Release 4.15 kernel/time/posix-cpu-timers.c
// SPDX-License-Identifier: GPL-2.0
/*
* Implement CPU time clocks for the POSIX clock interface.
*/
#include <linux/sched/signal.h>
#include <linux/sched/cputime.h>
#include <linux/posix-timers.h>
#include <linux/errno.h>
#include <linux/math64.h>
#include <linux/uaccess.h>
#include <linux/kernel_stat.h>
#include <trace/events/timer.h>
#include <linux/tick.h>
#include <linux/workqueue.h>
#include <linux/compat.h>
#include "posix-timers.h"
static void posix_cpu_timer_rearm(struct k_itimer *timer);
/*
* Called after updating RLIMIT_CPU to run cpu timer and update
* tsk->signal->cputime_expires expiration cache if necessary. Needs
* siglock protection since other code may update expiration cache as
* well.
*/
void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
{
u64 nsecs = rlim_new * NSEC_PER_SEC;
spin_lock_irq(&task->sighand->siglock);
set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
spin_unlock_irq(&task->sighand->siglock);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 27 | 50.94% | 1 | 16.67% |
Roland McGrath | 11 | 20.75% | 2 | 33.33% |
Jiri Slaby | 8 | 15.09% | 1 | 16.67% |
Frédéric Weisbecker | 5 | 9.43% | 1 | 16.67% |
Stanislaw Gruszka | 2 | 3.77% | 1 | 16.67% |
Total | 53 | 100.00% | 6 | 100.00% |
static int check_clock(const clockid_t which_clock)
{
int error = 0;
struct task_struct *p;
const pid_t pid = CPUCLOCK_PID(which_clock);
if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
return -EINVAL;
if (pid == 0)
return 0;
rcu_read_lock();
p = find_task_by_vpid(pid);
if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
same_thread_group(p, current) : has_group_leader_pid(p))) {
error = -EINVAL;
}
rcu_read_unlock();
return error;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 72 | 72.73% | 1 | 20.00% |
Roland McGrath | 21 | 21.21% | 2 | 40.00% |
Sergey Senozhatsky | 5 | 5.05% | 1 | 20.00% |
Thomas Gleixner | 1 | 1.01% | 1 | 20.00% |
Total | 99 | 100.00% | 5 | 100.00% |
/*
* Update expiry time from increment, and increase overrun count,
* given the current clock sample.
*/
static void bump_cpu_timer(struct k_itimer *timer, u64 now)
{
int i;
u64 delta, incr;
if (timer->it.cpu.incr == 0)
return;
if (now < timer->it.cpu.expires)
return;
incr = timer->it.cpu.incr;
delta = now + incr - timer->it.cpu.expires;
/* Don't use (incr*2 < delta), incr*2 might overflow. */
for (i = 0; incr < delta - incr; i++)
incr = incr << 1;
for (; i >= 0; incr >>= 1, i--) {
if (delta < incr)
continue;
timer->it.cpu.expires += incr;
timer->it_overrun += 1 << i;
delta -= incr;
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 98 | 70.50% | 1 | 20.00% |
Roland McGrath | 24 | 17.27% | 1 | 20.00% |
Martin Schwidefsky | 9 | 6.47% | 1 | 20.00% |
Frédéric Weisbecker | 8 | 5.76% | 2 | 40.00% |
Total | 139 | 100.00% | 5 | 100.00% |
/**
* task_cputime_zero - Check a task_cputime struct for all zero fields.
*
* @cputime: The struct to compare.
*
* Checks @cputime to see if all fields are zero. Returns true if all fields
* are zero, false if any field is nonzero.
*/
static inline int task_cputime_zero(const struct task_cputime *cputime)
{
if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
return 1;
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 36 | 100.00% | 2 | 100.00% |
Total | 36 | 100.00% | 2 | 100.00% |
static inline u64 prof_ticks(struct task_struct *p)
{
u64 utime, stime;
task_cputime(p, &utime, &stime);
return utime + stime;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 17 | 51.52% | 2 | 33.33% |
Frank Mayhar | 12 | 36.36% | 1 | 16.67% |
Roland McGrath | 3 | 9.09% | 2 | 33.33% |
Martin Schwidefsky | 1 | 3.03% | 1 | 16.67% |
Total | 33 | 100.00% | 6 | 100.00% |
static inline u64 virt_ticks(struct task_struct *p)
{
u64 utime, stime;
task_cputime(p, &utime, &stime);
return utime;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 13 | 41.94% | 2 | 40.00% |
Frank Mayhar | 12 | 38.71% | 1 | 20.00% |
Stanislaw Gruszka | 4 | 12.90% | 1 | 20.00% |
Roland McGrath | 2 | 6.45% | 1 | 20.00% |
Total | 31 | 100.00% | 5 | 100.00% |
static int
posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
{
int error = check_clock(which_clock);
if (!error) {
tp->tv_sec = 0;
tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
/*
* If sched_clock is using a cycle counter, we
* don't have any idea of its true resolution
* exported, but it is much more than 1s/HZ.
*/
tp->tv_nsec = 1;
}
}
return error;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 47 | 64.38% | 1 | 16.67% |
Roland McGrath | 23 | 31.51% | 2 | 33.33% |
Thomas Gleixner | 2 | 2.74% | 2 | 33.33% |
Deepa Dinamani | 1 | 1.37% | 1 | 16.67% |
Total | 73 | 100.00% | 6 | 100.00% |
static int
posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
{
/*
* You can never reset a CPU clock, but we check for other errors
* in the call before failing with EPERM.
*/
int error = check_clock(which_clock);
if (error == 0) {
error = -EPERM;
}
return error;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Roland McGrath | 27 | 65.85% | 1 | 20.00% |
Frank Mayhar | 11 | 26.83% | 1 | 20.00% |
Thomas Gleixner | 2 | 4.88% | 2 | 40.00% |
Deepa Dinamani | 1 | 2.44% | 1 | 20.00% |
Total | 41 | 100.00% | 5 | 100.00% |
/*
* Sample a per-thread clock for the given task.
*/
static int cpu_clock_sample(const clockid_t which_clock,
struct task_struct *p, u64 *sample)
{
switch (CPUCLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
case CPUCLOCK_PROF:
*sample = prof_ticks(p);
break;
case CPUCLOCK_VIRT:
*sample = virt_ticks(p);
break;
case CPUCLOCK_SCHED:
*sample = task_sched_runtime(p);
break;
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 36 | 50.00% | 1 | 16.67% |
Roland McGrath | 25 | 34.72% | 1 | 16.67% |
Frédéric Weisbecker | 8 | 11.11% | 2 | 33.33% |
Pavel Emelyanov | 2 | 2.78% | 1 | 16.67% |
Hidetoshi Seto | 1 | 1.39% | 1 | 16.67% |
Total | 72 | 100.00% | 6 | 100.00% |
/*
* Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
* to avoid race conditions with concurrent updates to cputime.
*/
static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
{
u64 curr_cputime;
retry:
curr_cputime = atomic64_read(cputime);
if (sum_cputime > curr_cputime) {
if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
goto retry;
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jason Low | 50 | 100.00% | 1 | 100.00% |
Total | 50 | 100.00% | 1 | 100.00% |
static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
{
__update_gt_cputime(&cputime_atomic->utime, sum->utime);
__update_gt_cputime(&cputime_atomic->stime, sum->stime);
__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jason Low | 36 | 69.23% | 2 | 40.00% |
Peter Zijlstra | 14 | 26.92% | 1 | 20.00% |
Frédéric Weisbecker | 2 | 3.85% | 2 | 40.00% |
Total | 52 | 100.00% | 5 | 100.00% |
/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
static inline void sample_cputime_atomic(struct task_cputime *times,
struct task_cputime_atomic *atomic_times)
{
times->utime = atomic64_read(&atomic_times->utime);
times->stime = atomic64_read(&atomic_times->stime);
times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Jason Low | 33 | 62.26% | 2 | 50.00% |
Peter Zijlstra | 19 | 35.85% | 1 | 25.00% |
Frédéric Weisbecker | 1 | 1.89% | 1 | 25.00% |
Total | 53 | 100.00% | 4 | 100.00% |
void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
struct task_cputime sum;
/* Check if cputimer isn't running. This is accessed without locking. */
if (!READ_ONCE(cputimer->running)) {
/*
* The POSIX timer interface allows for absolute time expiry
* values through the TIMER_ABSTIME flag, therefore we have
* to synchronize the timer to the clock every time we start it.
*/
thread_group_cputime(tsk, &sum);
update_gt_cputime(&cputimer->cputime_atomic, &sum);
/*
* We're setting cputimer->running without a lock. Ensure
* this only gets written to in one operation. We set
* running after update_gt_cputime() as a small optimization,
* but barriers are not required because update_gt_cputime()
* can handle concurrent updates.
*/
WRITE_ONCE(cputimer->running, true);
}
sample_cputime_atomic(times, &cputimer->cputime_atomic);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Peter Zijlstra | 62 | 73.81% | 2 | 33.33% |
Jason Low | 19 | 22.62% | 3 | 50.00% |
Frédéric Weisbecker | 3 | 3.57% | 1 | 16.67% |
Total | 84 | 100.00% | 6 | 100.00% |
/*
* Sample a process (thread group) clock for the given group_leader task.
* Must be called with task sighand lock held for safe while_each_thread()
* traversal.
*/
static int cpu_clock_sample_group(const clockid_t which_clock,
struct task_struct *p,
u64 *sample)
{
struct task_cputime cputime;
switch (CPUCLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
case CPUCLOCK_PROF:
thread_group_cputime(p, &cputime);
*sample = cputime.utime + cputime.stime;
break;
case CPUCLOCK_VIRT:
thread_group_cputime(p, &cputime);
*sample = cputime.utime;
break;
case CPUCLOCK_SCHED:
thread_group_cputime(p, &cputime);
*sample = cputime.sum_exec_runtime;
break;
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 39 | 38.61% | 2 | 22.22% |
Roland McGrath | 22 | 21.78% | 1 | 11.11% |
Hidetoshi Seto | 14 | 13.86% | 1 | 11.11% |
Frédéric Weisbecker | 12 | 11.88% | 2 | 22.22% |
Peter Zijlstra | 10 | 9.90% | 1 | 11.11% |
Petr Tesarik | 3 | 2.97% | 1 | 11.11% |
Martin Schwidefsky | 1 | 0.99% | 1 | 11.11% |
Total | 101 | 100.00% | 9 | 100.00% |
static int posix_cpu_clock_get_task(struct task_struct *tsk,
const clockid_t which_clock,
struct timespec64 *tp)
{
int err = -EINVAL;
u64 rtn;
if (CPUCLOCK_PERTHREAD(which_clock)) {
if (same_thread_group(tsk, current))
err = cpu_clock_sample(which_clock, tsk, &rtn);
} else {
if (tsk == current || thread_group_leader(tsk))
err = cpu_clock_sample_group(which_clock, tsk, &rtn);
}
if (!err)
*tp = ns_to_timespec64(rtn);
return err;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 42 | 41.58% | 3 | 33.33% |
Frank Mayhar | 36 | 35.64% | 1 | 11.11% |
Roland McGrath | 11 | 10.89% | 1 | 11.11% |
Oleg Nesterov | 6 | 5.94% | 1 | 11.11% |
Linus Torvalds | 3 | 2.97% | 1 | 11.11% |
Deepa Dinamani | 2 | 1.98% | 1 | 11.11% |
Thomas Gleixner | 1 | 0.99% | 1 | 11.11% |
Total | 101 | 100.00% | 9 | 100.00% |
static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
{
const pid_t pid = CPUCLOCK_PID(which_clock);
int err = -EINVAL;
if (pid == 0) {
/*
* Special case constant value for our own clocks.
* We don't have to do any lookup to find ourselves.
*/
err = posix_cpu_clock_get_task(current, which_clock, tp);
} else {
/*
* Find the given PID, and validate that the caller
* should be able to see it.
*/
struct task_struct *p;
rcu_read_lock();
p = find_task_by_vpid(pid);
if (p)
err = posix_cpu_clock_get_task(p, which_clock, tp);
rcu_read_unlock();
}
return err;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 55 | 61.11% | 1 | 16.67% |
Frank Mayhar | 25 | 27.78% | 1 | 16.67% |
Roland McGrath | 6 | 6.67% | 1 | 16.67% |
Linus Torvalds | 2 | 2.22% | 1 | 16.67% |
Oleg Nesterov | 1 | 1.11% | 1 | 16.67% |
Deepa Dinamani | 1 | 1.11% | 1 | 16.67% |
Total | 90 | 100.00% | 6 | 100.00% |
/*
* Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
* This is called from sys_timer_create() and do_cpu_nanosleep() with the
* new timer already all-zeros initialized.
*/
static int posix_cpu_timer_create(struct k_itimer *new_timer)
{
int ret = 0;
const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
struct task_struct *p;
if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
return -EINVAL;
new_timer->kclock = &clock_posix_cpu;
INIT_LIST_HEAD(&new_timer->it.cpu.entry);
rcu_read_lock();
if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
if (pid == 0) {
p = current;
} else {
p = find_task_by_vpid(pid);
if (p && !same_thread_group(p, current))
p = NULL;
}
} else {
if (pid == 0) {
p = current->group_leader;
} else {
p = find_task_by_vpid(pid);
if (p && !has_group_leader_pid(p))
p = NULL;
}
}
new_timer->it.cpu.task = p;
if (p) {
get_task_struct(p);
} else {
ret = -EINVAL;
}
rcu_read_unlock();
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 115 | 59.28% | 1 | 20.00% |
Roland McGrath | 66 | 34.02% | 1 | 20.00% |
Thomas Gleixner | 8 | 4.12% | 2 | 40.00% |
Sergey Senozhatsky | 5 | 2.58% | 1 | 20.00% |
Total | 194 | 100.00% | 5 | 100.00% |
/*
* Clean up a CPU-clock timer that is about to be destroyed.
* This is called from timer deletion with the timer already locked.
* If we return TIMER_RETRY, it's necessary to release the timer's lock
* and try again. (This happens when the timer is in the middle of firing.)
*/
static int posix_cpu_timer_del(struct k_itimer *timer)
{
int ret = 0;
unsigned long flags;
struct sighand_struct *sighand;
struct task_struct *p = timer->it.cpu.task;
WARN_ON_ONCE(p == NULL);
/*
* Protect against sighand release/switch in exit/exec and process/
* thread timer list entry concurrent read/writes.
*/
sighand = lock_task_sighand(p, &flags);
if (unlikely(sighand == NULL)) {
/*
* We raced with the reaping of the task.
* The deletion should have cleared us off the list.
*/
WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
} else {
if (timer->it.cpu.firing)
ret = TIMER_RETRY;
else
list_del(&timer->it.cpu.entry);
unlock_task_sighand(p, &flags);
}
if (!ret)
put_task_struct(p);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 86 | 63.70% | 1 | 12.50% |
Frédéric Weisbecker | 30 | 22.22% | 3 | 37.50% |
Roland McGrath | 16 | 11.85% | 1 | 12.50% |
Ingo Molnar | 1 | 0.74% | 1 | 12.50% |
Thomas Gleixner | 1 | 0.74% | 1 | 12.50% |
Oleg Nesterov | 1 | 0.74% | 1 | 12.50% |
Total | 135 | 100.00% | 8 | 100.00% |
static void cleanup_timers_list(struct list_head *head)
{
struct cpu_timer_list *timer, *next;
list_for_each_entry_safe(timer, next, head, entry)
list_del_init(&timer->entry);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 19 | 51.35% | 1 | 20.00% |
Roland McGrath | 14 | 37.84% | 2 | 40.00% |
Martin Schwidefsky | 2 | 5.41% | 1 | 20.00% |
Frédéric Weisbecker | 2 | 5.41% | 1 | 20.00% |
Total | 37 | 100.00% | 5 | 100.00% |
/*
* Clean out CPU timers still ticking when a thread exited. The task
* pointer is cleared, and the expiry time is replaced with the residual
* time for later timer_gettime calls to return.
* This must be called with the siglock held.
*/
static void cleanup_timers(struct list_head *head)
{
cleanup_timers_list(head);
cleanup_timers_list(++head);
cleanup_timers_list(++head);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frédéric Weisbecker | 19 | 67.86% | 2 | 50.00% |
Roland McGrath | 5 | 17.86% | 1 | 25.00% |
Frank Mayhar | 4 | 14.29% | 1 | 25.00% |
Total | 28 | 100.00% | 4 | 100.00% |
/*
* These are both called with the siglock held, when the current thread
* is being reaped. When the final (leader) thread in the group is reaped,
* posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
*/
void posix_cpu_timers_exit(struct task_struct *tsk)
{
cleanup_timers(tsk->cpu_timers);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 13 | 76.47% | 1 | 50.00% |
Roland McGrath | 4 | 23.53% | 1 | 50.00% |
Total | 17 | 100.00% | 2 | 100.00% |
void posix_cpu_timers_exit_group(struct task_struct *tsk)
{
cleanup_timers(tsk->signal->cpu_timers);
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Frank Mayhar | 18 | 94.74% | 1 | 50.00% |
Roland McGrath | 1 | 5.26% | 1 | 50.00% |
Total | 19 | 100.00% | 2 | 100.00% |
static inline int expires_gt(u64 expires, u64 new_exp)
{
return expires == 0 || expires > new_exp;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Stanislaw Gruszka | 17 | 77.27% | 1 | 33.33% |
Martin Schwidefsky | 3 | 13.64% | 1 | 33.33% |
Frédéric Weisbecker | 2 | 9.09% | 1 | 33.33% |
Total | 22 | 100.00% | 3 | 100.00% |
/*
* Insert the timer on the appropriate list before any timers that
* expire later. This must be called with the sighand lock held.
*/
static void arm_timer(struct k_itimer *timer)
{
struct task_struct *p = timer->it.cpu.task;
struct list_head *head, *listpos;
struct task_cputime *cputime_expires;
struct cpu_timer_list *const nt = &timer->it.cpu;
struct cpu_timer_list *next;
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
head = p->cpu_timers;
cputime_expires = &p->cputime_expires;
} else {
head = p->signal->cpu_timers;
cputime_expires = &p->signal->cputime_expires;
}
head += CPUCLOCK_WHICH(timer->it_clock);
listpos = head;
list_for_each_entry(next, head, entry) {
if (nt->expires < next->expires)
break;
listpos = &next->entry;
}
list_add(&nt->entry, listpos);
if (listpos == head) {
u64 exp = nt->expires;
/*
* We are the new earliest-expiring POSIX 1.b timer, hence
* need to update expiration cache. Take into account that
* for process timers we share expiration cache with itimers
* and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
*/
switch (CPUCLOCK_WHICH(timer->it_clock)) {
case CPUCLOCK_PROF:
if (expires_gt(cputime_expires->prof_exp, exp))
cputime_expires->prof_exp = exp;
break;
case CPUCLOCK_VIRT:
if (expires_gt(cputime_expires->virt_exp, exp))
cputime_expires->virt_exp = exp;
break;
case CPUCLOCK_SCHED:
if (expires_gt(cputime_expires->sched_exp, exp))
cputime_expires->sched_exp = exp;
break;
}
if (CPUCLOCK_PERTHREAD(timer->it_clock))
tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
else
tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Roland McGrath | 140 | 52.63% | 2 | 18.18% |
Stanislaw Gruszka | 53 | 19.92% | 3 | 27.27% |
Frédéric Weisbecker | 35 | 13.16% | 3 | 27.27% |
Martin Schwidefsky | 23 | 8.65% | 1 | 9.09% |
Frank Mayhar | 14 | 5.26% | 1 | 9.09% |
Linus Torvalds | 1 | 0.38% | 1 | 9.09% |
Total | 266 | 100.00% | 11 | 100.00% |
/*
* The timer is locked, fire it and arrange for its reload.
*/
static void cpu_timer_fire(struct k_itimer *timer)
{
if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
/*
* User don't want any signal.
*/
timer->it.cpu.expires = 0;
} else if (unlikely(timer->sigq == NULL)) {
/*
* This a special case for clock_nanosleep,
* not a normal timer from sys_timer_create.
*/
wake_up_process(timer->it_process);
timer->it.cpu.expires = 0;
} else if (timer->it.cpu.incr == 0) {
/*
* One-shot timer. Clear it as soon as it's fired.
*/
posix_timer_event(timer, 0);
timer->it.cpu.expires = 0;
} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
/*
* The signal did not get queued because the signal
* was ignored, so we won't get any callback to
* reload the timer. But we need to keep it
* ticking in case the signal is deliverable next time.
*/
posix_cpu_timer_rearm(timer);
++timer->it_requeue_pending;
}
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Roland McGrath | 95 | 74.22% | 2 | 40.00% |
Stanislaw Gruszka | 27 | 21.09% | 1 | 20.00% |
Thomas Gleixner | 6 | 4.69% | 2 | 40.00% |
Total | 128 | 100.00% | 5 | 100.00% |
/*
* Sample a process (thread group) timer for the given group_leader task.
* Must be called with task sighand lock held for safe while_each_thread()
* traversal.
*/
static int cpu_timer_sample_group(const clockid_t which_clock,
struct task_struct *p, u64 *sample)
{
struct task_cputime cputime;
thread_group_cputimer(p, &cputime);
switch (CPUCLOCK_WHICH(which_clock)) {
default:
return -EINVAL;
case CPUCLOCK_PROF:
*sample = cputime.utime + cputime.stime;
break;
case CPUCLOCK_VIRT:
*sample = cputime.utime;
break;
case CPUCLOCK_SCHED:
*sample = cputime.sum_exec_runtime;
break;
}
return 0;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Peter Zijlstra | 75 | 88.24% | 1 | 25.00% |
Frédéric Weisbecker | 9 | 10.59% | 2 | 50.00% |
Martin Schwidefsky | 1 | 1.18% | 1 | 25.00% |
Total | 85 | 100.00% | 4 | 100.00% |
/*
* Guts of sys_timer_settime for CPU timers.
* This is called with the timer locked and interrupts disabled.
* If we return TIMER_RETRY, it's necessary to release the timer's lock
* and try again. (This happens when the timer is in the middle of firing.)
*/
static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
struct itimerspec64 *new, struct itimerspec64 *old)
{
unsigned long flags;
struct sighand_struct *sighand;
struct task_struct *p = timer->it.cpu.task;
u64 old_expires, new_expires, old_incr, val;
int ret;
WARN_ON_ONCE(p == NULL);
/*
* Use the to_ktime conversion because that clamps the maximum
* value to KTIME_MAX and avoid multiplication overflows.
*/
new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
/*
* Protect against sighand release/switch in exit/exec and p->cpu_timers
* and p->signal->cpu_timers read/write in arm_timer()
*/
sighand = lock_task_sighand(p, &flags);
/*
* If p has just been reaped, we can no
* longer get any information about it at all.
*/
if (unlikely(sighand == NULL)) {
return -ESRCH;
}
/*
* Disarm any old timer after extracting its expiry time.
*/
lockdep_assert_irqs_disabled();
ret = 0;
old_incr = timer->it.cpu.incr;
old_expires = timer->it.cpu.expires;
if (unlikely(timer->it.cpu.firing)) {
timer->it.cpu.firing = -1;
ret = TIMER_RETRY;
} else
list_del_init(&timer->it.cpu.entry);
/*
* We need to sample the current value to convert the new
* value from to relative and absolute, and to convert the
* old value from absolute to relative. To set a process
* timer, we need a sample to balance the thread expiry
* times (in arm_timer). With an absolute time, we must
* check if it's already passed. In short, we need a sample.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &val);
} else {
cpu_timer_sample_group(timer->it_clock, p, &val);
}
if (old) {
if (old_expires == 0) {
old->it_value.tv_sec = 0;
old->it_value.tv_nsec = 0;
} else {
/*
* Update the timer in case it has
* overrun already. If it has,
* we'll report it as having overrun
* and with the next reloaded timer
* already ticking, though we are
* swallowing that pending
* notification here to install the
* new setting.
*/
bump_cpu_timer(timer, val);
if (val < timer->it.cpu.expires) {
old_expires = timer->it.cpu.expires - val;
old->it_value = ns_to_timespec64(old_expires);
} else {
old->it_value.tv_nsec = 1;
old->it_value.tv_sec = 0;
}
}
}
if (unlikely(ret)) {
/*
* We are colliding with the timer actually firing.
* Punt after filling in the timer's old value, and
* disable this firing since we are already reporting
* it as an overrun (thanks to bump_cpu_timer above).
*/
unlock_task_sighand(p, &flags);
goto out;
}
if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
new_expires += val;
}
/*
* Install the new expiry time (or zero).
* For a timer with no notification action, we don't actually
* arm the timer (we'll just fake it for timer_gettime).
*/
timer->it.cpu.expires = new_expires;
if (new_expires != 0 && val < new_expires) {
arm_timer(timer);
}
unlock_task_sighand(p, &flags);
/*
* Install the new reload setting, and
* set up the signal and overrun bookkeeping.
*/
timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
/*
* This acts as a modification timestamp for the timer,
* so any automatic reload attempt will punt on seeing
* that we have reset the timer manually.
*/
timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
~REQUEUE_PENDING;
timer->it_overrun_last = 0;
timer->it_overrun = -1;
if (new_expires != 0 && !(val < new_expires)) {
/*
* The designated time already passed, so we notify
* immediately, even if the thread never runs to
* accumulate more time on this clock.
*/
cpu_timer_fire(timer);
}
ret = 0;
out:
if (old)
old->it_interval = ns_to_timespec64(old_incr);
return ret;
}
Contributors
Person | Tokens | Prop | Commits | CommitProp |
Roland McGrath | 368 | 77.47% | 1 | 7.14% |
Frédéric Weisbecker | 42 | 8.84% | 5 | 35.71% |
Oleg Nesterov | 37 | 7.79% | 2 | 14.29% |
Stanislaw Gruszka | 16 | 3.37% | 2 | 14.29% |
Thomas Gleixner | 6 | 1.26% | 2 | 14.29% |
Deepa Dinamani | 5 | 1.05% | 1 | 7.14% |
Peter Zijlstra | 1 | 0.21% | 1 | 7.14% |
Total | 475 | 100.00% | 14 | 100.00% |
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
{
u64 now;
struct task_struct *p = timer->it.cpu.task;
WARN_ON_ONCE(p == NULL);
/*
* Easy part: convert the reload time.
*/
itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
if (!timer->it.cpu.expires)
return;
/*
* Sample the clock to take the difference with the expiry time.
*/
if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
cpu_clock_sample(timer->it_clock, p, &now);
} else {
struct sighand_struct *sighand;
unsigned long flags;
/*
* Protect against sighand release/switch in exit/exec and
* also make timer sampling safe if it ends up calling
* thread_group_cputime().
*/
sighand = lock_task_sighand(p, &flags);
if (unlikely(sighand