cregit-Linux how code gets into the kernel

Release 4.14 arch/x86/kernel/espfix_64.c

Directory: arch/x86/kernel
/* ----------------------------------------------------------------------- *
 *
 *   Copyright 2014 Intel Corporation; author: H. Peter Anvin
 *
 *   This program is free software; you can redistribute it and/or modify it
 *   under the terms and conditions of the GNU General Public License,
 *   version 2, as published by the Free Software Foundation.
 *
 *   This program is distributed in the hope it will be useful, but WITHOUT
 *   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *   more details.
 *
 * ----------------------------------------------------------------------- */

/*
 * The IRET instruction, when returning to a 16-bit segment, only
 * restores the bottom 16 bits of the user space stack pointer.  This
 * causes some 16-bit software to break, but it also leaks kernel state
 * to user space.
 *
 * This works around this by creating percpu "ministacks", each of which
 * is mapped 2^16 times 64K apart.  When we detect that the return SS is
 * on the LDT, we copy the IRET frame to the ministack and use the
 * relevant alias to return to userspace.  The ministacks are mapped
 * readonly, so if the IRET fault we promote #GP to #DF which is an IST
 * vector and thus has its own stack; we then do the fixup in the #DF
 * handler.
 *
 * This file sets up the ministacks and the related page tables.  The
 * actual ministack invocation is in entry_64.S.
 */

#include <linux/init.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/random.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/setup.h>
#include <asm/espfix.h>

/*
 * Note: we only need 6*8 = 48 bytes for the espfix stack, but round
 * it up to a cache line to avoid unnecessary sharing.
 */

#define ESPFIX_STACK_SIZE	(8*8UL)

#define ESPFIX_STACKS_PER_PAGE	(PAGE_SIZE/ESPFIX_STACK_SIZE)

/* There is address space for how many espfix pages? */

#define ESPFIX_PAGE_SPACE	(1UL << (P4D_SHIFT-PAGE_SHIFT-16))


#define ESPFIX_MAX_CPUS		(ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
#if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
# error "Need more virtual address space for the ESPFIX hack"
#endif


#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO)

/* This contains the *bottom* address of the espfix stack */
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);

/* Initialization mutex - should this be a spinlock? */
static DEFINE_MUTEX(espfix_init_mutex);

/* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */

#define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)

static void *espfix_pages[ESPFIX_MAX_PAGES];

static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
	__aligned(PAGE_SIZE);



static unsigned int page_random, slot_random;

/*
 * This returns the bottom address of the espfix stack for a specific CPU.
 * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
 * we have to account for some amount of padding at the end of each page.
 */

static inline unsigned long espfix_base_addr(unsigned int cpu) { unsigned long page, slot; unsigned long addr; page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random; slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE; addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE); addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16); addr += ESPFIX_BASE_ADDR; return addr; }

Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin82100.00%1100.00%
Total82100.00%1100.00%

#define PTE_STRIDE (65536/PAGE_SIZE) #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE) #define ESPFIX_PMD_CLONES PTRS_PER_PMD #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES)) #define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
static void init_espfix_random(void) { unsigned long rand; /* * This is run before the entropy pools are initialized, * but this is hopefully better than nothing. */ if (!arch_get_random_long(&rand)) { /* The constant is an arbitrary large prime */ rand = rdtsc(); rand *= 0xc345c6b72fd16123UL; } slot_random = rand % ESPFIX_STACKS_PER_PAGE; page_random = (rand / ESPFIX_STACKS_PER_PAGE) & (ESPFIX_PAGE_SPACE - 1); }

Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin5194.44%133.33%
Andrew Lutomirski35.56%266.67%
Total54100.00%3100.00%


void __init init_espfix_bsp(void) { pgd_t *pgd; p4d_t *p4d; /* Install the espfix pud into the kernel page directory */ pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)]; p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR); p4d_populate(&init_mm, p4d, espfix_pud_page); /* Randomize the locations */ init_espfix_random(); /* The rest is the same as for any other processor */ init_espfix_ap(0); }

Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin3660.00%125.00%
Kirill A. Shutemov2135.00%250.00%
Zhu Guihua35.00%125.00%
Total60100.00%4100.00%


void init_espfix_ap(int cpu) { unsigned int page; unsigned long addr; pud_t pud, *pud_p; pmd_t pmd, *pmd_p; pte_t pte, *pte_p; int n, node; void *stack_page; pteval_t ptemask; /* We only have to do this once... */ if (likely(per_cpu(espfix_stack, cpu))) return; /* Already initialized */ addr = espfix_base_addr(cpu); page = cpu/ESPFIX_STACKS_PER_PAGE; /* Did another CPU already set this up? */ stack_page = ACCESS_ONCE(espfix_pages[page]); if (likely(stack_page)) goto done; mutex_lock(&espfix_init_mutex); /* Did we race on the lock? */ stack_page = ACCESS_ONCE(espfix_pages[page]); if (stack_page) goto unlock_done; node = cpu_to_node(cpu); ptemask = __supported_pte_mask; pud_p = &espfix_pud_page[pud_index(addr)]; pud = *pud_p; if (!pud_present(pud)) { struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); pmd_p = (pmd_t *)page_address(page); pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PUD_CLONES; n++) set_pud(&pud_p[n], pud); } pmd_p = pmd_offset(&pud, addr); pmd = *pmd_p; if (!pmd_present(pmd)) { struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); pte_p = (pte_t *)page_address(page); pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PMD_CLONES; n++) set_pmd(&pmd_p[n], pmd); } pte_p = pte_offset_kernel(&pmd, addr); stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask)); for (n = 0; n < ESPFIX_PTE_CLONES; n++) set_pte(&pte_p[n*PTE_STRIDE], pte); /* Job is done for this CPU and any CPU which shares this page */ ACCESS_ONCE(espfix_pages[page]) = stack_page; unlock_done: mutex_unlock(&espfix_init_mutex); done: per_cpu(espfix_stack, cpu) = addr; per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page + (addr & ~PAGE_MASK); }

Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin39085.34%120.00%
Zhu Guihua6113.35%240.00%
Tom Lendacky40.88%120.00%
Boris Ostrovsky20.44%120.00%
Total457100.00%5100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
H. Peter Anvin69587.75%218.18%
Zhu Guihua648.08%218.18%
Kirill A. Shutemov232.90%218.18%
Tom Lendacky40.51%19.09%
Andrew Lutomirski30.38%218.18%
Boris Ostrovsky20.25%19.09%
Michal Hocko10.13%19.09%
Total792100.00%11100.00%
Directory: arch/x86/kernel
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.