cregit-Linux how code gets into the kernel

Release 4.15 kernel/bpf/lpm_trie.c

Directory: kernel/bpf
/*
 * Longest prefix match list implementation
 *
 * Copyright (c) 2016,2017 Daniel Mack
 * Copyright (c) 2016 David Herrmann
 *
 * This file is subject to the terms and conditions of version 2 of the GNU
 * General Public License.  See the file COPYING in the main directory of the
 * Linux distribution for more details.
 */

#include <linux/bpf.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <net/ipv6.h>

/* Intermediate node */

#define LPM_TREE_NODE_FLAG_IM BIT(0)

struct lpm_trie_node;


struct lpm_trie_node {
	
struct rcu_head rcu;
	
struct lpm_trie_node __rcu	*child[2];
	
u32				prefixlen;
	
u32				flags;
	
u8				data[0];
};


struct lpm_trie {
	
struct bpf_map			map;
	
struct lpm_trie_node __rcu	*root;
	
size_t				n_entries;
	
size_t				max_prefixlen;
	
size_t				data_size;
	
raw_spinlock_t			lock;
};

/* This trie implements a longest prefix match algorithm that can be used to
 * match IP addresses to a stored set of ranges.
 *
 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
 * interpreted as big endian, so data[0] stores the most significant byte.
 *
 * Match ranges are internally stored in instances of struct lpm_trie_node
 * which each contain their prefix length as well as two pointers that may
 * lead to more nodes containing more specific matches. Each node also stores
 * a value that is defined by and returned to userspace via the update_elem
 * and lookup functions.
 *
 * For instance, let's start with a trie that was created with a prefix length
 * of 32, so it can be used for IPv4 addresses, and one single element that
 * matches 192.168.0.0/16. The data array would hence contain
 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
 * stick to IP-address notation for readability though.
 *
 * As the trie is empty initially, the new node (1) will be places as root
 * node, denoted as (R) in the example below. As there are no other node, both
 * child pointers are %NULL.
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *
 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
 * a node with the same data and a smaller prefix (ie, a less specific one),
 * node (2) will become a child of (1). In child index depends on the next bit
 * that is outside of what (1) matches, and that bit is 0, so (2) will be
 * child[0] of (1):
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *                   |
 *    +----------------+
 *    |       (2)      |
 *    | 192.168.0.0/24 |
 *    |    value: 2    |
 *    |   [0]    [1]   |
 *    +----------------+
 *
 * The child[1] slot of (1) could be filled with another node which has bit #17
 * (the next bit after the ones that (1) matches on) set to 1. For instance,
 * 192.168.128.0/24:
 *
 *              +----------------+
 *              |       (1)  (R) |
 *              | 192.168.0.0/16 |
 *              |    value: 1    |
 *              |   [0]    [1]   |
 *              +----------------+
 *                   |      |
 *    +----------------+  +------------------+
 *    |       (2)      |  |        (3)       |
 *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
 *    |    value: 2    |  |     value: 3     |
 *    |   [0]    [1]   |  |    [0]    [1]    |
 *    +----------------+  +------------------+
 *
 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
 * it, node (1) is looked at first, and because (4) of the semantics laid out
 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
 * However, that slot is already allocated, so a new node is needed in between.
 * That node does not have a value attached to it and it will never be
 * returned to users as result of a lookup. It is only there to differentiate
 * the traversal further. It will get a prefix as wide as necessary to
 * distinguish its two children:
 *
 *                      +----------------+
 *                      |       (1)  (R) |
 *                      | 192.168.0.0/16 |
 *                      |    value: 1    |
 *                      |   [0]    [1]   |
 *                      +----------------+
 *                           |      |
 *            +----------------+  +------------------+
 *            |       (4)  (I) |  |        (3)       |
 *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
 *            |    value: ---  |  |     value: 3     |
 *            |   [0]    [1]   |  |    [0]    [1]    |
 *            +----------------+  +------------------+
 *                 |      |
 *  +----------------+  +----------------+
 *  |       (2)      |  |       (5)      |
 *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
 *  |    value: 2    |  |     value: 5   |
 *  |   [0]    [1]   |  |   [0]    [1]   |
 *  +----------------+  +----------------+
 *
 * 192.168.1.1/32 would be a child of (5) etc.
 *
 * An intermediate node will be turned into a 'real' node on demand. In the
 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
 *
 * A fully populated trie would have a height of 32 nodes, as the trie was
 * created with a prefix length of 32.
 *
 * The lookup starts at the root node. If the current node matches and if there
 * is a child that can be used to become more specific, the trie is traversed
 * downwards. The last node in the traversal that is a non-intermediate one is
 * returned.
 */


static inline int extract_bit(const u8 *data, size_t index) { return !!(data[index / 8] & (1 << (7 - (index % 8)))); }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack41100.00%1100.00%
Total41100.00%1100.00%

/** * longest_prefix_match() - determine the longest prefix * @trie: The trie to get internal sizes from * @node: The node to operate on * @key: The key to compare to @node * * Determine the longest prefix of @node that matches the bits in @key. */
static size_t longest_prefix_match(const struct lpm_trie *trie, const struct lpm_trie_node *node, const struct bpf_lpm_trie_key *key) { size_t prefixlen = 0; size_t i; for (i = 0; i < trie->data_size; i++) { size_t b; b = 8 - fls(node->data[i] ^ key->data[i]); prefixlen += b; if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen) return min(node->prefixlen, key->prefixlen); if (b < 8) break; } return prefixlen; }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack113100.00%1100.00%
Total113100.00%1100.00%

/* Called from syscall or from eBPF program */
static void *trie_lookup_elem(struct bpf_map *map, void *_key) { struct lpm_trie *trie = container_of(map, struct lpm_trie, map); struct lpm_trie_node *node, *found = NULL; struct bpf_lpm_trie_key *key = _key; /* Start walking the trie from the root node ... */ for (node = rcu_dereference(trie->root); node;) { unsigned int next_bit; size_t matchlen; /* Determine the longest prefix of @node that matches @key. * If it's the maximum possible prefix for this trie, we have * an exact match and can return it directly. */ matchlen = longest_prefix_match(trie, node, key); if (matchlen == trie->max_prefixlen) { found = node; break; } /* If the number of bits that match is smaller than the prefix * length of @node, bail out and return the node we have seen * last in the traversal (ie, the parent). */ if (matchlen < node->prefixlen) break; /* Consider this node as return candidate unless it is an * artificially added intermediate one. */ if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) found = node; /* If the node match is fully satisfied, let's see if we can * become more specific. Determine the next bit in the key and * traverse down. */ next_bit = extract_bit(key->data, node->prefixlen); node = rcu_dereference(node->child[next_bit]); } if (!found) return NULL; return found->data + trie->data_size; }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack168100.00%1100.00%
Total168100.00%1100.00%


static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, const void *value) { struct lpm_trie_node *node; size_t size = sizeof(struct lpm_trie_node) + trie->data_size; if (value) size += trie->map.value_size; node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN, trie->map.numa_node); if (!node) return NULL; node->flags = 0; if (value) memcpy(node->data + trie->data_size, value, trie->map.value_size); return node; }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack9993.40%150.00%
Martin KaFai Lau76.60%150.00%
Total106100.00%2100.00%

/* Called from syscall or from eBPF program */
static int trie_update_elem(struct bpf_map *map, void *_key, void *value, u64 flags) { struct lpm_trie *trie = container_of(map, struct lpm_trie, map); struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; struct lpm_trie_node __rcu **slot; struct bpf_lpm_trie_key *key = _key; unsigned long irq_flags; unsigned int next_bit; size_t matchlen = 0; int ret = 0; if (unlikely(flags > BPF_EXIST)) return -EINVAL; if (key->prefixlen > trie->max_prefixlen) return -EINVAL; raw_spin_lock_irqsave(&trie->lock, irq_flags); /* Allocate and fill a new node */ if (trie->n_entries == trie->map.max_entries) { ret = -ENOSPC; goto out; } new_node = lpm_trie_node_alloc(trie, value); if (!new_node) { ret = -ENOMEM; goto out; } trie->n_entries++; new_node->prefixlen = key->prefixlen; RCU_INIT_POINTER(new_node->child[0], NULL); RCU_INIT_POINTER(new_node->child[1], NULL); memcpy(new_node->data, key->data, trie->data_size); /* Now find a slot to attach the new node. To do that, walk the tree * from the root and match as many bits as possible for each node until * we either find an empty slot or a slot that needs to be replaced by * an intermediate node. */ slot = &trie->root; while ((node = rcu_dereference_protected(*slot, lockdep_is_held(&trie->lock)))) { matchlen = longest_prefix_match(trie, node, key); if (node->prefixlen != matchlen || node->prefixlen == key->prefixlen || node->prefixlen == trie->max_prefixlen) break; next_bit = extract_bit(key->data, node->prefixlen); slot = &node->child[next_bit]; } /* If the slot is empty (a free child pointer or an empty root), * simply assign the @new_node to that slot and be done. */ if (!node) { rcu_assign_pointer(*slot, new_node); goto out; } /* If the slot we picked already exists, replace it with @new_node * which already has the correct data array set. */ if (node->prefixlen == matchlen) { new_node->child[0] = node->child[0]; new_node->child[1] = node->child[1]; if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) trie->n_entries--; rcu_assign_pointer(*slot, new_node); kfree_rcu(node, rcu); goto out; } /* If the new node matches the prefix completely, it must be inserted * as an ancestor. Simply insert it between @node and *@slot. */ if (matchlen == key->prefixlen) { next_bit = extract_bit(node->data, matchlen); rcu_assign_pointer(new_node->child[next_bit], node); rcu_assign_pointer(*slot, new_node); goto out; } im_node = lpm_trie_node_alloc(trie, NULL); if (!im_node) { ret = -ENOMEM; goto out; } im_node->prefixlen = matchlen; im_node->flags |= LPM_TREE_NODE_FLAG_IM; memcpy(im_node->data, node->data, trie->data_size); /* Now determine which child to install in which slot */ if (extract_bit(key->data, matchlen)) { rcu_assign_pointer(im_node->child[0], node); rcu_assign_pointer(im_node->child[1], new_node); } else { rcu_assign_pointer(im_node->child[0], new_node); rcu_assign_pointer(im_node->child[1], node); } /* Finally, assign the intermediate node to the determined spot */ rcu_assign_pointer(*slot, im_node); out: if (ret) { if (new_node) trie->n_entries--; kfree(new_node); kfree(im_node); } raw_spin_unlock_irqrestore(&trie->lock, irq_flags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack60999.67%150.00%
Daniel Borkmann20.33%150.00%
Total611100.00%2100.00%

/* Called from syscall or from eBPF program */
static int trie_delete_elem(struct bpf_map *map, void *_key) { struct lpm_trie *trie = container_of(map, struct lpm_trie, map); struct bpf_lpm_trie_key *key = _key; struct lpm_trie_node __rcu **trim, **trim2; struct lpm_trie_node *node, *parent; unsigned long irq_flags; unsigned int next_bit; size_t matchlen = 0; int ret = 0; if (key->prefixlen > trie->max_prefixlen) return -EINVAL; raw_spin_lock_irqsave(&trie->lock, irq_flags); /* Walk the tree looking for an exact key/length match and keeping * track of the path we traverse. We will need to know the node * we wish to delete, and the slot that points to the node we want * to delete. We may also need to know the nodes parent and the * slot that contains it. */ trim = &trie->root; trim2 = trim; parent = NULL; while ((node = rcu_dereference_protected( *trim, lockdep_is_held(&trie->lock)))) { matchlen = longest_prefix_match(trie, node, key); if (node->prefixlen != matchlen || node->prefixlen == key->prefixlen) break; parent = node; trim2 = trim; next_bit = extract_bit(key->data, node->prefixlen); trim = &node->child[next_bit]; } if (!node || node->prefixlen != key->prefixlen || (node->flags & LPM_TREE_NODE_FLAG_IM)) { ret = -ENOENT; goto out; } trie->n_entries--; /* If the node we are removing has two children, simply mark it * as intermediate and we are done. */ if (rcu_access_pointer(node->child[0]) && rcu_access_pointer(node->child[1])) { node->flags |= LPM_TREE_NODE_FLAG_IM; goto out; } /* If the parent of the node we are about to delete is an intermediate * node, and the deleted node doesn't have any children, we can delete * the intermediate parent as well and promote its other child * up the tree. Doing this maintains the invariant that all * intermediate nodes have exactly 2 children and that there are no * unnecessary intermediate nodes in the tree. */ if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && !node->child[0] && !node->child[1]) { if (node == rcu_access_pointer(parent->child[0])) rcu_assign_pointer( *trim2, rcu_access_pointer(parent->child[1])); else rcu_assign_pointer( *trim2, rcu_access_pointer(parent->child[0])); kfree_rcu(parent, rcu); kfree_rcu(node, rcu); goto out; } /* The node we are removing has either zero or one child. If there * is a child, move it into the removed node's slot then delete * the node. Otherwise just clear the slot and delete the node. */ if (node->child[0]) rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); else if (node->child[1]) rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); else RCU_INIT_POINTER(*trim, NULL); kfree_rcu(node, rcu); out: raw_spin_unlock_irqrestore(&trie->lock, irq_flags); return ret; }

Contributors

PersonTokensPropCommitsCommitProp
Craig Gallek42696.16%266.67%
Daniel Mack173.84%133.33%
Total443100.00%3100.00%

#define LPM_DATA_SIZE_MAX 256 #define LPM_DATA_SIZE_MIN 1 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ sizeof(struct lpm_trie_node)) #define LPM_VAL_SIZE_MIN 1 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X)) #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \ BPF_F_RDONLY | BPF_F_WRONLY)
static struct bpf_map *trie_alloc(union bpf_attr *attr) { struct lpm_trie *trie; u64 cost = sizeof(*trie), cost_per_node; int ret; if (!capable(CAP_SYS_ADMIN)) return ERR_PTR(-EPERM); /* check sanity of attributes */ if (attr->max_entries == 0 || !(attr->map_flags & BPF_F_NO_PREALLOC) || attr->map_flags & ~LPM_CREATE_FLAG_MASK || attr->key_size < LPM_KEY_SIZE_MIN || attr->key_size > LPM_KEY_SIZE_MAX || attr->value_size < LPM_VAL_SIZE_MIN || attr->value_size > LPM_VAL_SIZE_MAX) return ERR_PTR(-EINVAL); trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN); if (!trie) return ERR_PTR(-ENOMEM); /* copy mandatory map attributes */ trie->map.map_type = attr->map_type; trie->map.key_size = attr->key_size; trie->map.value_size = attr->value_size; trie->map.max_entries = attr->max_entries; trie->map.map_flags = attr->map_flags; trie->map.numa_node = bpf_map_attr_numa_node(attr); trie->data_size = attr->key_size - offsetof(struct bpf_lpm_trie_key, data); trie->max_prefixlen = trie->data_size * 8; cost_per_node = sizeof(struct lpm_trie_node) + attr->value_size + trie->data_size; cost += (u64) attr->max_entries * cost_per_node; if (cost >= U32_MAX - PAGE_SIZE) { ret = -E2BIG; goto out_err; } trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; ret = bpf_map_precharge_memlock(trie->map.pages); if (ret) goto out_err; raw_spin_lock_init(&trie->lock); return &trie->map; out_err: kfree(trie); return ERR_PTR(ret); }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack23271.83%125.00%
Daniel Borkmann6921.36%250.00%
Martin KaFai Lau226.81%125.00%
Total323100.00%4100.00%


static void trie_free(struct bpf_map *map) { struct lpm_trie *trie = container_of(map, struct lpm_trie, map); struct lpm_trie_node __rcu **slot; struct lpm_trie_node *node; raw_spin_lock(&trie->lock); /* Always start at the root and walk down to a node that has no * children. Then free that node, nullify its reference in the parent * and start over. */ for (;;) { slot = &trie->root; for (;;) { node = rcu_dereference_protected(*slot, lockdep_is_held(&trie->lock)); if (!node) goto unlock; if (rcu_access_pointer(node->child[0])) { slot = &node->child[0]; continue; } if (rcu_access_pointer(node->child[1])) { slot = &node->child[1]; continue; } kfree(node); RCU_INIT_POINTER(*slot, NULL); break; } } unlock: raw_spin_unlock(&trie->lock); }

Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack166100.00%1100.00%
Total166100.00%1100.00%


static int trie_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; }

Contributors

PersonTokensPropCommitsCommitProp
Alexei Starovoitov23100.00%1100.00%
Total23100.00%1100.00%

const struct bpf_map_ops trie_map_ops = { .map_alloc = trie_alloc, .map_free = trie_free, .map_get_next_key = trie_get_next_key, .map_lookup_elem = trie_lookup_elem, .map_update_elem = trie_update_elem, .map_delete_elem = trie_delete_elem, };

Overall Contributors

PersonTokensPropCommitsCommitProp
Daniel Mack156472.58%110.00%
Craig Gallek42719.81%220.00%
Daniel Borkmann1024.73%330.00%
Martin KaFai Lau321.48%110.00%
Alexei Starovoitov281.30%110.00%
Johannes Berg10.05%110.00%
Chenbo Feng10.05%110.00%
Total2155100.00%10100.00%
Directory: kernel/bpf
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.