Release 4.14 arch/x86/include/asm/pgtable-3level.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_PGTABLE_3LEVEL_H
#define _ASM_X86_PGTABLE_3LEVEL_H
/*
* Intel Physical Address Extension (PAE) Mode - three-level page
* tables on PPro+ CPUs.
*
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
*/
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
__FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
__FILE__, __LINE__, &(e), pmd_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
__FILE__, __LINE__, &(e), pgd_val(e))
/* Rules for using set_pte: the pte being assigned *must* be
* either not present or in a state where the hardware will
* not attempt to update the pte. In places where this is
* not possible, use pte_get_and_clear to obtain the old pte
* value and then use set_pte to update it. -ben
*/
static inline void native_set_pte(pte_t *ptep, pte_t pte)
{
ptep->pte_high = pte.pte_high;
smp_wmb();
ptep->pte_low = pte.pte_low;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 32 | 96.97% | 2 | 66.67% |
Jeremy Fitzhardinge | 1 | 3.03% | 1 | 33.33% |
Total | 33 | 100.00% | 3 | 100.00% |
#define pmd_read_atomic pmd_read_atomic
/*
* pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
* a "*pmdp" dereference done by gcc. Problem is, in certain places
* where pte_offset_map_lock is called, concurrent page faults are
* allowed, if the mmap_sem is hold for reading. An example is mincore
* vs page faults vs MADV_DONTNEED. On the page fault side
* pmd_populate rightfully does a set_64bit, but if we're reading the
* pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
* because gcc will not read the 64bit of the pmd atomically. To fix
* this all places running pmd_offset_map_lock() while holding the
* mmap_sem in read mode, shall read the pmdp pointer using this
* function to know if the pmd is null nor not, and in turn to know if
* they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
* operations.
*
* Without THP if the mmap_sem is hold for reading, the pmd can only
* transition from null to not null while pmd_read_atomic runs. So
* we can always return atomic pmd values with this function.
*
* With THP if the mmap_sem is hold for reading, the pmd can become
* trans_huge or none or point to a pte (and in turn become "stable")
* at any time under pmd_read_atomic. We could read it really
* atomically here with a atomic64_read for the THP enabled case (and
* it would be a whole lot simpler), but to avoid using cmpxchg8b we
* only return an atomic pmdval if the low part of the pmdval is later
* found stable (i.e. pointing to a pte). And we're returning a none
* pmdval if the low part of the pmd is none. In some cases the high
* and low part of the pmdval returned may not be consistent if THP is
* enabled (the low part may point to previously mapped hugepage,
* while the high part may point to a more recently mapped hugepage),
* but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
* of the pmd to be read atomically to decide if the pmd is unstable
* or not, with the only exception of when the low part of the pmd is
* zero in which case we return a none pmd.
*/
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
{
pmdval_t ret;
u32 *tmp = (u32 *)pmdp;
ret = (pmdval_t) (*tmp);
if (ret) {
/*
* If the low part is null, we must not read the high part
* or we can end up with a partial pmd.
*/
smp_rmb();
ret |= ((pmdval_t)*(tmp + 1)) << 32;
}
return (pmd_t) { ret };
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Andrea Arcangeli | 68 | 100.00% | 1 | 100.00% |
Total | 68 | 100.00% | 1 | 100.00% |
static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
{
set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jeremy Fitzhardinge | 29 | 90.62% | 1 | 50.00% |
Andi Kleen | 3 | 9.38% | 1 | 50.00% |
Total | 32 | 100.00% | 2 | 100.00% |
static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
{
set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jeremy Fitzhardinge | 29 | 90.62% | 1 | 50.00% |
Linus Torvalds (pre-git) | 3 | 9.38% | 1 | 50.00% |
Total | 32 | 100.00% | 2 | 100.00% |
static inline void native_set_pud(pud_t *pudp, pud_t pud)
{
set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jeremy Fitzhardinge | 29 | 90.62% | 2 | 66.67% |
Linus Torvalds (pre-git) | 3 | 9.38% | 1 | 33.33% |
Total | 32 | 100.00% | 3 | 100.00% |
/*
* For PTEs and PDEs, we must clear the P-bit first when clearing a page table
* entry, so clear the bottom half first and enforce ordering with a compiler
* barrier.
*/
static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
ptep->pte_low = 0;
smp_wmb();
ptep->pte_high = 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Zachary Amsden | 34 | 97.14% | 1 | 50.00% |
Jeremy Fitzhardinge | 1 | 2.86% | 1 | 50.00% |
Total | 35 | 100.00% | 2 | 100.00% |
static inline void native_pmd_clear(pmd_t *pmd)
{
u32 *tmp = (u32 *)pmd;
*tmp = 0;
smp_wmb();
*(tmp + 1) = 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Zachary Amsden | 37 | 97.37% | 1 | 50.00% |
Jeremy Fitzhardinge | 1 | 2.63% | 1 | 50.00% |
Total | 38 | 100.00% | 2 | 100.00% |
static inline void native_pud_clear(pud_t *pudp)
{
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Matthew Wilcox | 10 | 100.00% | 1 | 100.00% |
Total | 10 | 100.00% | 1 | 100.00% |
static inline void pud_clear(pud_t *pudp)
{
set_pud(pudp, __pud(0));
/*
* According to Intel App note "TLBs, Paging-Structure Caches,
* and Their Invalidation", April 2007, document 317080-001,
* section 8.1: in PAE mode we explicitly have to flush the
* TLB via cr3 if the top-level pgd is changed...
*
* Currently all places where pud_clear() is called either have
* flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
* pud_clear_bad()), so we don't need TLB flush here.
*/
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jeremy Fitzhardinge | 13 | 59.09% | 1 | 33.33% |
Rusty Russell | 8 | 36.36% | 1 | 33.33% |
David Shaohua Li | 1 | 4.55% | 1 | 33.33% |
Total | 22 | 100.00% | 3 | 100.00% |
#ifdef CONFIG_SMP
static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
{
pte_t res;
/* xchg acts as a barrier before the setting of the high bits */
res.pte_low = xchg(&ptep->pte_low, 0);
res.pte_high = ptep->pte_high;
ptep->pte_high = 0;
return res;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 45 | 97.83% | 1 | 50.00% |
Jeremy Fitzhardinge | 1 | 2.17% | 1 | 50.00% |
Total | 46 | 100.00% | 2 | 100.00% |
#else
#define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
#endif
#ifdef CONFIG_SMP
union split_pmd {
struct {
u32 pmd_low;
u32 pmd_high;
};
pmd_t pmd;
};
static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
{
union split_pmd res, *orig = (union split_pmd *)pmdp;
/* xchg acts as a barrier before setting of the high bits */
res.pmd_low = xchg(&orig->pmd_low, 0);
res.pmd_high = orig->pmd_high;
orig->pmd_high = 0;
return res.pmd;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Johannes Weiner | 59 | 100.00% | 1 | 100.00% |
Total | 59 | 100.00% | 1 | 100.00% |
#else
#define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
#endif
#ifdef CONFIG_SMP
union split_pud {
struct {
u32 pud_low;
u32 pud_high;
};
pud_t pud;
};
static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
{
union split_pud res, *orig = (union split_pud *)pudp;
/* xchg acts as a barrier before setting of the high bits */
res.pud_low = xchg(&orig->pud_low, 0);
res.pud_high = orig->pud_high;
orig->pud_high = 0;
return res.pud;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Matthew Wilcox | 59 | 100.00% | 1 | 100.00% |
Total | 59 | 100.00% | 1 | 100.00% |
#else
#define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
#endif
/* Encode and de-code a swap entry */
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
#define __swp_type(x) (((x).val) & 0x1f)
#define __swp_offset(x) ((x).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
#define __pte_to_swp_entry(pte) ((swp_entry_t){ (pte).pte_high })
#define __swp_entry_to_pte(x) ((pte_t){ { .pte_high = (x).val } })
#define gup_get_pte gup_get_pte
/*
* WARNING: only to be used in the get_user_pages_fast() implementation.
*
* With get_user_pages_fast(), we walk down the pagetables without taking
* any locks. For this we would like to load the pointers atomically,
* but that is not possible (without expensive cmpxchg8b) on PAE. What
* we do have is the guarantee that a PTE will only either go from not
* present to present, or present to not present or both -- it will not
* switch to a completely different present page without a TLB flush in
* between; something that we are blocking by holding interrupts off.
*
* Setting ptes from not present to present goes:
*
* ptep->pte_high = h;
* smp_wmb();
* ptep->pte_low = l;
*
* And present to not present goes:
*
* ptep->pte_low = 0;
* smp_wmb();
* ptep->pte_high = 0;
*
* We must ensure here that the load of pte_low sees 'l' iff pte_high
* sees 'h'. We load pte_high *after* loading pte_low, which ensures we
* don't see an older value of pte_high. *Then* we recheck pte_low,
* which ensures that we haven't picked up a changed pte high. We might
* have gotten rubbish values from pte_low and pte_high, but we are
* guaranteed that pte_low will not have the present bit set *unless*
* it is 'l'. Because get_user_pages_fast() only operates on present ptes
* we're safe.
*/
static inline pte_t gup_get_pte(pte_t *ptep)
{
pte_t pte;
do {
pte.pte_low = ptep->pte_low;
smp_rmb();
pte.pte_high = ptep->pte_high;
smp_rmb();
} while (unlikely(pte.pte_low != ptep->pte_low));
return pte;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Kirill A. Shutemov | 56 | 100.00% | 1 | 100.00% |
Total | 56 | 100.00% | 1 | 100.00% |
#endif /* _ASM_X86_PGTABLE_3LEVEL_H */
Overall Contributors
Person | Tokens | Prop | Commits | CommitProp |
Linus Torvalds (pre-git) | 112 | 16.23% | 3 | 14.29% |
Jeremy Fitzhardinge | 105 | 15.22% | 3 | 14.29% |
Matthew Wilcox | 101 | 14.64% | 1 | 4.76% |
Johannes Weiner | 91 | 13.19% | 1 | 4.76% |
Zachary Amsden | 86 | 12.46% | 2 | 9.52% |
Andrea Arcangeli | 73 | 10.58% | 2 | 9.52% |
Kirill A. Shutemov | 61 | 8.84% | 1 | 4.76% |
William Lee Irwin III | 37 | 5.36% | 1 | 4.76% |
Rusty Russell | 8 | 1.16% | 1 | 4.76% |
Jan Beulich | 5 | 0.72% | 1 | 4.76% |
Andi Kleen | 3 | 0.43% | 1 | 4.76% |
Joe Perches | 3 | 0.43% | 1 | 4.76% |
H. Peter Anvin | 3 | 0.43% | 1 | 4.76% |
David Shaohua Li | 1 | 0.14% | 1 | 4.76% |
Greg Kroah-Hartman | 1 | 0.14% | 1 | 4.76% |
Total | 690 | 100.00% | 21 | 100.00% |
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.