cregit-Linux how code gets into the kernel

Release 4.14 drivers/phy/phy-xgene.c

Directory: drivers/phy
/*
 * AppliedMicro X-Gene Multi-purpose PHY driver
 *
 * Copyright (c) 2014, Applied Micro Circuits Corporation
 * Author: Loc Ho <lho@apm.com>
 *         Tuan Phan <tphan@apm.com>
 *         Suman Tripathi <stripathi@apm.com>
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
 * The first PLL clock macro is used for internal reference clock. The second
 * PLL clock macro is used to generate the clock for the PHY. This driver
 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
 * operate according to the mode of operation. The first PLL CMU is only
 * required if internal clock is enabled.
 *
 * Logical Layer Out Of HW module units:
 *
 * -----------------
 * | Internal      |    |------|
 * | Ref PLL CMU   |----|      |     -------------    ---------
 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
 *                      |      |     |           |    ---------
 * External Clock ------|      |     -------------
 *                      |------|
 *
 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
 * indirectly from the SDS offset at 0x2000. It is only required for
 * internal reference clock.
 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
 *
 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
 * it is located outside the PHY IP. This is the case for the PHY located
 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
 *
 * Currently, this driver only supports Gen3 SATA mode with external clock.
 */
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/phy/phy.h>
#include <linux/clk.h>

/* Max 2 lanes per a PHY unit */

#define MAX_LANE			2

/* Register offset inside the PHY */

#define SERDES_PLL_INDIRECT_OFFSET	0x0000

#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000

#define SERDES_INDIRECT_OFFSET		0x0400

#define SERDES_LANE_STRIDE		0x0200

/* Some default Serdes parameters */

#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }

#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }

#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }

#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }

#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }

#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }

#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }

#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }


#define SATA_SPD_SEL_GEN3		0x7

#define SATA_SPD_SEL_GEN2		0x3

#define SATA_SPD_SEL_GEN1		0x1


#define SSC_DISABLE			0

#define SSC_ENABLE			1


#define FBDIV_VAL_50M			0x77

#define REFDIV_VAL_50M			0x1

#define FBDIV_VAL_100M			0x3B

#define REFDIV_VAL_100M			0x0

/* SATA Clock/Reset CSR */

#define SATACLKENREG			0x00000000

#define  SATA0_CORE_CLKEN		0x00000002

#define  SATA1_CORE_CLKEN		0x00000004

#define SATASRESETREG			0x00000004

#define  SATA_MEM_RESET_MASK		0x00000020

#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)

#define  SATA_SDS_RESET_MASK		0x00000004

#define  SATA_CSR_RESET_MASK		0x00000001

#define  SATA_CORE_RESET_MASK		0x00000002

#define  SATA_PMCLK_RESET_MASK		0x00000010

#define  SATA_PCLK_RESET_MASK		0x00000008

/* SDS CSR used for PHY Indirect access */

#define SATA_ENET_SDS_PCS_CTL0		0x00000000

#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))

#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))

#define SATA_ENET_SDS_CTL0		0x0000000c

#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))

#define SATA_ENET_SDS_CTL1		0x00000010

#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))

#define SATA_ENET_SDS_RST_CTL		0x00000024

#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c

#define  CFG_IND_WR_CMD_MASK		0x00000001

#define  CFG_IND_RD_CMD_MASK		0x00000002

#define  CFG_IND_CMD_DONE_MASK		0x00000004

#define  CFG_IND_ADDR_SET(dst, src) \
		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))

#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040

#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044

#define SATA_ENET_CLK_MACRO_REG		0x0000004c

#define  I_RESET_B_SET(dst, src) \
		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))

#define  I_PLL_FBDIV_SET(dst, src) \
		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))

#define  I_CUSTOMEROV_SET(dst, src) \
		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))

#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)

#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)

/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */

#define CMU_REG0			0x00000

#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000

#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))

#define  CMU_REG0_PDOWN_MASK		0x00004000

#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))

#define CMU_REG1			0x00002

#define  CMU_REG1_PLL_CP_SET(dst, src) \
		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))

#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))

#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001

#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))

#define CMU_REG2			0x00004

#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))

#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))

#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))

#define CMU_REG3			0x00006

#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))

#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))

#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))

#define CMU_REG4			0x00008

#define CMU_REG5			0x0000a

#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))

#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))

#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))

#define  CMU_REG5_PLL_RESETB_MASK	0x00000001

#define CMU_REG6			0x0000c

#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))

#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))

#define CMU_REG7			0x0000e

#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)

#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)

#define CMU_REG8			0x00010

#define CMU_REG9			0x00012

#define  CMU_REG9_WORD_LEN_8BIT		0x000

#define  CMU_REG9_WORD_LEN_10BIT	0x001

#define  CMU_REG9_WORD_LEN_16BIT	0x002

#define  CMU_REG9_WORD_LEN_20BIT	0x003

#define  CMU_REG9_WORD_LEN_32BIT	0x004

#define  CMU_REG9_WORD_LEN_40BIT	0x005

#define  CMU_REG9_WORD_LEN_64BIT	0x006

#define  CMU_REG9_WORD_LEN_66BIT	0x007

#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))

#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))

#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))

#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define CMU_REG10			0x00014

#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))

#define CMU_REG11			0x00016

#define CMU_REG12			0x00018

#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))

#define CMU_REG13			0x0001a

#define CMU_REG14			0x0001c

#define CMU_REG15			0x0001e

#define CMU_REG16			0x00020

#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001

#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002

#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))

#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))

#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))

#define CMU_REG17			0x00022

#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))

#define  CMU_REG17_RESERVED_7_SET(dst, src) \
		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))

#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000

#define CMU_REG18			0x00024

#define CMU_REG19			0x00026

#define CMU_REG20			0x00028

#define CMU_REG21			0x0002a

#define CMU_REG22			0x0002c

#define CMU_REG23			0x0002e

#define CMU_REG24			0x00030

#define CMU_REG25			0x00032

#define CMU_REG26			0x00034

#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))

#define CMU_REG27			0x00036

#define CMU_REG28			0x00038

#define CMU_REG29			0x0003a

#define CMU_REG30			0x0003c

#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))

#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define CMU_REG31			0x0003e

#define CMU_REG32			0x00040

#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000

#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))

#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))

#define CMU_REG33			0x00042

#define CMU_REG34			0x00044

#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))

#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))

#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))

#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))

#define CMU_REG35			0x00046

#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))

#define CMU_REG36				0x00048

#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))

#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))

#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))

#define CMU_REG37			0x0004a

#define CMU_REG38			0x0004c

#define CMU_REG39			0x0004e

/* PHY lane CSR accessing from SDS indirectly */

#define RXTX_REG0			0x000

#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))

#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))

#define RXTX_REG1			0x002

#define  RXTX_REG1_RXACVCM_SET(dst, src) \
		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))

#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))

#define  RXTX_REG1_RXVREG1_SET(dst, src) \
		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))

#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))

#define RXTX_REG2			0x004

#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))

#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))

#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))

#define RXTX_REG4			0x008

#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040

#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))

#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))

#define RXTX_REG5			0x00a

#define  RXTX_REG5_TX_CN1_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define  RXTX_REG5_TX_CP1_SET(dst, src) \
		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))

#define  RXTX_REG5_TX_CN2_SET(dst, src) \
		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))

#define RXTX_REG6			0x00c

#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))

#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))

#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))

#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define RXTX_REG7			0x00e

#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100

#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080

#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))

#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))

#define RXTX_REG8			0x010

#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))

#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))

#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))

#define  RXTX_REG8_SD_VREF_SET(dst, src) \
		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))

#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))

#define RXTX_REG7			0x00e

#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))

#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))

#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000

#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))

#define RXTX_REG11			0x016

#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define RXTX_REG12			0x018

#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))

#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))

#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002

#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define RXTX_REG13			0x01a

#define RXTX_REG14			0x01c

#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))

#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))

#define RXTX_REG26			0x034

#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))

#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define RXTX_REG21			0x02a

#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)

#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)

#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))

#define RXTX_REG22			0x02c

#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)

#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)

#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))

#define RXTX_REG23			0x02e

#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)

#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)

#define RXTX_REG24			0x030

#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)

#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)

#define RXTX_REG27			0x036

#define RXTX_REG28			0x038

#define RXTX_REG31			0x03e

#define RXTX_REG38			0x04c

#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))

#define RXTX_REG39			0x04e

#define RXTX_REG40			0x050

#define RXTX_REG41			0x052

#define RXTX_REG42			0x054

#define RXTX_REG43			0x056

#define RXTX_REG44			0x058

#define RXTX_REG45			0x05a

#define RXTX_REG46			0x05c

#define RXTX_REG47			0x05e

#define RXTX_REG48			0x060

#define RXTX_REG49			0x062

#define RXTX_REG50			0x064

#define RXTX_REG51			0x066

#define RXTX_REG52			0x068

#define RXTX_REG53			0x06a

#define RXTX_REG54			0x06c

#define RXTX_REG55			0x06e

#define RXTX_REG61			0x07a

#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))

#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))

#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))

#define RXTX_REG62			0x07c

#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))

#define RXTX_REG81			0x0a2

#define  RXTX_REG89_MU_TH7_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define  RXTX_REG89_MU_TH8_SET(dst, src) \
		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))

#define  RXTX_REG89_MU_TH9_SET(dst, src) \
		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))

#define RXTX_REG96			0x0c0

#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))

#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))

#define RXTX_REG99			0x0c6

#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))

#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))

#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))

#define RXTX_REG102			0x0cc

#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))

#define RXTX_REG114			0x0e4

#define RXTX_REG121			0x0f2

#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)

#define RXTX_REG125			0x0fa

#define  RXTX_REG125_PQ_REG_SET(dst, src) \
		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))

#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))

#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))

#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))

#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define RXTX_REG127			0x0fe

#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002

#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004

#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))

#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))

#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))

#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))

#define RXTX_REG128			0x100

#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))

#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))

#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))

#define RXTX_REG129			0x102

#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))

#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))

#define RXTX_REG130			0x104

#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))

#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))

#define RXTX_REG145			0x122

#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))

#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))

#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))

#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))

#define RXTX_REG147			0x126

#define RXTX_REG148			0x128

/* Clock macro type */

enum cmu_type_t {
	
REF_CMU = 0,	/* Clock macro is the internal reference clock */
	
PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
};


enum mux_type_t {
	
MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
	
MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
};


enum clk_type_t {
	
CLK_EXT_DIFF = 0,	/* External differential */
	
CLK_INT_DIFF = 1,	/* Internal differential */
	
CLK_INT_SING = 2,	/* Internal single ended */
};


enum xgene_phy_mode {
	
MODE_SATA	= 0,	/* List them for simple reference */
	
MODE_SGMII	= 1,
	
MODE_PCIE	= 2,
	
MODE_USB	= 3,
	
MODE_XFI	= 4,
	
MODE_MAX
};


struct xgene_sata_override_param {
	
u32 speed[MAX_LANE]; /* Index for override parameter per lane */
	
u32 txspeed[3];			/* Tx speed */
	
u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
	
u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
	
u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
	
u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
	
u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
	
u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
	
u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
};


struct xgene_phy_ctx {
	
struct device *dev;
	
struct phy *phy;
	
enum xgene_phy_mode mode;		/* Mode of operation */
	
enum clk_type_t clk_type;	/* Input clock selection */
	
void __iomem *sds_base;		/* PHY CSR base addr */
	
struct clk *clk;		/* Optional clock */

	/* Override Serdes parameters */
	
struct xgene_sata_override_param sata_param;
};

/*
 * For chip earlier than A3 version, enable this flag.
 * To enable, pass boot argument phy_xgene.preA3Chip=1
 */

static int preA3Chip;
MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
module_param_named(preA3Chip, preA3Chip, int, 0444);


static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(data, csr_base + indirect_data_reg); readl(csr_base + indirect_data_reg); /* Force a barrier */ writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, data); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho137100.00%1100.00%
Total137100.00%1100.00%


static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 *data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); *data = readl(csr_base + indirect_data_reg); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, *data); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho132100.00%1100.00%
Total132100.00%1100.00%


static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho86100.00%1100.00%
Total86100.00%1100.00%


static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho69100.00%1100.00%
Total69100.00%1100.00%


static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho79100.00%1100.00%
Total79100.00%1100.00%


static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho52100.00%1100.00%
Total52100.00%1100.00%


static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho51100.00%1100.00%
Total51100.00%1100.00%


static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho80100.00%1100.00%
Total80100.00%1100.00%


static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho63100.00%1100.00%
Total63100.00%1100.00%


static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val &= ~bits; serdes_wr(ctx, lane, reg, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho51100.00%1100.00%
Total51100.00%1100.00%


static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val |= bits; serdes_wr(ctx, lane, reg, val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho50100.00%1100.00%
Total50100.00%1100.00%


static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; /* Set the reset sequence delay for TX ready assertion */ cmu_rd(ctx, cmu_type, CMU_REG12, &val); val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG12, val); /* Set the programmable stage delays between various enable stages */ cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222); cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225); /* Configure clock type */ if (clk_type == CLK_EXT_DIFF) { /* Select external clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set external reference clock\n"); } else if (clk_type == CLK_INT_DIFF) { /* Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal reference clock\n"); } else if (clk_type == CLK_INT_SING) { /* * NOTE: This clock type is NOT support for controller * whose internal clock shared in the PCIe controller * * Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* Select CML as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal single ended reference clock\n"); } }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho330100.00%1100.00%
Total330100.00%1100.00%


static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; int ref_100MHz; if (cmu_type == REF_CMU) { /* Set VCO calibration voltage threshold */ cmu_rd(ctx, cmu_type, CMU_REG34, &val); val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); cmu_wr(ctx, cmu_type, CMU_REG34, val); } /* Set the VCO calibration counter */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); else val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Configure PLL for calibration */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_CP_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); else val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); if (cmu_type == REF_CMU) val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); else val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); if (cmu_type != REF_CMU) cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Configure the PLL for either 100MHz or 50MHz */ cmu_rd(ctx, cmu_type, CMU_REG2, &val); if (cmu_type == REF_CMU) { val = CMU_REG2_PLL_LFRES_SET(val, 0xa); ref_100MHz = 1; } else { val = CMU_REG2_PLL_LFRES_SET(val, 0x3); if (clk_type == CLK_EXT_DIFF) ref_100MHz = 0; else ref_100MHz = 1; } if (ref_100MHz) { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); } else { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); } cmu_wr(ctx, cmu_type, CMU_REG2, val); /* Configure the VCO */ cmu_rd(ctx, cmu_type, CMU_REG3, &val); if (cmu_type == REF_CMU) { val = CMU_REG3_VCOVARSEL_SET(val, 0x3); val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); } else { val = CMU_REG3_VCOVARSEL_SET(val, 0xF); if (preA3Chip) val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); else val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); } cmu_wr(ctx, cmu_type, CMU_REG3, val); /* Disable force PLL lock */ cmu_rd(ctx, cmu_type, CMU_REG26, &val); val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG26, val); /* Setup PLL loop filter */ cmu_rd(ctx, cmu_type, CMU_REG5, &val); val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); if (cmu_type == REF_CMU || !preA3Chip) val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); else val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); cmu_wr(ctx, cmu_type, CMU_REG5, val); /* Enable or disable manual calibration */ cmu_rd(ctx, cmu_type, CMU_REG6, &val); val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); cmu_wr(ctx, cmu_type, CMU_REG6, val); /* Configure lane for 20-bits */ if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG9, &val); val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); if (!preA3Chip) { val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); } cmu_wr(ctx, cmu_type, CMU_REG9, val); if (!preA3Chip) { cmu_rd(ctx, cmu_type, CMU_REG10, &val); val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG10, val); } } cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); else val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); /* Configure for SATA */ cmu_rd(ctx, cmu_type, CMU_REG30, &val); val = CMU_REG30_PCIE_MODE_SET(val, 0x0); val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); cmu_wr(ctx, cmu_type, CMU_REG30, val); /* Disable state machine bypass */ cmu_wr(ctx, cmu_type, CMU_REG31, 0xF); cmu_rd(ctx, cmu_type, CMU_REG32, &val); val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG32_IREF_ADJ_SET(val, 0x3); else val = CMU_REG32_IREF_ADJ_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG32, val); /* Set VCO calibration threshold */ if (cmu_type != REF_CMU && preA3Chip) cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27); else cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c); /* Set CTLE Override and override waiting from state machine */ cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho958100.00%1100.00%
Total958100.00%1100.00%


static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type) { u32 val; /* Set SSC modulation value */ cmu_rd(ctx, cmu_type, CMU_REG35, &val); val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); cmu_wr(ctx, cmu_type, CMU_REG35, val); /* Enable SSC, set vertical step and DSM value */ cmu_rd(ctx, cmu_type, CMU_REG36, &val); val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); val = CMU_REG36_PLL_SSC_EN_SET(val, 1); val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); cmu_wr(ctx, cmu_type, CMU_REG36, val); /* Reset the PLL */ cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Force VCO calibration to restart */ cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho137100.00%1100.00%
Total137100.00%1100.00%


static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) { u32 val; u32 reg; int i; int lane; for (lane = 0; lane < MAX_LANE; lane++) { serdes_wr(ctx, lane, RXTX_REG147, 0x6); /* Set boost control for quarter, half, and full rate */ serdes_rd(ctx, lane, RXTX_REG0, &val); val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); serdes_wr(ctx, lane, RXTX_REG0, val); /* Set boost control value */ serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXACVCM_SET(val, 0x7); val = RXTX_REG1_CTLE_EQ_SET(val, ctx->sata_param.txboostgain[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG1, val); /* Latch VTT value based on the termination to ground and enable TX FIFO */ serdes_rd(ctx, lane, RXTX_REG2, &val); val = RXTX_REG2_VTT_ENA_SET(val, 0x1); val = RXTX_REG2_VTT_SEL_SET(val, 0x1); val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG2, val); /* Configure Tx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG4, &val); val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG4, val); if (!preA3Chip) { serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXVREG1_SET(val, 0x2); val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); serdes_wr(ctx, lane, RXTX_REG1, val); } /* Set pre-emphasis first 1 and 2, and post-emphasis values */ serdes_rd(ctx, lane, RXTX_REG5, &val); val = RXTX_REG5_TX_CN1_SET(val, ctx->sata_param.txprecursor_cn1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CP1_SET(val, ctx->sata_param.txpostcursor_cp1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CN2_SET(val, ctx->sata_param.txprecursor_cn2[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG5, val); /* Set TX amplitude value */ serdes_rd(ctx, lane, RXTX_REG6, &val); val = RXTX_REG6_TXAMP_CNTL_SET(val, ctx->sata_param.txamplitude[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); val = RXTX_REG6_TX_IDLE_SET(val, 0x0); val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG6, val); /* Configure Rx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG7, &val); val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG7, val); /* Set CDR and LOS values and enable Rx SSC */ serdes_rd(ctx, lane, RXTX_REG8, &val); val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); val = RXTX_REG8_SD_VREF_SET(val, 0x4); serdes_wr(ctx, lane, RXTX_REG8, val); /* Set phase adjust upper/lower limits */ serdes_rd(ctx, lane, RXTX_REG11, &val); val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG11, val); /* Enable Latch Off; disable SUMOS and Tx termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Set period error latch to 512T and enable BWL */ serdes_rd(ctx, lane, RXTX_REG26, &val); val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG26, val); serdes_wr(ctx, lane, RXTX_REG28, 0x0); /* Set DFE loop preset value */ serdes_wr(ctx, lane, RXTX_REG31, 0x0); /* Set Eye Monitor counter width to 12-bit */ serdes_rd(ctx, lane, RXTX_REG61, &val); val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG61, val); serdes_rd(ctx, lane, RXTX_REG62, &val); val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG62, val); /* Set BW select tap X for DFE loop */ for (i = 0; i < 9; i++) { reg = RXTX_REG81 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG89_MU_TH7_SET(val, 0xe); val = RXTX_REG89_MU_TH8_SET(val, 0xe); val = RXTX_REG89_MU_TH9_SET(val, 0xe); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for frequency adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG96 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for phase adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG99 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); serdes_wr(ctx, lane, reg, val); } serdes_rd(ctx, lane, RXTX_REG102, &val); val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG102, val); serdes_wr(ctx, lane, RXTX_REG114, 0xffe0); serdes_rd(ctx, lane, RXTX_REG125, &val); val = RXTX_REG125_SIGN_PQ_SET(val, ctx->sata_param.txeyedirection[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PQ_REG_SET(val, ctx->sata_param.txeyetuning[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG125, val); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG145, &val); val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); if (preA3Chip) { val = RXTX_REG145_RXES_ENA_SET(val, 0x1); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); } else { val = RXTX_REG145_RXES_ENA_SET(val, 0x0); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); } serdes_wr(ctx, lane, RXTX_REG145, val); /* * Set Rx LOS filter clock rate, sample rate, and threshold * windows */ for (i = 0; i < 4; i++) { reg = RXTX_REG148 + i * 2; serdes_wr(ctx, lane, reg, 0xFFFF); } } }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho1363100.00%1100.00%
Total1363100.00%1100.00%


static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { void __iomem *csr_serdes = ctx->sds_base; int loop; u32 val; /* Release PHY main reset */ writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL); readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ if (cmu_type != REF_CMU) { cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* * As per PHY design spec, the PLL reset requires a minimum * of 800us. */ usleep_range(800, 1000); cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* * As per PHY design spec, the PLL auto calibration requires * a minimum of 800us. */ usleep_range(800, 1000); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); /* * As per PHY design spec, the PLL requires a minimum of * 800us to settle. */ usleep_range(800, 1000); } if (!preA3Chip) goto skip_manual_cal; /* * Configure the termination resister calibration * The serial receive pins, RXP/RXN, have TERMination resistor * that is required to be calibrated. */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG17, CMU_REG17_PVT_TERM_MAN_ENA_MASK); /* * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN * resistors that are required to the calibrated. * Configure the pull DOWN calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_DN_MAN_ENA_MASK); /* Configure the pull UP calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_UP_MAN_ENA_MASK); skip_manual_cal: /* Poll the PLL calibration completion status for at least 1 ms */ loop = 100; do { cmu_rd(ctx, cmu_type, CMU_REG7, &val); if (CMU_REG7_PLL_CALIB_DONE_RD(val)) break; /* * As per PHY design spec, PLL calibration status requires * a minimum of 10us to be updated. */ usleep_range(10, 100); } while (--loop > 0); cmu_rd(ctx, cmu_type, CMU_REG7, &val); dev_dbg(ctx->dev, "PLL calibration %s\n", CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed"); if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { dev_err(ctx->dev, "PLL calibration failed due to VCO failure\n"); return -1; } dev_dbg(ctx->dev, "PLL calibration successful\n"); cmu_rd(ctx, cmu_type, CMU_REG15, &val); dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not "); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho444100.00%1100.00%
Total444100.00%1100.00%


static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; dev_dbg(ctx->dev, "Reset VCO and re-start again\n"); if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); } cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho93100.00%1100.00%
Total93100.00%1100.00%


static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { void __iomem *sds_base = ctx->sds_base; u32 val; int i; /* Configure the PHY for operation */ dev_dbg(ctx->dev, "Reset PHY\n"); /* Place PHY into reset */ writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL); val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release PHY lane from reset (active high) */ writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release all PHY module out of reset except PHY main reset */ writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Set the operation speed */ val = readl(sds_base + SATA_ENET_SDS_CTL1); val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); writel(val, sds_base + SATA_ENET_SDS_CTL1); dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n"); val = readl(sds_base + SATA_ENET_SDS_CTL0); val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); writel(val, sds_base + SATA_ENET_SDS_CTL0); /* Configure the clock macro unit (CMU) clock type */ xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type); /* Configure the clock macro */ xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type); /* Enable SSC if enabled */ if (ssc_enable) xgene_phy_ssc_enable(ctx, PHY_CMU); /* Configure PHY lanes */ xgene_phy_sata_cfg_lanes(ctx); /* Set Rx/Tx 20-bit */ val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0); val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0); /* Start PLL calibration and try for three times */ i = 10; do { if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type)) break; /* If failed, toggle the VCO power signal and start again */ xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type); } while (--i > 0); /* Even on failure, allow to continue any way */ if (i <= 0) dev_err(ctx->dev, "PLL calibration failed\n"); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho310100.00%1100.00%
Total310100.00%1100.00%


static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { int rc; dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type); if (ctx->mode == MODE_SATA) { rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); if (rc) return rc; } else { dev_err(ctx->dev, "Un-supported customer pin mode %d\n", ctx->mode); return -ENODEV; } return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho83100.00%1100.00%
Total83100.00%1100.00%

/* * Receiver Offset Calibration: * * Calibrate the receiver signal path offset in two steps - summar and * latch calibrations */
static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) { int i; struct { u32 reg; u32 val; } serdes_reg[] = { {RXTX_REG38, 0x0}, {RXTX_REG39, 0xff00}, {RXTX_REG40, 0xffff}, {RXTX_REG41, 0xffff}, {RXTX_REG42, 0xffff}, {RXTX_REG43, 0xffff}, {RXTX_REG44, 0xffff}, {RXTX_REG45, 0xffff}, {RXTX_REG46, 0xffff}, {RXTX_REG47, 0xfffc}, {RXTX_REG48, 0x0}, {RXTX_REG49, 0x0}, {RXTX_REG50, 0x0}, {RXTX_REG51, 0x0}, {RXTX_REG52, 0x0}, {RXTX_REG53, 0x0}, {RXTX_REG54, 0x0}, {RXTX_REG55, 0x0}, }; /* Start SUMMER calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the Summer calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the auto calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); /* Start latch calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* * As per PHY design spec, the latch calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* Configure the PHY lane for calibration */ serdes_wr(ctx, lane, RXTX_REG28, 0x7); serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); serdes_clrbits(ctx, lane, RXTX_REG4, RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) serdes_wr(ctx, lane, serdes_reg[i].reg, serdes_reg[i].val); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho291100.00%1100.00%
Total291100.00%1100.00%


static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) { /* Reset digital Rx */ serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); /* As per PHY design spec, the reset requires a minimum of 100us. */ usleep_range(100, 150); serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho45100.00%1100.00%
Total45100.00%1100.00%


static int xgene_phy_get_avg(int accum, int samples) { return (accum + (samples / 2)) / samples; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho25100.00%1100.00%
Total25100.00%1100.00%


static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) { int max_loop = 10; int avg_loop = 0; int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; int sum_cal = 0; int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; int sum_cal_itr; int fail_even; int fail_odd; u32 val; dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n", lane); /* Enable RX Hi-Z termination */ serdes_setbits(ctx, lane, RXTX_REG12, RXTX_REG12_RX_DET_TERM_ENABLE_MASK); /* Turn off DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0000); /* DFE Presets to zero */ serdes_wr(ctx, lane, RXTX_REG31, 0x0000); /* * Receiver Offset Calibration: * Calibrate the receiver signal path offset in two steps - summar * and latch calibration. * Runs the "Receiver Offset Calibration multiple times to determine * the average value to use. */ while (avg_loop < max_loop) { /* Start the calibration */ xgene_phy_force_lat_summer_cal(ctx, lane); serdes_rd(ctx, lane, RXTX_REG21, &val); lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); serdes_rd(ctx, lane, RXTX_REG22, &val); lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); serdes_rd(ctx, lane, RXTX_REG23, &val); lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG24, &val); lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG121, &val); sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); /* Check for failure. If passed, sum them for averaging */ if ((fail_even == 0 || fail_even == 1) && (fail_odd == 0 || fail_odd == 1)) { lat_do += lat_do_itr; lat_xo += lat_xo_itr; lat_eo += lat_eo_itr; lat_so += lat_so_itr; lat_de += lat_de_itr; lat_xe += lat_xe_itr; lat_ee += lat_ee_itr; lat_se += lat_se_itr; sum_cal += sum_cal_itr; dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr); dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr); ++avg_loop; } else { dev_err(ctx->dev, "Receiver calibration failed at %d loop\n", avg_loop); } xgene_phy_reset_rxd(ctx, lane); } /* Update latch manual calibration with average value */ serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_do, max_loop)); val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xo, max_loop)); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_eo, max_loop)); val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_so, max_loop)); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG129, &val); val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_de, max_loop)); val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xe, max_loop)); serdes_wr(ctx, lane, RXTX_REG129, val); serdes_rd(ctx, lane, RXTX_REG130, &val); val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_ee, max_loop)); val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_se, max_loop)); serdes_wr(ctx, lane, RXTX_REG130, val); /* Update SUMMER calibration with average value */ serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, xgene_phy_get_avg(sum_cal, max_loop)); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Average Value:\n"); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", xgene_phy_get_avg(lat_do, max_loop), xgene_phy_get_avg(lat_xo, max_loop), xgene_phy_get_avg(lat_eo, max_loop), xgene_phy_get_avg(lat_so, max_loop)); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", xgene_phy_get_avg(lat_de, max_loop), xgene_phy_get_avg(lat_xe, max_loop), xgene_phy_get_avg(lat_ee, max_loop), xgene_phy_get_avg(lat_se, max_loop)); dev_dbg(ctx->dev, "SUM 0x%x\n", xgene_phy_get_avg(sum_cal, max_loop)); serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Enable Manual Summer calibration\n"); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); dev_dbg(ctx->dev, "Enable Manual Latch calibration\n"); serdes_wr(ctx, lane, RXTX_REG127, val); /* Disable RX Hi-Z termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Turn on DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0007); /* Set DFE preset */ serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho916100.00%1100.00%
Total916100.00%1100.00%


static int xgene_phy_hw_init(struct phy *phy) { struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); int rc; int i; rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE); if (rc) { dev_err(ctx->dev, "PHY initialize failed %d\n", rc); return rc; } /* Setup clock properly after PHY configuration */ if (!IS_ERR(ctx->clk)) { /* HW requires an toggle of the clock */ clk_prepare_enable(ctx->clk); clk_disable_unprepare(ctx->clk); clk_prepare_enable(ctx->clk); } /* Compute average value */ for (i = 0; i < MAX_LANE; i++) xgene_phy_gen_avg_val(ctx, i); dev_dbg(ctx->dev, "PHY initialized\n"); return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho126100.00%1100.00%
Total126100.00%1100.00%

static const struct phy_ops xgene_phy_ops = { .init = xgene_phy_hw_init, .owner = THIS_MODULE, };
static struct phy *xgene_phy_xlate(struct device *dev, struct of_phandle_args *args) { struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); if (args->args_count <= 0) return ERR_PTR(-EINVAL); if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX) return ERR_PTR(-EINVAL); ctx->mode = args->args[0]; return ctx->phy; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho86100.00%1100.00%
Total86100.00%1100.00%


static void xgene_phy_get_param(struct platform_device *pdev, const char *name, u32 *buffer, int count, u32 *default_val, u32 conv_factor) { int i; if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer, count)) { for (i = 0; i < count; i++) buffer[i] /= conv_factor; return; } /* Does not exist, load default */ for (i = 0; i < count; i++) buffer[i] = default_val[i % 3]; }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho100100.00%1100.00%
Total100100.00%1100.00%


static int xgene_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct xgene_phy_ctx *ctx; struct resource *res; u32 default_spd[] = DEFAULT_SATA_SPD_SEL; u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; u32 default_txamp[] = DEFAULT_SATA_TXAMP; u32 default_txcn1[] = DEFAULT_SATA_TXCN1; u32 default_txcn2[] = DEFAULT_SATA_TXCN2; u32 default_txcp1[] = DEFAULT_SATA_TXCP1; int i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = &pdev->dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctx->sds_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ctx->sds_base)) return PTR_ERR(ctx->sds_base); /* Retrieve optional clock */ ctx->clk = clk_get(&pdev->dev, NULL); /* Load override paramaters */ xgene_phy_get_param(pdev, "apm,tx-eye-tuning", ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1); xgene_phy_get_param(pdev, "apm,tx-eye-direction", ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1); xgene_phy_get_param(pdev, "apm,tx-boost-gain", ctx->sata_param.txboostgain, 6, default_txboost_gain, 1); xgene_phy_get_param(pdev, "apm,tx-amplitude", ctx->sata_param.txamplitude, 6, default_txamp, 13300); xgene_phy_get_param(pdev, "apm,tx-pre-cursor1", ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200); xgene_phy_get_param(pdev, "apm,tx-pre-cursor2", ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200); xgene_phy_get_param(pdev, "apm,tx-post-cursor", ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200); xgene_phy_get_param(pdev, "apm,tx-speed", ctx->sata_param.txspeed, 3, default_spd, 1); for (i = 0; i < MAX_LANE; i++) ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ platform_set_drvdata(pdev, ctx); ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops); if (IS_ERR(ctx->phy)) { dev_dbg(&pdev->dev, "Failed to create PHY\n"); return PTR_ERR(ctx->phy); } phy_set_drvdata(ctx->phy, ctx); phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); }

Contributors

PersonTokensPropCommitsCommitProp
Loc Ho41898.12%133.33%
Axel Lin61.41%133.33%
Kishon Vijay Abraham I20.47%133.33%
Total426100.00%3100.00%

static const struct of_device_id xgene_phy_of_match[] = { {.compatible = "apm,xgene-phy",}, {}, }; MODULE_DEVICE_TABLE(of, xgene_phy_of_match); static struct platform_driver xgene_phy_driver = { .probe = xgene_phy_probe, .driver = { .name = "xgene-phy", .of_match_table = xgene_phy_of_match, }, }; module_platform_driver(xgene_phy_driver); MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver"); MODULE_AUTHOR("Loc Ho <lho@apm.com>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.1");

Overall Contributors

PersonTokensPropCommitsCommitProp
Loc Ho892699.89%125.00%
Axel Lin60.07%125.00%
Kishon Vijay Abraham I40.04%250.00%
Total8936100.00%4100.00%
Directory: drivers/phy
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.