cregit-Linux how code gets into the kernel

Release 4.15 kernel/sched/loadavg.c

Directory: kernel/sched
// SPDX-License-Identifier: GPL-2.0
/*
 * kernel/sched/loadavg.c
 *
 * This file contains the magic bits required to compute the global loadavg
 * figure. Its a silly number but people think its important. We go through
 * great pains to make it work on big machines and tickless kernels.
 */

#include <linux/export.h>
#include <linux/sched/loadavg.h>

#include "sched.h"

/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of cpus, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-cpu deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    cpu to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
 *    this would add another cross-cpu cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever cpu the task ran
 *    when it went into uninterruptible state and decrement on whatever cpu
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all cpus yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

/* Variables and functions for calc_load */

atomic_long_t calc_load_tasks;

unsigned long calc_load_update;

unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun); 
/* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:      pointer to dest load array
 * @offset:     offset to add
 * @shift:      shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */

void get_avenrun(unsigned long *loads, unsigned long offset, int shift) { loads[0] = (avenrun[0] + offset) << shift; loads[1] = (avenrun[1] + offset) << shift; loads[2] = (avenrun[2] + offset) << shift; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker65100.00%1100.00%
Total65100.00%1100.00%


long calc_load_fold_active(struct rq *this_rq, long adjust) { long nr_active, delta = 0; nr_active = this_rq->nr_running - adjust; nr_active += (long)this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) { delta = nr_active - this_rq->calc_load_active; this_rq->calc_load_active = nr_active; } return delta; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker5992.19%150.00%
Thomas Gleixner57.81%150.00%
Total64100.00%2100.00%

/* * a1 = a0 * e + a * (1 - e) */
static unsigned long calc_load(unsigned long load, unsigned long exp, unsigned long active) { unsigned long newload; newload = load * exp + active * (FIXED_1 - exp); if (active >= load) newload += FIXED_1-1; return newload / FIXED_1; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker3666.67%150.00%
Vik Heyndrickx1833.33%150.00%
Total54100.00%2100.00%

#ifdef CONFIG_NO_HZ_COMMON /* * Handle NO_HZ for the global load-average. * * Since the above described distributed algorithm to compute the global * load-average relies on per-cpu sampling from the tick, it is affected by * NO_HZ. * * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon * entering NO_HZ state such that we can include this as an 'extra' cpu delta * when we read the global state. * * Obviously reality has to ruin such a delightfully simple scheme: * * - When we go NO_HZ idle during the window, we can negate our sample * contribution, causing under-accounting. * * We avoid this by keeping two NO_HZ-delta counters and flipping them * when the window starts, thus separating old and new NO_HZ load. * * The only trick is the slight shift in index flip for read vs write. * * 0s 5s 10s 15s * +10 +10 +10 +10 * |-|-----------|-|-----------|-|-----------|-| * r:0 0 1 1 0 0 1 1 0 * w:0 1 1 0 0 1 1 0 0 * * This ensures we'll fold the old NO_HZ contribution in this window while * accumlating the new one. * * - When we wake up from NO_HZ during the window, we push up our * contribution, since we effectively move our sample point to a known * busy state. * * This is solved by pushing the window forward, and thus skipping the * sample, for this cpu (effectively using the NO_HZ-delta for this cpu which * was in effect at the time the window opened). This also solves the issue * of having to deal with a cpu having been in NO_HZ for multiple LOAD_FREQ * intervals. * * When making the ILB scale, we should try to pull this in as well. */ static atomic_long_t calc_load_nohz[2]; static int calc_load_idx;
static inline int calc_load_write_idx(void) { int idx = calc_load_idx; /* * See calc_global_nohz(), if we observe the new index, we also * need to observe the new update time. */ smp_rmb(); /* * If the folding window started, make sure we start writing in the * next NO_HZ-delta. */ if (!time_before(jiffies, READ_ONCE(calc_load_update))) idx++; return idx & 1; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker3690.00%133.33%
Matt Fleming37.50%133.33%
Frédéric Weisbecker12.50%133.33%
Total40100.00%3100.00%


static inline int calc_load_read_idx(void) { return calc_load_idx & 1; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker14100.00%1100.00%
Total14100.00%1100.00%


void calc_load_nohz_start(void) { struct rq *this_rq = this_rq(); long delta; /* * We're going into NO_HZ mode, if there's any pending delta, fold it * into the pending NO_HZ delta. */ delta = calc_load_fold_active(this_rq, 0); if (delta) { int idx = calc_load_write_idx(); atomic_long_add(delta, &calc_load_nohz[idx]); } }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker4690.20%133.33%
Frédéric Weisbecker35.88%133.33%
Thomas Gleixner23.92%133.33%
Total51100.00%3100.00%


void calc_load_nohz_stop(void) { struct rq *this_rq = this_rq(); /* * If we're still before the pending sample window, we're done. */ this_rq->calc_load_update = READ_ONCE(calc_load_update); if (time_before(jiffies, this_rq->calc_load_update)) return; /* * We woke inside or after the sample window, this means we're already * accounted through the nohz accounting, so skip the entire deal and * sync up for the next window. */ if (time_before(jiffies, this_rq->calc_load_update + 10)) this_rq->calc_load_update += LOAD_FREQ; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker4680.70%125.00%
Matt Fleming1017.54%250.00%
Frédéric Weisbecker11.75%125.00%
Total57100.00%4100.00%


static long calc_load_nohz_fold(void) { int idx = calc_load_read_idx(); long delta = 0; if (atomic_long_read(&calc_load_nohz[idx])) delta = atomic_long_xchg(&calc_load_nohz[idx], 0); return delta; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker4393.48%150.00%
Frédéric Weisbecker36.52%150.00%
Total46100.00%2100.00%

/** * fixed_power_int - compute: x^n, in O(log n) time * * @x: base of the power * @frac_bits: fractional bits of @x * @n: power to raise @x to. * * By exploiting the relation between the definition of the natural power * function: x^n := x*x*...*x (x multiplied by itself for n times), and * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, * (where: n_i \elem {0, 1}, the binary vector representing n), * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is * of course trivially computable in O(log_2 n), the length of our binary * vector. */
static unsigned long fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) { unsigned long result = 1UL << frac_bits; if (n) { for (;;) { if (n & 1) { result *= x; result += 1UL << (frac_bits - 1); result >>= frac_bits; } n >>= 1; if (!n) break; x *= x; x += 1UL << (frac_bits - 1); x >>= frac_bits; } } return result; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker9597.94%150.00%
Peter Zijlstra22.06%150.00%
Total97100.00%2100.00%

/* * a1 = a0 * e + a * (1 - e) * * a2 = a1 * e + a * (1 - e) * = (a0 * e + a * (1 - e)) * e + a * (1 - e) * = a0 * e^2 + a * (1 - e) * (1 + e) * * a3 = a2 * e + a * (1 - e) * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) * * ... * * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) * = a0 * e^n + a * (1 - e^n) * * [1] application of the geometric series: * * n 1 - x^(n+1) * S_n := \Sum x^i = ------------- * i=0 1 - x */
static unsigned long calc_load_n(unsigned long load, unsigned long exp, unsigned long active, unsigned int n) { return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker40100.00%1100.00%
Total40100.00%1100.00%

/* * NO_HZ can leave us missing all per-cpu ticks calling * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary. * * Once we've updated the global active value, we need to apply the exponential * weights adjusted to the number of cycles missed. */
static void calc_global_nohz(void) { unsigned long sample_window; long delta, active, n; sample_window = READ_ONCE(calc_load_update); if (!time_before(jiffies, sample_window + 10)) { /* * Catch-up, fold however many we are behind still */ delta = jiffies - sample_window - 10; n = 1 + (delta / LOAD_FREQ); active = atomic_long_read(&calc_load_tasks); active = active > 0 ? active * FIXED_1 : 0; avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ); } /* * Flip the NO_HZ index... * * Make sure we first write the new time then flip the index, so that * calc_load_write_idx() will see the new time when it reads the new * index, this avoids a double flip messing things up. */ smp_wmb(); calc_load_idx++; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker13487.01%133.33%
Matt Fleming1912.34%133.33%
Frédéric Weisbecker10.65%133.33%
Total154100.00%3100.00%

#else /* !CONFIG_NO_HZ_COMMON */
static inline long calc_load_nohz_fold(void) { return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker1191.67%150.00%
Frédéric Weisbecker18.33%150.00%
Total12100.00%2100.00%


static inline void calc_global_nohz(void) { }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker8100.00%1100.00%
Total8100.00%1100.00%

#endif /* CONFIG_NO_HZ_COMMON */ /* * calc_load - update the avenrun load estimates 10 ticks after the * CPUs have updated calc_load_tasks. * * Called from the global timer code. */
void calc_global_load(unsigned long ticks) { unsigned long sample_window; long active, delta; sample_window = READ_ONCE(calc_load_update); if (time_before(jiffies, sample_window + 10)) return; /* * Fold the 'old' NO_HZ-delta to include all NO_HZ cpus. */ delta = calc_load_nohz_fold(); if (delta) atomic_long_add(delta, &calc_load_tasks); active = atomic_long_read(&calc_load_tasks); active = active > 0 ? active * FIXED_1 : 0; avenrun[0] = calc_load(avenrun[0], EXP_1, active); avenrun[1] = calc_load(avenrun[1], EXP_5, active); avenrun[2] = calc_load(avenrun[2], EXP_15, active); WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); /* * In case we went to NO_HZ for multiple LOAD_FREQ intervals * catch up in bulk. */ calc_global_nohz(); }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker11884.89%133.33%
Matt Fleming1812.95%133.33%
Frédéric Weisbecker32.16%133.33%
Total139100.00%3100.00%

/* * Called from scheduler_tick() to periodically update this CPU's * active count. */
void calc_global_load_tick(struct rq *this_rq) { long delta; if (time_before(jiffies, this_rq->calc_load_update)) return; delta = calc_load_fold_active(this_rq, 0); if (delta) atomic_long_add(delta, &calc_load_tasks); this_rq->calc_load_update += LOAD_FREQ; }

Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker4994.23%133.33%
Thomas Gleixner23.85%133.33%
Peter Zijlstra11.92%133.33%
Total52100.00%3100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Paul Gortmaker85189.20%111.11%
Matt Fleming505.24%222.22%
Vik Heyndrickx181.89%111.11%
Frédéric Weisbecker161.68%111.11%
Thomas Gleixner90.94%111.11%
Peter Zijlstra60.63%111.11%
Ingo Molnar30.31%111.11%
Greg Kroah-Hartman10.10%111.11%
Total954100.00%9100.00%
Directory: kernel/sched
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.