Release 4.15 kernel/kthread.c
/* Kernel thread helper functions.
* Copyright (C) 2004 IBM Corporation, Rusty Russell.
*
* Creation is done via kthreadd, so that we get a clean environment
* even if we're invoked from userspace (think modprobe, hotplug cpu,
* etc.).
*/
#include <uapi/linux/sched/types.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/kthread.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/cpuset.h>
#include <linux/unistd.h>
#include <linux/file.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/freezer.h>
#include <linux/ptrace.h>
#include <linux/uaccess.h>
#include <trace/events/sched.h>
static DEFINE_SPINLOCK(kthread_create_lock);
static LIST_HEAD(kthread_create_list);
struct task_struct *kthreadd_task;
struct kthread_create_info
{
/* Information passed to kthread() from kthreadd. */
int (*threadfn)(void *data);
void *data;
int node;
/* Result passed back to kthread_create() from kthreadd. */
struct task_struct *result;
struct completion *done;
struct list_head list;
};
struct kthread {
unsigned long flags;
unsigned int cpu;
void *data;
struct completion parked;
struct completion exited;
#ifdef CONFIG_BLK_CGROUP
struct cgroup_subsys_state *blkcg_css;
#endif
};
enum KTHREAD_BITS {
KTHREAD_IS_PER_CPU = 0,
KTHREAD_SHOULD_STOP,
KTHREAD_SHOULD_PARK,
KTHREAD_IS_PARKED,
};
static inline void set_kthread_struct(void *kthread)
{
/*
* We abuse ->set_child_tid to avoid the new member and because it
* can't be wrongly copied by copy_process(). We also rely on fact
* that the caller can't exec, so PF_KTHREAD can't be cleared.
*/
current->set_child_tid = (__force void __user *)kthread;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Oleg Nesterov | 24 | 100.00% | 2 | 100.00% |
Total | 24 | 100.00% | 2 | 100.00% |
static inline struct kthread *to_kthread(struct task_struct *k)
{
WARN_ON(!(k->flags & PF_KTHREAD));
return (__force void *)k->set_child_tid;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Oleg Nesterov | 36 | 100.00% | 2 | 100.00% |
Total | 36 | 100.00% | 2 | 100.00% |
void free_kthread_struct(struct task_struct *k)
{
struct kthread *kthread;
/*
* Can be NULL if this kthread was created by kernel_thread()
* or if kmalloc() in kthread() failed.
*/
kthread = to_kthread(k);
#ifdef CONFIG_BLK_CGROUP
WARN_ON_ONCE(kthread && kthread->blkcg_css);
#endif
kfree(kthread);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Shaohua Li | 25 | 59.52% | 2 | 66.67% |
Oleg Nesterov | 17 | 40.48% | 1 | 33.33% |
Total | 42 | 100.00% | 3 | 100.00% |
/**
* kthread_should_stop - should this kthread return now?
*
* When someone calls kthread_stop() on your kthread, it will be woken
* and this will return true. You should then return, and your return
* value will be passed through to kthread_stop().
*/
bool kthread_should_stop(void)
{
return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Andrew Morton | 9 | 42.86% | 1 | 33.33% |
Thomas Gleixner | 8 | 38.10% | 1 | 33.33% |
Oleg Nesterov | 4 | 19.05% | 1 | 33.33% |
Total | 21 | 100.00% | 3 | 100.00% |
EXPORT_SYMBOL(kthread_should_stop);
/**
* kthread_should_park - should this kthread park now?
*
* When someone calls kthread_park() on your kthread, it will be woken
* and this will return true. You should then do the necessary
* cleanup and call kthread_parkme()
*
* Similar to kthread_should_stop(), but this keeps the thread alive
* and in a park position. kthread_unpark() "restarts" the thread and
* calls the thread function again.
*/
bool kthread_should_park(void)
{
return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 21 | 100.00% | 1 | 100.00% |
Total | 21 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_should_park);
/**
* kthread_freezable_should_stop - should this freezable kthread return now?
* @was_frozen: optional out parameter, indicates whether %current was frozen
*
* kthread_should_stop() for freezable kthreads, which will enter
* refrigerator if necessary. This function is safe from kthread_stop() /
* freezer deadlock and freezable kthreads should use this function instead
* of calling try_to_freeze() directly.
*/
bool kthread_freezable_should_stop(bool *was_frozen)
{
bool frozen = false;
might_sleep();
if (unlikely(freezing(current)))
frozen = __refrigerator(true);
if (was_frozen)
*was_frozen = frozen;
return kthread_should_stop();
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 47 | 100.00% | 1 | 100.00% |
Total | 47 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
/**
* kthread_data - return data value specified on kthread creation
* @task: kthread task in question
*
* Return the data value specified when kthread @task was created.
* The caller is responsible for ensuring the validity of @task when
* calling this function.
*/
void *kthread_data(struct task_struct *task)
{
return to_kthread(task)->data;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 19 | 100.00% | 1 | 100.00% |
Total | 19 | 100.00% | 1 | 100.00% |
/**
* kthread_probe_data - speculative version of kthread_data()
* @task: possible kthread task in question
*
* @task could be a kthread task. Return the data value specified when it
* was created if accessible. If @task isn't a kthread task or its data is
* inaccessible for any reason, %NULL is returned. This function requires
* that @task itself is safe to dereference.
*/
void *kthread_probe_data(struct task_struct *task)
{
struct kthread *kthread = to_kthread(task);
void *data = NULL;
probe_kernel_read(&data, &kthread->data, sizeof(data));
return data;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 45 | 97.83% | 1 | 50.00% |
Petr Mladek | 1 | 2.17% | 1 | 50.00% |
Total | 46 | 100.00% | 2 | 100.00% |
static void __kthread_parkme(struct kthread *self)
{
__set_current_state(TASK_PARKED);
while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
complete(&self->parked);
schedule();
__set_current_state(TASK_PARKED);
}
clear_bit(KTHREAD_IS_PARKED, &self->flags);
__set_current_state(TASK_RUNNING);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 74 | 100.00% | 2 | 100.00% |
Total | 74 | 100.00% | 2 | 100.00% |
void kthread_parkme(void)
{
__kthread_parkme(to_kthread(current));
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 15 | 100.00% | 1 | 100.00% |
Total | 15 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_parkme);
static int kthread(void *_create)
{
/* Copy data: it's on kthread's stack */
struct kthread_create_info *create = _create;
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct completion *done;
struct kthread *self;
int ret;
self = kzalloc(sizeof(*self), GFP_KERNEL);
set_kthread_struct(self);
/* If user was SIGKILLed, I release the structure. */
done = xchg(&create->done, NULL);
if (!done) {
kfree(create);
do_exit(-EINTR);
}
if (!self) {
create->result = ERR_PTR(-ENOMEM);
complete(done);
do_exit(-ENOMEM);
}
self->data = data;
init_completion(&self->exited);
init_completion(&self->parked);
current->vfork_done = &self->exited;
/* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
complete(done);
schedule();
ret = -EINTR;
if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
cgroup_kthread_ready();
__kthread_parkme(self);
ret = threadfn(data);
}
do_exit(ret);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Oleg Nesterov | 96 | 43.24% | 4 | 36.36% |
Andrew Morton | 61 | 27.48% | 1 | 9.09% |
Tetsuo Handa | 36 | 16.22% | 1 | 9.09% |
Thomas Gleixner | 18 | 8.11% | 1 | 9.09% |
Vitaliy Gusev | 6 | 2.70% | 1 | 9.09% |
Tejun Heo | 4 | 1.80% | 2 | 18.18% |
Shaohua Li | 1 | 0.45% | 1 | 9.09% |
Total | 222 | 100.00% | 11 | 100.00% |
/* called from do_fork() to get node information for about to be created task */
int tsk_fork_get_node(struct task_struct *tsk)
{
#ifdef CONFIG_NUMA
if (tsk == kthreadd_task)
return tsk->pref_node_fork;
#endif
return NUMA_NO_NODE;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Eric Dumazet | 28 | 96.55% | 1 | 50.00% |
Nishanth Aravamudan | 1 | 3.45% | 1 | 50.00% |
Total | 29 | 100.00% | 2 | 100.00% |
static void create_kthread(struct kthread_create_info *create)
{
int pid;
#ifdef CONFIG_NUMA
current->pref_node_fork = create->node;
#endif
/* We want our own signal handler (we take no signals by default). */
pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
if (pid < 0) {
/* If user was SIGKILLed, I release the structure. */
struct completion *done = xchg(&create->done, NULL);
if (!done) {
kfree(create);
return;
}
create->result = ERR_PTR(pid);
complete(done);
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Andrew Morton | 46 | 48.94% | 1 | 16.67% |
Tetsuo Handa | 29 | 30.85% | 1 | 16.67% |
Eric Dumazet | 13 | 13.83% | 1 | 16.67% |
Eric W. Biedermann | 3 | 3.19% | 1 | 16.67% |
Oleg Nesterov | 2 | 2.13% | 1 | 16.67% |
David Howells | 1 | 1.06% | 1 | 16.67% |
Total | 94 | 100.00% | 6 | 100.00% |
static __printf(4, 0)
struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
void *data, int node,
const char namefmt[],
va_list args)
{
DECLARE_COMPLETION_ONSTACK(done);
struct task_struct *task;
struct kthread_create_info *create = kmalloc(sizeof(*create),
GFP_KERNEL);
if (!create)
return ERR_PTR(-ENOMEM);
create->threadfn = threadfn;
create->data = data;
create->node = node;
create->done = &done;
spin_lock(&kthread_create_lock);
list_add_tail(&create->list, &kthread_create_list);
spin_unlock(&kthread_create_lock);
wake_up_process(kthreadd_task);
/*
* Wait for completion in killable state, for I might be chosen by
* the OOM killer while kthreadd is trying to allocate memory for
* new kernel thread.
*/
if (unlikely(wait_for_completion_killable(&done))) {
/*
* If I was SIGKILLed before kthreadd (or new kernel thread)
* calls complete(), leave the cleanup of this structure to
* that thread.
*/
if (xchg(&create->done, NULL))
return ERR_PTR(-EINTR);
/*
* kthreadd (or new kernel thread) will call complete()
* shortly.
*/
wait_for_completion(&done);
}
task = create->result;
if (!IS_ERR(task)) {
static const struct sched_param param = { .sched_priority = 0 };
vsnprintf(task->comm, sizeof(task->comm), namefmt, args);
/*
* root may have changed our (kthreadd's) priority or CPU mask.
* The kernel thread should not inherit these properties.
*/
sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m);
set_cpus_allowed_ptr(task, cpu_all_mask);
}
kfree(create);
return task;
}
/**
* kthread_create_on_node - create a kthread.
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @node: task and thread structures for the thread are allocated on this node
* @namefmt: printf-style name for the thread.
*
* Description: This helper function creates and names a kernel
* thread. The thread will be stopped: use wake_up_process() to start
* it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
* is affine to all CPUs.
*
* If thread is going to be bound on a particular cpu, give its node
* in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
* When woken, the thread will run @threadfn() with @data as its
* argument. @threadfn() can either call do_exit() directly if it is a
* standalone thread for which no one will call kthread_stop(), or
* return when 'kthread_should_stop()' is true (which means
* kthread_stop() has been called). The return value should be zero
* or a negative error number; it will be passed to kthread_stop().
*
* Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
*/
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void *data, int node,
const char namefmt[],
...)
{
struct task_struct *task;
va_list args;
va_start(args, namefmt);
task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
va_end(args);
return task;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 69 | 98.57% | 1 | 50.00% |
Nicolas Iooss | 1 | 1.43% | 1 | 50.00% |
Total | 70 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL(kthread_create_on_node);
static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
{
unsigned long flags;
if (!wait_task_inactive(p, state)) {
WARN_ON(1);
return;
}
/* It's safe because the task is inactive. */
raw_spin_lock_irqsave(&p->pi_lock, flags);
do_set_cpus_allowed(p, mask);
p->flags |= PF_NO_SETAFFINITY;
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 43 | 56.58% | 2 | 50.00% |
Peter Zijlstra | 32 | 42.11% | 1 | 25.00% |
Tejun Heo | 1 | 1.32% | 1 | 25.00% |
Total | 76 | 100.00% | 4 | 100.00% |
static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
{
__kthread_bind_mask(p, cpumask_of(cpu), state);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Peter Zijlstra | 30 | 100.00% | 1 | 100.00% |
Total | 30 | 100.00% | 1 | 100.00% |
void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
{
__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Peter Zijlstra | 24 | 96.00% | 1 | 50.00% |
Thomas Gleixner | 1 | 4.00% | 1 | 50.00% |
Total | 25 | 100.00% | 2 | 100.00% |
/**
* kthread_bind - bind a just-created kthread to a cpu.
* @p: thread created by kthread_create().
* @cpu: cpu (might not be online, must be possible) for @k to run on.
*
* Description: This function is equivalent to set_cpus_allowed(),
* except that @cpu doesn't need to be online, and the thread must be
* stopped (i.e., just returned from kthread_create()).
*/
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Peter Zijlstra | 18 | 78.26% | 1 | 25.00% |
Thomas Gleixner | 3 | 13.04% | 2 | 50.00% |
Motohiro Kosaki | 2 | 8.70% | 1 | 25.00% |
Total | 23 | 100.00% | 4 | 100.00% |
EXPORT_SYMBOL(kthread_bind);
/**
* kthread_create_on_cpu - Create a cpu bound kthread
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @cpu: The cpu on which the thread should be bound,
* @namefmt: printf-style name for the thread. Format is restricted
* to "name.*%u". Code fills in cpu number.
*
* Description: This helper function creates and names a kernel thread
* The thread will be woken and put into park mode.
*/
struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
void *data, unsigned int cpu,
const char *namefmt)
{
struct task_struct *p;
p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
cpu);
if (IS_ERR(p))
return p;
kthread_bind(p, cpu);
/* CPU hotplug need to bind once again when unparking the thread. */
set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
to_kthread(p)->cpu = cpu;
return p;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 73 | 75.26% | 1 | 16.67% |
Andrew Morton | 9 | 9.28% | 1 | 16.67% |
Petr Mladek | 8 | 8.25% | 1 | 16.67% |
Oleg Nesterov | 4 | 4.12% | 1 | 16.67% |
Mathieu Desnoyers | 2 | 2.06% | 1 | 16.67% |
Nishanth Aravamudan | 1 | 1.03% | 1 | 16.67% |
Total | 97 | 100.00% | 6 | 100.00% |
/**
* kthread_unpark - unpark a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return false, wakes it, and
* waits for it to return. If the thread is marked percpu then its
* bound to the cpu again.
*/
void kthread_unpark(struct task_struct *k)
{
struct kthread *kthread = to_kthread(k);
clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
/*
* We clear the IS_PARKED bit here as we don't wait
* until the task has left the park code. So if we'd
* park before that happens we'd see the IS_PARKED bit
* which might be about to be cleared.
*/
if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
/*
* Newly created kthread was parked when the CPU was offline.
* The binding was lost and we need to set it again.
*/
if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
__kthread_bind(k, kthread->cpu, TASK_PARKED);
wake_up_state(k, TASK_PARKED);
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 64 | 84.21% | 2 | 40.00% |
Oleg Nesterov | 11 | 14.47% | 2 | 40.00% |
Petr Mladek | 1 | 1.32% | 1 | 20.00% |
Total | 76 | 100.00% | 5 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_unpark);
/**
* kthread_park - park a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_park() for @k to return true, wakes it, and
* waits for it to return. This can also be called after kthread_create()
* instead of calling wake_up_process(): the thread will park without
* calling threadfn().
*
* Returns 0 if the thread is parked, -ENOSYS if the thread exited.
* If called by the kthread itself just the park bit is set.
*/
int kthread_park(struct task_struct *k)
{
struct kthread *kthread = to_kthread(k);
if (WARN_ON(k->flags & PF_EXITING))
return -ENOSYS;
if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
if (k != current) {
wake_up_process(k);
wait_for_completion(&kthread->parked);
}
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 70 | 83.33% | 1 | 50.00% |
Oleg Nesterov | 14 | 16.67% | 1 | 50.00% |
Total | 84 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_park);
/**
* kthread_stop - stop a thread created by kthread_create().
* @k: thread created by kthread_create().
*
* Sets kthread_should_stop() for @k to return true, wakes it, and
* waits for it to exit. This can also be called after kthread_create()
* instead of calling wake_up_process(): the thread will exit without
* calling threadfn().
*
* If threadfn() may call do_exit() itself, the caller must ensure
* task_struct can't go away.
*
* Returns the result of threadfn(), or %-EINTR if wake_up_process()
* was never called.
*/
int kthread_stop(struct task_struct *k)
{
struct kthread *kthread;
int ret;
trace_sched_kthread_stop(k);
get_task_struct(k);
kthread = to_kthread(k);
set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
kthread_unpark(k);
wake_up_process(k);
wait_for_completion(&kthread->exited);
ret = k->exit_code;
put_task_struct(k);
trace_sched_kthread_stop_ret(ret);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Thomas Gleixner | 35 | 42.68% | 2 | 25.00% |
Andrew Morton | 21 | 25.61% | 1 | 12.50% |
Oleg Nesterov | 21 | 25.61% | 4 | 50.00% |
Mathieu Desnoyers | 5 | 6.10% | 1 | 12.50% |
Total | 82 | 100.00% | 8 | 100.00% |
EXPORT_SYMBOL(kthread_stop);
int kthreadd(void *unused)
{
struct task_struct *tsk = current;
/* Setup a clean context for our children to inherit. */
set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);
set_cpus_allowed_ptr(tsk, cpu_all_mask);
set_mems_allowed(node_states[N_MEMORY]);
current->flags |= PF_NOFREEZE;
cgroup_init_kthreadd();
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (list_empty(&kthread_create_list))
schedule();
__set_current_state(TASK_RUNNING);
spin_lock(&kthread_create_lock);
while (!list_empty(&kthread_create_list)) {
struct kthread_create_info *create;
create = list_entry(kthread_create_list.next,
struct kthread_create_info, list);
list_del_init(&create->list);
spin_unlock(&kthread_create_lock);
create_kthread(create);
spin_lock(&kthread_create_lock);
}
spin_unlock(&kthread_create_lock);
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Eric W. Biedermann | 121 | 80.13% | 1 | 10.00% |
Ingo Molnar | 10 | 6.62% | 1 | 10.00% |
Miao Xie | 7 | 4.64% | 2 | 20.00% |
Satyam Sharma | 5 | 3.31% | 1 | 10.00% |
Tejun Heo | 3 | 1.99% | 1 | 10.00% |
Oleg Nesterov | 2 | 1.32% | 1 | 10.00% |
Lai Jiangshan | 1 | 0.66% | 1 | 10.00% |
Rusty Russell | 1 | 0.66% | 1 | 10.00% |
Mike Travis | 1 | 0.66% | 1 | 10.00% |
Total | 151 | 100.00% | 10 | 100.00% |
void __kthread_init_worker(struct kthread_worker *worker,
const char *name,
struct lock_class_key *key)
{
memset(worker, 0, sizeof(struct kthread_worker));
spin_lock_init(&worker->lock);
lockdep_set_class_and_name(&worker->lock, key, name);
INIT_LIST_HEAD(&worker->work_list);
INIT_LIST_HEAD(&worker->delayed_work_list);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Yong Zhang | 47 | 68.12% | 1 | 25.00% |
Petr Mladek | 22 | 31.88% | 3 | 75.00% |
Total | 69 | 100.00% | 4 | 100.00% |
EXPORT_SYMBOL_GPL(__kthread_init_worker);
/**
* kthread_worker_fn - kthread function to process kthread_worker
* @worker_ptr: pointer to initialized kthread_worker
*
* This function implements the main cycle of kthread worker. It processes
* work_list until it is stopped with kthread_stop(). It sleeps when the queue
* is empty.
*
* The works are not allowed to keep any locks, disable preemption or interrupts
* when they finish. There is defined a safe point for freezing when one work
* finishes and before a new one is started.
*
* Also the works must not be handled by more than one worker at the same time,
* see also kthread_queue_work().
*/
int kthread_worker_fn(void *worker_ptr)
{
struct kthread_worker *worker = worker_ptr;
struct kthread_work *work;
/*
* FIXME: Update the check and remove the assignment when all kthread
* worker users are created using kthread_create_worker*() functions.
*/
WARN_ON(worker->task && worker->task != current);
worker->task = current;
if (worker->flags & KTW_FREEZABLE)
set_freezable();
repeat:
set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
spin_lock_irq(&worker->lock);
worker->task = NULL;
spin_unlock_irq(&worker->lock);
return 0;
}
work = NULL;
spin_lock_irq(&worker->lock);
if (!list_empty(&worker->work_list)) {
work = list_first_entry(&worker->work_list,
struct kthread_work, node);
list_del_init(&work->node);
}
worker->current_work = work;
spin_unlock_irq(&worker->lock);
if (work) {
__set_current_state(TASK_RUNNING);
work->func(work);
} else if (!freezing(current))
schedule();
try_to_freeze();
cond_resched();
goto repeat;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 177 | 89.39% | 2 | 40.00% |
Petr Mladek | 18 | 9.09% | 2 | 40.00% |
Shaohua Li | 3 | 1.52% | 1 | 20.00% |
Total | 198 | 100.00% | 5 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_worker_fn);
static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu, unsigned int flags,
const char namefmt[], va_list args)
{
struct kthread_worker *worker;
struct task_struct *task;
int node = -1;
worker = kzalloc(sizeof(*worker), GFP_KERNEL);
if (!worker)
return ERR_PTR(-ENOMEM);
kthread_init_worker(worker);
if (cpu >= 0)
node = cpu_to_node(cpu);
task = __kthread_create_on_node(kthread_worker_fn, worker,
node, namefmt, args);
if (IS_ERR(task))
goto fail_task;
if (cpu >= 0)
kthread_bind(task, cpu);
worker->flags = flags;
worker->task = task;
wake_up_process(task);
return worker;
fail_task:
kfree(worker);
return ERR_CAST(task);
}
/**
* kthread_create_worker - create a kthread worker
* @flags: flags modifying the default behavior of the worker
* @namefmt: printf-style name for the kthread worker (task).
*
* Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
* when the needed structures could not get allocated, and ERR_PTR(-EINTR)
* when the worker was SIGKILLed.
*/
struct kthread_worker *
kthread_create_worker(unsigned int flags, const char namefmt[], ...)
{
struct kthread_worker *worker;
va_list args;
va_start(args, namefmt);
worker = __kthread_create_worker(-1, flags, namefmt, args);
va_end(args);
return worker;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 54 | 98.18% | 2 | 66.67% |
Nicolas Iooss | 1 | 1.82% | 1 | 33.33% |
Total | 55 | 100.00% | 3 | 100.00% |
EXPORT_SYMBOL(kthread_create_worker);
/**
* kthread_create_worker_on_cpu - create a kthread worker and bind it
* it to a given CPU and the associated NUMA node.
* @cpu: CPU number
* @flags: flags modifying the default behavior of the worker
* @namefmt: printf-style name for the kthread worker (task).
*
* Use a valid CPU number if you want to bind the kthread worker
* to the given CPU and the associated NUMA node.
*
* A good practice is to add the cpu number also into the worker name.
* For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
*
* Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
* when the needed structures could not get allocated, and ERR_PTR(-EINTR)
* when the worker was SIGKILLed.
*/
struct kthread_worker *
kthread_create_worker_on_cpu(int cpu, unsigned int flags,
const char namefmt[], ...)
{
struct kthread_worker *worker;
va_list args;
va_start(args, namefmt);
worker = __kthread_create_worker(cpu, flags, namefmt, args);
va_end(args);
return worker;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 57 | 100.00% | 2 | 100.00% |
Total | 57 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL(kthread_create_worker_on_cpu);
/*
* Returns true when the work could not be queued at the moment.
* It happens when it is already pending in a worker list
* or when it is being cancelled.
*/
static inline bool queuing_blocked(struct kthread_worker *worker,
struct kthread_work *work)
{
lockdep_assert_held(&worker->lock);
return !list_empty(&work->node) || work->canceling;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 39 | 100.00% | 1 | 100.00% |
Total | 39 | 100.00% | 1 | 100.00% |
static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
struct kthread_work *work)
{
lockdep_assert_held(&worker->lock);
WARN_ON_ONCE(!list_empty(&work->node));
/* Do not use a work with >1 worker, see kthread_queue_work() */
WARN_ON_ONCE(work->worker && work->worker != worker);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 50 | 100.00% | 1 | 100.00% |
Total | 50 | 100.00% | 1 | 100.00% |
/* insert @work before @pos in @worker */
static void kthread_insert_work(struct kthread_worker *worker,
struct kthread_work *work,
struct list_head *pos)
{
kthread_insert_work_sanity_check(worker, work);
list_add_tail(&work->node, pos);
work->worker = worker;
if (!worker->current_work && likely(worker->task))
wake_up_process(worker->task);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 56 | 86.15% | 2 | 40.00% |
Lai Jiangshan | 5 | 7.69% | 1 | 20.00% |
Petr Mladek | 4 | 6.15% | 2 | 40.00% |
Total | 65 | 100.00% | 5 | 100.00% |
/**
* kthread_queue_work - queue a kthread_work
* @worker: target kthread_worker
* @work: kthread_work to queue
*
* Queue @work to work processor @task for async execution. @task
* must have been created with kthread_worker_create(). Returns %true
* if @work was successfully queued, %false if it was already pending.
*
* Reinitialize the work if it needs to be used by another worker.
* For example, when the worker was stopped and started again.
*/
bool kthread_queue_work(struct kthread_worker *worker,
struct kthread_work *work)
{
bool ret = false;
unsigned long flags;
spin_lock_irqsave(&worker->lock, flags);
if (!queuing_blocked(worker, work)) {
kthread_insert_work(worker, work, &worker->work_list);
ret = true;
}
spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 69 | 92.00% | 2 | 50.00% |
Petr Mladek | 6 | 8.00% | 2 | 50.00% |
Total | 75 | 100.00% | 4 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_queue_work);
/**
* kthread_delayed_work_timer_fn - callback that queues the associated kthread
* delayed work when the timer expires.
* @t: pointer to the expired timer
*
* The format of the function is defined by struct timer_list.
* It should have been called from irqsafe timer with irq already off.
*/
void kthread_delayed_work_timer_fn(struct timer_list *t)
{
struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
struct kthread_work *work = &dwork->work;
struct kthread_worker *worker = work->worker;
/*
* This might happen when a pending work is reinitialized.
* It means that it is used a wrong way.
*/
if (WARN_ON_ONCE(!worker))
return;
spin_lock(&worker->lock);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
/* Move the work from worker->delayed_work_list. */
WARN_ON_ONCE(list_empty(&work->node));
list_del_init(&work->node);
kthread_insert_work(worker, work, &worker->work_list);
spin_unlock(&worker->lock);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 99 | 89.19% | 1 | 50.00% |
Kees Cook | 12 | 10.81% | 1 | 50.00% |
Total | 111 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
void __kthread_queue_delayed_work(struct kthread_worker *worker,
struct kthread_delayed_work *dwork,
unsigned long delay)
{
struct timer_list *timer = &dwork->timer;
struct kthread_work *work = &dwork->work;
WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
/*
* If @delay is 0, queue @dwork->work immediately. This is for
* both optimization and correctness. The earliest @timer can
* expire is on the closest next tick and delayed_work users depend
* on that there's no such delay when @delay is 0.
*/
if (!delay) {
kthread_insert_work(worker, work, &worker->work_list);
return;
}
/* Be paranoid and try to detect possible races already now. */
kthread_insert_work_sanity_check(worker, work);
list_add(&work->node, &worker->delayed_work_list);
work->worker = worker;
timer->expires = jiffies + delay;
add_timer(timer);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 108 | 99.08% | 1 | 50.00% |
Kees Cook | 1 | 0.92% | 1 | 50.00% |
Total | 109 | 100.00% | 2 | 100.00% |
/**
* kthread_queue_delayed_work - queue the associated kthread work
* after a delay.
* @worker: target kthread_worker
* @dwork: kthread_delayed_work to queue
* @delay: number of jiffies to wait before queuing
*
* If the work has not been pending it starts a timer that will queue
* the work after the given @delay. If @delay is zero, it queues the
* work immediately.
*
* Return: %false if the @work has already been pending. It means that
* either the timer was running or the work was queued. It returns %true
* otherwise.
*/
bool kthread_queue_delayed_work(struct kthread_worker *worker,
struct kthread_delayed_work *dwork,
unsigned long delay)
{
struct kthread_work *work = &dwork->work;
unsigned long flags;
bool ret = false;
spin_lock_irqsave(&worker->lock, flags);
if (!queuing_blocked(worker, work)) {
__kthread_queue_delayed_work(worker, dwork, delay);
ret = true;
}
spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 86 | 100.00% | 2 | 100.00% |
Total | 86 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
struct kthread_flush_work {
struct kthread_work work;
struct completion done;
};
static void kthread_flush_work_fn(struct kthread_work *work)
{
struct kthread_flush_work *fwork =
container_of(work, struct kthread_flush_work, work);
complete(&fwork->done);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 34 | 100.00% | 1 | 100.00% |
Total | 34 | 100.00% | 1 | 100.00% |
/**
* kthread_flush_work - flush a kthread_work
* @work: work to flush
*
* If @work is queued or executing, wait for it to finish execution.
*/
void kthread_flush_work(struct kthread_work *work)
{
struct kthread_flush_work fwork = {
KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
COMPLETION_INITIALIZER_ONSTACK(fwork.done),
};
struct kthread_worker *worker;
bool noop = false;
worker = work->worker;
if (!worker)
return;
spin_lock_irq(&worker->lock);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
if (!list_empty(&work->node))
kthread_insert_work(worker, &fwork.work, work->node.next);
else if (worker->current_work == work)
kthread_insert_work(worker, &fwork.work,
worker->work_list.next);
else
noop = true;
spin_unlock_irq(&worker->lock);
if (!noop)
wait_for_completion(&fwork.done);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 144 | 96.00% | 2 | 50.00% |
Petr Mladek | 6 | 4.00% | 2 | 50.00% |
Total | 150 | 100.00% | 4 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_flush_work);
/*
* This function removes the work from the worker queue. Also it makes sure
* that it won't get queued later via the delayed work's timer.
*
* The work might still be in use when this function finishes. See the
* current_work proceed by the worker.
*
* Return: %true if @work was pending and successfully canceled,
* %false if @work was not pending
*/
static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
unsigned long *flags)
{
/* Try to cancel the timer if exists. */
if (is_dwork) {
struct kthread_delayed_work *dwork =
container_of(work, struct kthread_delayed_work, work);
struct kthread_worker *worker = work->worker;
/*
* del_timer_sync() must be called to make sure that the timer
* callback is not running. The lock must be temporary released
* to avoid a deadlock with the callback. In the meantime,
* any queuing is blocked by setting the canceling counter.
*/
work->canceling++;
spin_unlock_irqrestore(&worker->lock, *flags);
del_timer_sync(&dwork->timer);
spin_lock_irqsave(&worker->lock, *flags);
work->canceling--;
}
/*
* Try to remove the work from a worker list. It might either
* be from worker->work_list or from worker->delayed_work_list.
*/
if (!list_empty(&work->node)) {
list_del_init(&work->node);
return true;
}
return false;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 119 | 100.00% | 1 | 100.00% |
Total | 119 | 100.00% | 1 | 100.00% |
/**
* kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
* @worker: kthread worker to use
* @dwork: kthread delayed work to queue
* @delay: number of jiffies to wait before queuing
*
* If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
* modify @dwork's timer so that it expires after @delay. If @delay is zero,
* @work is guaranteed to be queued immediately.
*
* Return: %true if @dwork was pending and its timer was modified,
* %false otherwise.
*
* A special case is when the work is being canceled in parallel.
* It might be caused either by the real kthread_cancel_delayed_work_sync()
* or yet another kthread_mod_delayed_work() call. We let the other command
* win and return %false here. The caller is supposed to synchronize these
* operations a reasonable way.
*
* This function is safe to call from any context including IRQ handler.
* See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
* for details.
*/
bool kthread_mod_delayed_work(struct kthread_worker *worker,
struct kthread_delayed_work *dwork,
unsigned long delay)
{
struct kthread_work *work = &dwork->work;
unsigned long flags;
int ret = false;
spin_lock_irqsave(&worker->lock, flags);
/* Do not bother with canceling when never queued. */
if (!work->worker)
goto fast_queue;
/* Work must not be used with >1 worker, see kthread_queue_work() */
WARN_ON_ONCE(work->worker != worker);
/* Do not fight with another command that is canceling this work. */
if (work->canceling)
goto out;
ret = __kthread_cancel_work(work, true, &flags);
fast_queue:
__kthread_queue_delayed_work(worker, dwork, delay);
out:
spin_unlock_irqrestore(&worker->lock, flags);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 117 | 100.00% | 1 | 100.00% |
Total | 117 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
{
struct kthread_worker *worker = work->worker;
unsigned long flags;
int ret = false;
if (!worker)
goto out;
spin_lock_irqsave(&worker->lock, flags);
/* Work must not be used with >1 worker, see kthread_queue_work(). */
WARN_ON_ONCE(work->worker != worker);
ret = __kthread_cancel_work(work, is_dwork, &flags);
if (worker->current_work != work)
goto out_fast;
/*
* The work is in progress and we need to wait with the lock released.
* In the meantime, block any queuing by setting the canceling counter.
*/
work->canceling++;
spin_unlock_irqrestore(&worker->lock, flags);
kthread_flush_work(work);
spin_lock_irqsave(&worker->lock, flags);
work->canceling--;
out_fast:
spin_unlock_irqrestore(&worker->lock, flags);
out:
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 136 | 100.00% | 1 | 100.00% |
Total | 136 | 100.00% | 1 | 100.00% |
/**
* kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
* @work: the kthread work to cancel
*
* Cancel @work and wait for its execution to finish. This function
* can be used even if the work re-queues itself. On return from this
* function, @work is guaranteed to be not pending or executing on any CPU.
*
* kthread_cancel_work_sync(&delayed_work->work) must not be used for
* delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
*
* The caller must ensure that the worker on which @work was last
* queued can't be destroyed before this function returns.
*
* Return: %true if @work was pending, %false otherwise.
*/
bool kthread_cancel_work_sync(struct kthread_work *work)
{
return __kthread_cancel_work_sync(work, false);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 18 | 100.00% | 1 | 100.00% |
Total | 18 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
/**
* kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
* wait for it to finish.
* @dwork: the kthread delayed work to cancel
*
* This is kthread_cancel_work_sync() for delayed works.
*
* Return: %true if @dwork was pending, %false otherwise.
*/
bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
{
return __kthread_cancel_work_sync(&dwork->work, true);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 21 | 100.00% | 1 | 100.00% |
Total | 21 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
/**
* kthread_flush_worker - flush all current works on a kthread_worker
* @worker: worker to flush
*
* Wait until all currently executing or pending works on @worker are
* finished.
*/
void kthread_flush_worker(struct kthread_worker *worker)
{
struct kthread_flush_work fwork = {
KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
COMPLETION_INITIALIZER_ONSTACK(fwork.done),
};
kthread_queue_work(worker, &fwork.work);
wait_for_completion(&fwork.done);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Tejun Heo | 48 | 96.00% | 1 | 50.00% |
Petr Mladek | 2 | 4.00% | 1 | 50.00% |
Total | 50 | 100.00% | 2 | 100.00% |
EXPORT_SYMBOL_GPL(kthread_flush_worker);
/**
* kthread_destroy_worker - destroy a kthread worker
* @worker: worker to be destroyed
*
* Flush and destroy @worker. The simple flush is enough because the kthread
* worker API is used only in trivial scenarios. There are no multi-step state
* machines needed.
*/
void kthread_destroy_worker(struct kthread_worker *worker)
{
struct task_struct *task;
task = worker->task;
if (WARN_ON(!task))
return;
kthread_flush_worker(worker);
kthread_stop(task);
WARN_ON(!list_empty(&worker->work_list));
kfree(worker);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 57 | 100.00% | 1 | 100.00% |
Total | 57 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL(kthread_destroy_worker);
#ifdef CONFIG_BLK_CGROUP
/**
* kthread_associate_blkcg - associate blkcg to current kthread
* @css: the cgroup info
*
* Current thread must be a kthread. The thread is running jobs on behalf of
* other threads. In some cases, we expect the jobs attach cgroup info of
* original threads instead of that of current thread. This function stores
* original thread's cgroup info in current kthread context for later
* retrieval.
*/
void kthread_associate_blkcg(struct cgroup_subsys_state *css)
{
struct kthread *kthread;
if (!(current->flags & PF_KTHREAD))
return;
kthread = to_kthread(current);
if (!kthread)
return;
if (kthread->blkcg_css) {
css_put(kthread->blkcg_css);
kthread->blkcg_css = NULL;
}
if (css) {
css_get(css);
kthread->blkcg_css = css;
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Shaohua Li | 78 | 100.00% | 1 | 100.00% |
Total | 78 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL(kthread_associate_blkcg);
/**
* kthread_blkcg - get associated blkcg css of current kthread
*
* Current thread must be a kthread.
*/
struct cgroup_subsys_state *kthread_blkcg(void)
{
struct kthread *kthread;
if (current->flags & PF_KTHREAD) {
kthread = to_kthread(current);
if (kthread)
return kthread->blkcg_css;
}
return NULL;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Shaohua Li | 43 | 100.00% | 1 | 100.00% |
Total | 43 | 100.00% | 1 | 100.00% |
EXPORT_SYMBOL(kthread_blkcg);
#endif
Overall Contributors
Person | Tokens | Prop | Commits | CommitProp |
Petr Mladek | 1263 | 32.90% | 11 | 14.86% |
Tejun Heo | 698 | 18.18% | 8 | 10.81% |
Thomas Gleixner | 453 | 11.80% | 2 | 2.70% |
Oleg Nesterov | 281 | 7.32% | 11 | 14.86% |
Andrew Morton | 261 | 6.80% | 2 | 2.70% |
Shaohua Li | 177 | 4.61% | 4 | 5.41% |
Tetsuo Handa | 154 | 4.01% | 2 | 2.70% |
Eric W. Biedermann | 151 | 3.93% | 1 | 1.35% |
Peter Zijlstra | 111 | 2.89% | 3 | 4.05% |
Nicolas Iooss | 54 | 1.41% | 1 | 1.35% |
Yong Zhang | 51 | 1.33% | 1 | 1.35% |
Eric Dumazet | 51 | 1.33% | 1 | 1.35% |
Ingo Molnar | 20 | 0.52% | 3 | 4.05% |
David Kershner | 20 | 0.52% | 1 | 1.35% |
Rusty Russell | 16 | 0.42% | 2 | 2.70% |
Kees Cook | 14 | 0.36% | 1 | 1.35% |
Miao Xie | 10 | 0.26% | 2 | 2.70% |
Mathieu Desnoyers | 9 | 0.23% | 1 | 1.35% |
David Howells | 9 | 0.23% | 1 | 1.35% |
Vitaliy Gusev | 6 | 0.16% | 1 | 1.35% |
Lai Jiangshan | 6 | 0.16% | 2 | 2.70% |
Dmitry Adamushko | 5 | 0.13% | 1 | 1.35% |
Satyam Sharma | 5 | 0.13% | 1 | 1.35% |
Al Viro | 3 | 0.08% | 1 | 1.35% |
Motohiro Kosaki | 3 | 0.08% | 2 | 2.70% |
Nishanth Aravamudan | 2 | 0.05% | 2 | 2.70% |
Mike Travis | 1 | 0.03% | 1 | 1.35% |
Arjan van de Ven | 1 | 0.03% | 1 | 1.35% |
Steven Rostedt | 1 | 0.03% | 1 | 1.35% |
Adrian Bunk | 1 | 0.03% | 1 | 1.35% |
Paul Gortmaker | 1 | 0.03% | 1 | 1.35% |
Robert P. J. Day | 1 | 0.03% | 1 | 1.35% |
Total | 3839 | 100.00% | 74 | 100.00% |
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.