cregit-Linux how code gets into the kernel

Release 4.14 arch/sparc/include/asm/tsb.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _SPARC64_TSB_H

#define _SPARC64_TSB_H

/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
 * pointers into this table for 8K and 64K page sizes, and also a
 * comparison TAG based upon the virtual address and context which
 * faults.
 *
 * TLB miss trap handler software does the actual lookup via something
 * of the form:
 *
 *      ldxa            [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 *      ldxa            [%g0] ASI_{D,I}MMU, %g6
 *      sllx            %g6, 22, %g6
 *      srlx            %g6, 22, %g6
 *      ldda            [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 *      cmp             %g4, %g6
 *      bne,pn  %xcc, tsb_miss_{d,i}tlb
 *       mov            FAULT_CODE_{D,I}TLB, %g3
 *      stxa            %g5, [%g0] ASI_{D,I}TLB_DATA_IN
 *      retry
 *
 *
 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 * register which is:
 *
 * -------------------------------------------------
 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 * -------------------------------------------------
 *  63 61 60      48 47 42 41                     0
 *
 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 * field.
 *
 * Like the powerpc hashtables we need to use locking in order to
 * synchronize while we update the entries.  PTE updates need locking
 * as well.
 *
 * We need to carefully choose a lock bits for the TSB entry.  We
 * choose to use bit 47 in the tag.  Also, since we never map anything
 * at page zero in context zero, we use zero as an invalid tag entry.
 * When the lock bit is set, this forces a tag comparison failure.
 */


#define TSB_TAG_LOCK_BIT	47

#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))


#define TSB_TAG_INVALID_BIT	46

#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))

/* Some cpus support physical address quad loads.  We want to use
 * those if possible so we don't need to hard-lock the TSB mapping
 * into the TLB.  We encode some instruction patching in order to
 * support this.
 *
 * The kernel TSB is locked into the TLB by virtue of being in the
 * kernel image, so we don't play these games for swapper_tsb access.
 */
#ifndef __ASSEMBLY__

struct tsb_ldquad_phys_patch_entry {
	
unsigned int	addr;
	
unsigned int	sun4u_insn;
	
unsigned int	sun4v_insn;
};
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
	__tsb_ldquad_phys_patch_end;


struct tsb_phys_patch_entry {
	
unsigned int	addr;
	
unsigned int	insn;
};
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
#endif

#define TSB_LOAD_QUAD(TSB, REG)	\
661:    ldda            [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
        .section        .tsb_ldquad_phys_patch, "ax"; \
        .word           661b; \
        ldda            [TSB] ASI_QUAD_LDD_PHYS, REG; \
        ldda            [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
        .previous


#define TSB_LOAD_TAG_HIGH(TSB, REG) \
661:    lduwa           [TSB] ASI_N, REG; \
        .section        .tsb_phys_patch, "ax"; \
        .word           661b; \
        lduwa           [TSB] ASI_PHYS_USE_EC, REG; \
        .previous


#define TSB_LOAD_TAG(TSB, REG) \
661:    ldxa            [TSB] ASI_N, REG; \
        .section        .tsb_phys_patch, "ax"; \
        .word           661b; \
        ldxa            [TSB] ASI_PHYS_USE_EC, REG; \
        .previous


#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
661:    casa            [TSB] ASI_N, REG1, REG2; \
        .section        .tsb_phys_patch, "ax"; \
        .word           661b; \
        casa            [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
        .previous


#define TSB_CAS_TAG(TSB, REG1, REG2) \
661:    casxa           [TSB] ASI_N, REG1, REG2; \
        .section        .tsb_phys_patch, "ax"; \
        .word           661b; \
        casxa           [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
        .previous


#define TSB_STORE(ADDR, VAL) \
661:    stxa            VAL, [ADDR] ASI_N; \
        .section        .tsb_phys_patch, "ax"; \
        .word           661b; \
        stxa            VAL, [ADDR] ASI_PHYS_USE_EC; \
        .previous


#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
99:     TSB_LOAD_TAG_HIGH(TSB, REG1);   \
        sethi   %hi(TSB_TAG_LOCK_HIGH), REG2;\
        andcc   REG1, REG2, %g0;        \
        bne,pn  %icc, 99b;              \
         nop;                           \
        TSB_CAS_TAG_HIGH(TSB, REG1, REG2);      \
        cmp     REG1, REG2;             \
        bne,pn  %icc, 99b;              \
         nop;                           \

#define TSB_WRITE(TSB, TTE, TAG) \
        add     TSB, 0x8, TSB;   \
        TSB_STORE(TSB, TTE);     \
        sub     TSB, 0x8, TSB;   \
        TSB_STORE(TSB, TAG);

	/* Do a kernel page table walk.  Leaves valid PTE value in
         * REG1.  Jumps to FAIL_LABEL on early page table walk
         * termination.  VADDR will not be clobbered, but REG2 will.
         *
         * There are two masks we must apply to propagate bits from
         * the virtual address into the PTE physical address field
         * when dealing with huge pages.  This is because the page
         * table boundaries do not match the huge page size(s) the
         * hardware supports.
         *
         * In these cases we propagate the bits that are below the
         * page table level where we saw the huge page mapping, but
         * are still within the relevant physical bits for the huge
         * page size in question.  So for PMD mappings (which fall on
         * bit 23, for 8MB per PMD) we must propagate bit 22 for a
         * 4MB huge page.  For huge PUDs (which fall on bit 33, for
         * 8GB per PUD), we have to accommodate 256MB and 2GB huge
         * pages.  So for those we propagate bits 32 to 28.
         */

#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
	sethi           %hi(swapper_pg_dir), REG1; \
        or              REG1, %lo(swapper_pg_dir), REG1; \
        sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldx             [REG1 + REG2], REG1; \
        brz,pn          REG1, FAIL_LABEL; \
         sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
        brz,pn          REG1, FAIL_LABEL; \
        sethi           %uhi(_PAGE_PUD_HUGE), REG2; \
        brz,pn          REG1, FAIL_LABEL; \
         sllx           REG2, 32, REG2; \
        andcc           REG1, REG2, %g0; \
        sethi           %hi(0xf8000000), REG2; \
        bne,pt          %xcc, 697f; \
         sllx           REG2, 1, REG2; \
        sllx            VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
        sethi           %uhi(_PAGE_PMD_HUGE), REG2; \
        brz,pn          REG1, FAIL_LABEL; \
         sllx           REG2, 32, REG2; \
        andcc           REG1, REG2, %g0; \
        be,pn           %xcc, 698f; \
         sethi          %hi(0x400000), REG2; \
697:    brgez,pn        REG1, FAIL_LABEL; \
         andn           REG1, REG2, REG1; \
        and             VADDR, REG2, REG2; \
        ba,pt           %xcc, 699f; \
         or             REG1, REG2, REG1; \
698:    sllx            VADDR, 64 - PMD_SHIFT, REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
        brgez,pn        REG1, FAIL_LABEL; \
         nop; \
699:

	/* PUD has been loaded into REG1, interpret the value, seeing
         * if it is a HUGE PUD or a normal one.  If it is not valid
         * then jump to FAIL_LABEL.  If it is a HUGE PUD, and it
         * translates to a valid PTE, branch to PTE_LABEL.
         *
         * We have to propagate bits [32:22] from the virtual address
         * to resolve at 4M granularity.
         */
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)

#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
700:    ba 700f;                                        \
         nop;                                           \
        .section        .pud_huge_patch, "ax";          \
        .word           700b;                           \
        nop;                                            \
        .previous;                                      \
        brz,pn          REG1, FAIL_LABEL;               \
         sethi          %uhi(_PAGE_PUD_HUGE), REG2;     \
        sllx            REG2, 32, REG2;                 \
        andcc           REG1, REG2, %g0;                \
        be,pt           %xcc, 700f;                     \
         sethi          %hi(0x1ffc0000), REG2;          \
        sllx            REG2, 1, REG2;                  \
        brgez,pn        REG1, FAIL_LABEL;               \
         andn           REG1, REG2, REG1;               \
        and             VADDR, REG2, REG2;              \
        brlz,pt         REG1, PTE_LABEL;                \
         or             REG1, REG2, REG1;               \
700:
#else

#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn          REG1, FAIL_LABEL; \
         nop;
#endif

	/* PMD has been loaded into REG1, interpret the value, seeing
         * if it is a HUGE PMD or a normal one.  If it is not valid
         * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
         * translates to a valid PTE, branch to PTE_LABEL.
         *
         * We have to propagate the 4MB bit of the virtual address
         * because we are fabricating 8MB pages using 4MB hw pages.
         */
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)

#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn          REG1, FAIL_LABEL;               \
         sethi          %uhi(_PAGE_PMD_HUGE), REG2;     \
        sllx            REG2, 32, REG2;                 \
        andcc           REG1, REG2, %g0;                \
        be,pt           %xcc, 700f;                     \
         sethi          %hi(4 * 1024 * 1024), REG2;     \
        brgez,pn        REG1, FAIL_LABEL;               \
         andn           REG1, REG2, REG1;               \
        and             VADDR, REG2, REG2;              \
        brlz,pt         REG1, PTE_LABEL;                \
         or             REG1, REG2, REG1;               \
700:
#else

#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn          REG1, FAIL_LABEL; \
         nop;
#endif

	/* Do a user page table walk in MMU globals.  Leaves final,
         * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
         * page table walk termination or if the PTE is not valid.
         *
         * Physical base of page tables is in PHYS_PGD which will not
         * be modified.
         *
         * VADDR will not be clobbered, but REG1 and REG2 will.
         */

#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
	sllx            VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
        brz,pn          REG1, FAIL_LABEL; \
         sllx           VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
        USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
        brz,pn          REG1, FAIL_LABEL; \
         sllx           VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        ldxa            [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
        USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
        sllx            VADDR, 64 - PMD_SHIFT, REG2; \
        srlx            REG2, 64 - PAGE_SHIFT, REG2; \
        andn            REG2, 0x7, REG2; \
        add             REG1, REG2, REG1; \
        ldxa            [REG1] ASI_PHYS_USE_EC, REG1; \
        brgez,pn        REG1, FAIL_LABEL; \
         nop; \
800:

/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 * If no entry is found, FAIL_LABEL will be branched to.  On success
 * the resulting PTE value will be left in REG1.  VADDR is preserved
 * by this routine.
 */

#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
	sethi           %hi(prom_trans), REG1; \
        or              REG1, %lo(prom_trans), REG1; \
97:     ldx             [REG1 + 0x00], REG2; \
        brz,pn          REG2, FAIL_LABEL; \
         nop; \
        ldx             [REG1 + 0x08], REG3; \
        add             REG2, REG3, REG3; \
        cmp             REG2, VADDR; \
        bgu,pt          %xcc, 98f; \
         cmp            VADDR, REG3; \
        bgeu,pt         %xcc, 98f; \
         ldx            [REG1 + 0x10], REG3; \
        sub             VADDR, REG2, REG2; \
        ba,pt           %xcc, 99f; \
         add            REG3, REG2, REG1; \
98:     ba,pt           %xcc, 97b; \
         add            REG1, (3 * 8), REG1; \
99:

	/* We use a 32K TSB for the whole kernel, this allows to
         * handle about 16MB of modules and vmalloc mappings without
         * incurring many hash conflicts.
         */

#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)

#define KERNEL_TSB_NENTRIES	\
	(KERNEL_TSB_SIZE_BYTES / 16)

#define KERNEL_TSB4M_NENTRIES	4096

	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
         * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
         * and the found TTE will be left in REG1.  REG3 and REG4 must
         * be an even/odd pair of registers.
         *
         * VADDR and TAG will be preserved and not clobbered by this macro.
         */

#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
661:    sethi           %uhi(swapper_tsb), REG1; \
        sethi           %hi(swapper_tsb), REG2; \
        or              REG1, %ulo(swapper_tsb), REG1; \
        or              REG2, %lo(swapper_tsb), REG2; \
        .section        .swapper_tsb_phys_patch, "ax"; \
        .word           661b; \
        .previous; \
        sllx            REG1, 32, REG1; \
        or              REG1, REG2, REG1; \
        srlx            VADDR, PAGE_SHIFT, REG2; \
        and             REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
        sllx            REG2, 4, REG2; \
        add             REG1, REG2, REG2; \
        TSB_LOAD_QUAD(REG2, REG3); \
        cmp             REG3, TAG; \
        be,a,pt         %xcc, OK_LABEL; \
         mov            REG4, REG1;

#ifndef CONFIG_DEBUG_PAGEALLOC
	/* This version uses a trick, the TAG is already (VADDR >> 22) so
         * we can make use of that for the index computation.
         */

#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
661:    sethi           %uhi(swapper_4m_tsb), REG1; \
        sethi           %hi(swapper_4m_tsb), REG2; \
        or              REG1, %ulo(swapper_4m_tsb), REG1; \
        or              REG2, %lo(swapper_4m_tsb), REG2; \
        .section        .swapper_4m_tsb_phys_patch, "ax"; \
        .word           661b; \
        .previous; \
        sllx            REG1, 32, REG1; \
        or              REG1, REG2, REG1; \
        and             TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
        sllx            REG2, 4, REG2; \
        add             REG1, REG2, REG2; \
        TSB_LOAD_QUAD(REG2, REG3); \
        cmp             REG3, TAG; \
        be,a,pt         %xcc, OK_LABEL; \
         mov            REG4, REG1;
#endif

#endif /* !(_SPARC64_TSB_H) */

Overall Contributors

PersonTokensPropCommitsCommitProp
Sam Ravnborg25370.87%19.09%
Nitin Gupta5916.53%218.18%
David S. Miller4312.04%654.55%
Greg Kroah-Hartman10.28%19.09%
Adam Buchbinder10.28%19.09%
Total357100.00%11100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.