

/* Values defined for the flags field of a struct powerpc_opcode.  */

/* Opcode is defined for the PowerPC architecture.  */

#define PPC_OPCODE_PPC			 1

/* Opcode is defined for the POWER (RS/6000) architecture.  */

#define PPC_OPCODE_POWER		 2

/* Opcode is defined for the POWER2 (Rios 2) architecture.  */

#define PPC_OPCODE_POWER2		 4

/* Opcode is supported by the Motorola PowerPC 601 processor.  The 601
   is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
   but it also supports many additional POWER instructions.  */

#define PPC_OPCODE_601			 8

/* Opcode is supported in both the Power and PowerPC architectures
   (ie, compiler's -mcpu=common or assembler's -mcom).  More than just
   the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
   and PPC_OPCODE_POWER2 because many instructions changed mnemonics
   between POWER and POWERPC.  */

#define PPC_OPCODE_COMMON	      0x10

/* Opcode is supported for any Power or PowerPC platform (this is
   for the assembler's -many option, and it eliminates duplicates).  */

#define PPC_OPCODE_ANY		      0x20

/* Opcode is only defined on 64 bit architectures.  */

#define PPC_OPCODE_64		      0x40

/* Opcode is supported as part of the 64-bit bridge.  */

#define PPC_OPCODE_64_BRIDGE	      0x80

/* Opcode is supported by Altivec Vector Unit */

#define PPC_OPCODE_ALTIVEC	     0x100

/* Opcode is supported by PowerPC 403 processor.  */

#define PPC_OPCODE_403		     0x200

/* Opcode is supported by PowerPC BookE processor.  */

#define PPC_OPCODE_BOOKE	     0x400

/* Opcode is supported by PowerPC 440 processor.  */

#define PPC_OPCODE_440		     0x800

/* Opcode is only supported by Power4 architecture.  */

#define PPC_OPCODE_POWER4	    0x1000

/* Opcode is only supported by Power7 architecture.  */

#define PPC_OPCODE_POWER7	    0x2000

/* Opcode is only supported by e500x2 Core.  */

#define PPC_OPCODE_SPE		    0x4000

/* Opcode is supported by e500x2 Integer select APU.  */

#define PPC_OPCODE_ISEL		    0x8000

/* Opcode is an e500 SPE floating point instruction.  */

#define PPC_OPCODE_EFS		   0x10000

/* Opcode is supported by branch locking APU.  */

#define PPC_OPCODE_BRLOCK	   0x20000

/* Opcode is supported by performance monitor APU.  */

#define PPC_OPCODE_PMR		   0x40000

/* Opcode is supported by cache locking APU.  */

#define PPC_OPCODE_CACHELCK	   0x80000

/* Opcode is supported by machine check APU.  */

#define PPC_OPCODE_RFMCI	  0x100000

/* Opcode is only supported by Power5 architecture.  */

#define PPC_OPCODE_POWER5	  0x200000

/* Opcode is supported by PowerPC e300 family.  */

#define PPC_OPCODE_E300           0x400000

/* Opcode is only supported by Power6 architecture.  */

#define PPC_OPCODE_POWER6	  0x800000

/* Opcode is only supported by PowerPC Cell family.  */

#define PPC_OPCODE_CELL		 0x1000000

/* Opcode is supported by CPUs with paired singles support.  */

#define PPC_OPCODE_PPCPS	 0x2000000

/* Opcode is supported by Power E500MC */

#define PPC_OPCODE_E500MC        0x4000000

/* Opcode is supported by PowerPC 405 processor.  */

#define PPC_OPCODE_405		 0x8000000

/* Opcode is supported by Vector-Scalar (VSX) Unit */

#define PPC_OPCODE_VSX		0x10000000

/* Opcode is supported by A2.  */

#define PPC_OPCODE_A2	 	0x20000000

/* Opcode is supported by PowerPC 476 processor.  */

#define PPC_OPCODE_476		0x40000000

/* Opcode is supported by AppliedMicro Titan core */

#define PPC_OPCODE_TITAN        0x80000000

/* Opcode which is supported by the e500 family */

#define PPC_OPCODE_E500	       0x100000000ull

/* Opcode is supported by Extended Altivec Vector Unit */

#define PPC_OPCODE_ALTIVEC2    0x200000000ull

/* Opcode is supported by Power E6500 */

#define PPC_OPCODE_E6500       0x400000000ull

/* Opcode is supported by Thread management APU */

#define PPC_OPCODE_TMR         0x800000000ull

/* Opcode which is supported by the VLE extension.  */

#define PPC_OPCODE_VLE	      0x1000000000ull

/* Opcode is only supported by Power8 architecture.  */

#define PPC_OPCODE_POWER8     0x2000000000ull

/* Opcode which is supported by the Hardware Transactional Memory extension.  */
/* Currently, this is the same as the POWER8 mask.  If another cpu comes out
   that isn't a superset of POWER8, we can define this to its own mask.  */

#define PPC_OPCODE_HTM        PPC_OPCODE_POWER8

/* Opcode is supported by ppc750cl.  */

#define PPC_OPCODE_750	      0x4000000000ull

/* Opcode is supported by ppc7450.  */

#define PPC_OPCODE_7450	      0x8000000000ull

/* Opcode is supported by ppc821/850/860.  */

#define PPC_OPCODE_860	      0x10000000000ull

/* Opcode is only supported by Power9 architecture.  */

#define PPC_OPCODE_POWER9     0x20000000000ull

/* Opcode is supported by Vector-Scalar (VSX) Unit from ISA 2.08.  */

#define PPC_OPCODE_VSX3       0x40000000000ull

  /* Opcode is supported by e200z4.  */

#define PPC_OPCODE_E200Z4     0x80000000000ull

/* A macro to extract the major opcode from an instruction.  */

#define PPC_OP(i) (((i) >> 26) & 0x3f)

/* A macro to determine if the instruction is a 2-byte VLE insn.  */

#define PPC_OP_SE_VLE(m) ((m) <= 0xffff)

/* A macro to extract the major opcode from a VLE instruction.  */

#define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)

/* A macro to convert a VLE opcode to a VLE opcode segment.  */

#define VLE_OP_TO_SEG(i) ((i) >> 1)

/* The operands table is an array of struct powerpc_operand.  */


struct powerpc_operand
{
  /* A bitmask of bits in the operand.  */
  
unsigned int bitm;

  /* The shift operation to be applied to the operand.  No shift
     is made if this is zero.  For positive values, the operand
     is shifted left by SHIFT.  For negative values, the operand
     is shifted right by -SHIFT.  Use PPC_OPSHIFT_INV to indicate
     that BITM and SHIFT cannot be used to determine where the
     operand goes in the insn.  */
  
int shift;

  /* Insertion function.  This is used by the assembler.  To insert an
     operand value into an instruction, check this field.

     If it is NULL, execute
         if (o->shift >= 0)
           i |= (op & o->bitm) << o->shift;
         else
           i |= (op & o->bitm) >> -o->shift;
     (i is the instruction which we are filling in, o is a pointer to
     this structure, and op is the operand value).

     If this field is not NULL, then simply call it with the
     instruction and the operand value.  It will return the new value
     of the instruction.  If the ERRMSG argument is not NULL, then if
     the operand value is illegal, *ERRMSG will be set to a warning
     string (the operand will be inserted in any case).  If the
     operand value is legal, *ERRMSG will be unchanged (most operands
     can accept any value).  */
  
unsigned long (*insert)
    (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg);

  /* Extraction function.  This is used by the disassembler.  To
     extract this operand type from an instruction, check this field.

     If it is NULL, compute
         if (o->shift >= 0)
           op = (i >> o->shift) & o->bitm;
         else
           op = (i << -o->shift) & o->bitm;
         if ((o->flags & PPC_OPERAND_SIGNED) != 0)
           sign_extend (op);
     (i is the instruction, o is a pointer to this structure, and op
     is the result).

     If this field is not NULL, then simply call it with the
     instruction value.  It will return the value of the operand.  If
     the INVALID argument is not NULL, *INVALID will be set to
     non-zero if this operand type can not actually be extracted from
     this operand (i.e., the instruction does not match).  If the
     operand is valid, *INVALID will not be changed.  */
  
long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid);

  /* One bit syntax flags.  */
  
unsigned long flags;
};

/* Elements in the table are retrieved by indexing with values from
   the operands field of the powerpc_opcodes table.  */

extern const struct powerpc_operand powerpc_operands[];
extern const unsigned int num_powerpc_operands;

/* Use with the shift field of a struct powerpc_operand to indicate
     that BITM and SHIFT cannot be used to determine where the operand
     goes in the insn.  */

#define PPC_OPSHIFT_INV (-1U << 31)

/* Values defined for the flags field of a struct powerpc_operand.  */

/* This operand takes signed values.  */

#define PPC_OPERAND_SIGNED (0x1)

/* This operand takes signed values, but also accepts a full positive
   range of values when running in 32 bit mode.  That is, if bits is
   16, it takes any value from -0x8000 to 0xffff.  In 64 bit mode,
   this flag is ignored.  */

#define PPC_OPERAND_SIGNOPT (0x2)

/* This operand does not actually exist in the assembler input.  This
   is used to support extended mnemonics such as mr, for which two
   operands fields are identical.  The assembler should call the
   insert function with any op value.  The disassembler should call
   the extract function, ignore the return value, and check the value
   placed in the valid argument.  */

#define PPC_OPERAND_FAKE (0x4)

/* The next operand should be wrapped in parentheses rather than
   separated from this one by a comma.  This is used for the load and
   store instructions which want their operands to look like
       reg,displacement(reg)
   */

#define PPC_OPERAND_PARENS (0x8)

/* This operand may use the symbolic names for the CR fields, which
   are
       lt  0    gt  1   eq  2   so  3   un  3
       cr0 0    cr1 1   cr2 2   cr3 3
       cr4 4    cr5 5   cr6 6   cr7 7
   These may be combined arithmetically, as in cr2*4+gt.  These are
   only supported on the PowerPC, not the POWER.  */

#define PPC_OPERAND_CR_BIT (0x10)

/* This operand names a register.  The disassembler uses this to print
   register names with a leading 'r'.  */

#define PPC_OPERAND_GPR (0x20)

/* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0.  */

#define PPC_OPERAND_GPR_0 (0x40)

/* This operand names a floating point register.  The disassembler
   prints these with a leading 'f'.  */

#define PPC_OPERAND_FPR (0x80)

/* This operand is a relative branch displacement.  The disassembler
   prints these symbolically if possible.  */

#define PPC_OPERAND_RELATIVE (0x100)

/* This operand is an absolute branch address.  The disassembler
   prints these symbolically if possible.  */

#define PPC_OPERAND_ABSOLUTE (0x200)

/* This operand is optional, and is zero if omitted.  This is used for
   example, in the optional BF field in the comparison instructions.  The
   assembler must count the number of operands remaining on the line,
   and the number of operands remaining for the opcode, and decide
   whether this operand is present or not.  The disassembler should
   print this operand out only if it is not zero.  */

#define PPC_OPERAND_OPTIONAL (0x400)

/* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
   is omitted, then for the next operand use this operand value plus
   1, ignoring the next operand field for the opcode.  This wretched
   hack is needed because the Power rotate instructions can take
   either 4 or 5 operands.  The disassembler should print this operand
   out regardless of the PPC_OPERAND_OPTIONAL field.  */

#define PPC_OPERAND_NEXT (0x800)

/* This operand should be regarded as a negative number for the
   purposes of overflow checking (i.e., the normal most negative
   number is disallowed and one more than the normal most positive
   number is allowed).  This flag will only be set for a signed
   operand.  */

#define PPC_OPERAND_NEGATIVE (0x1000)

/* This operand names a vector unit register.  The disassembler
   prints these with a leading 'v'.  */

#define PPC_OPERAND_VR (0x2000)

/* This operand is for the DS field in a DS form instruction.  */

#define PPC_OPERAND_DS (0x4000)

/* This operand is for the DQ field in a DQ form instruction.  */

#define PPC_OPERAND_DQ (0x8000)

/* Valid range of operand is 0..n rather than 0..n-1.  */

#define PPC_OPERAND_PLUS1 (0x10000)

/* Xilinx APU and FSL related operands */

#define PPC_OPERAND_FSL (0x20000)

#define PPC_OPERAND_FCR (0x40000)

#define PPC_OPERAND_UDI (0x80000)

/* This operand names a vector-scalar unit register.  The disassembler
   prints these with a leading 'vs'.  */

#define PPC_OPERAND_VSR (0x100000)

/* This is a CR FIELD that does not use symbolic names.  */

#define PPC_OPERAND_CR_REG (0x200000)

/* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
   is omitted, then the value it should use for the operand is stored
   in the SHIFT field of the immediatly following operand field.  */

#define PPC_OPERAND_OPTIONAL_VALUE (0x400000)

/* This flag is only used with PPC_OPERAND_OPTIONAL.  The operand is
   only optional when generating 32-bit code.  */

#define PPC_OPERAND_OPTIONAL32 (0x800000)

/* The POWER and PowerPC assemblers use a few macros.  We keep them
   with the operands table for simplicity.  The macro table is an
   array of struct powerpc_macro.  */


struct powerpc_macro
{
  /* The macro name.  */
  
const char *name;

  /* The number of operands the macro takes.  */
  
unsigned int operands;

  /* One bit flags for the opcode.  These are used to indicate which
     specific processors support the instructions.  The values are the
     same as those for the struct powerpc_opcode flags field.  */
  
ppc_cpu_t flags;

  /* A format string to turn the macro into a normal instruction.
     Each %N in the string is replaced with operand number N (zero
     based).  */
  
const char *format;
};

extern const struct powerpc_macro powerpc_macros[];
extern const int powerpc_num_macros;

extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);

static inline long

ppc_optional_operand_value (const struct powerpc_operand *operand)
{
  if ((operand->flags & PPC_OPERAND_OPTIONAL_VALUE) != 0)
    return (operand+1)->shift;
  return 0;
}

#ifdef __cplusplus
}
#endif

#endif /* PPC_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Balbir Singh31849.38%240.00%
Anton Blanchard20531.83%120.00%
Andrew Morton9915.37%120.00%
Michael Ellerman223.42%120.00%
Total644100.00%5100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.