cregit-Linux how code gets into the kernel

Release 4.16 include/linux/bpf_verifier.h

Directory: include/linux
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 */
#ifndef _LINUX_BPF_VERIFIER_H

#define _LINUX_BPF_VERIFIER_H 1

#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
#include <linux/tnum.h>

/* Maximum variable offset umax_value permitted when resolving memory accesses.
 * In practice this is far bigger than any realistic pointer offset; this limit
 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
 */

#define BPF_MAX_VAR_OFF	(1 << 29)
/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
 * that converting umax_value to int cannot overflow.
 */

#define BPF_MAX_VAR_SIZ	(1 << 29)

/* Liveness marks, used for registers and spilled-regs (in stack slots).
 * Read marks propagate upwards until they find a write mark; they record that
 * "one of this state's descendants read this reg" (and therefore the reg is
 * relevant for states_equal() checks).
 * Write marks collect downwards and do not propagate; they record that "the
 * straight-line code that reached this state (from its parent) wrote this reg"
 * (and therefore that reads propagated from this state or its descendants
 * should not propagate to its parent).
 * A state with a write mark can receive read marks; it just won't propagate
 * them to its parent, since the write mark is a property, not of the state,
 * but of the link between it and its parent.  See mark_reg_read() and
 * mark_stack_slot_read() in kernel/bpf/verifier.c.
 */

enum bpf_reg_liveness {
	
REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
	
REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
	
REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
};


struct bpf_reg_state {
	
enum bpf_reg_type type;
	
union {
		/* valid when type == PTR_TO_PACKET */
		
u16 range;

		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
                 *   PTR_TO_MAP_VALUE_OR_NULL
                 */
		
struct bpf_map *map_ptr;
	};
	/* Fixed part of pointer offset, pointer types only */
	
s32 off;
	/* For PTR_TO_PACKET, used to find other pointers with the same variable
         * offset, so they can share range knowledge.
         * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
         * came from, when one is tested for != NULL.
         */
	
u32 id;
	/* Ordering of fields matters.  See states_equal() */
	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
         * the actual value.
         * For pointer types, this represents the variable part of the offset
         * from the pointed-to object, and is shared with all bpf_reg_states
         * with the same id as us.
         */
	
struct tnum var_off;
	/* Used to determine if any memory access using this register will
         * result in a bad access.
         * These refer to the same value as var_off, not necessarily the actual
         * contents of the register.
         */
	
s64 smin_value; /* minimum possible (s64)value */
	
s64 smax_value; /* maximum possible (s64)value */
	
u64 umin_value; /* minimum possible (u64)value */
	
u64 umax_value; /* maximum possible (u64)value */
	/* Inside the callee two registers can be both PTR_TO_STACK like
         * R1=fp-8 and R2=fp-8, but one of them points to this function stack
         * while another to the caller's stack. To differentiate them 'frameno'
         * is used which is an index in bpf_verifier_state->frame[] array
         * pointing to bpf_func_state.
         * This field must be second to last, for states_equal() reasons.
         */
	
u32 frameno;
	/* This field must be last, for states_equal() reasons. */
	
enum bpf_reg_liveness live;
};


enum bpf_stack_slot_type {
	
STACK_INVALID,    /* nothing was stored in this stack slot */
	
STACK_SPILL,      /* register spilled into stack */
	
STACK_MISC,	  /* BPF program wrote some data into this slot */
	
STACK_ZERO,	  /* BPF program wrote constant zero */
};


#define BPF_REG_SIZE 8	
/* size of eBPF register in bytes */


struct bpf_stack_state {
	
struct bpf_reg_state spilled_ptr;
	
u8 slot_type[BPF_REG_SIZE];
};

/* state of the program:
 * type of all registers and stack info
 */

struct bpf_func_state {
	
struct bpf_reg_state regs[MAX_BPF_REG];
	
struct bpf_verifier_state *parent;
	/* index of call instruction that called into this func */
	
int callsite;
	/* stack frame number of this function state from pov of
         * enclosing bpf_verifier_state.
         * 0 = main function, 1 = first callee.
         */
	
u32 frameno;
	/* subprog number == index within subprog_stack_depth
         * zero == main subprog
         */
	
u32 subprogno;

	/* should be second to last. See copy_func_state() */
	
int allocated_stack;
	
struct bpf_stack_state *stack;
};


#define MAX_CALL_FRAMES 8

struct bpf_verifier_state {
	/* call stack tracking */
	
struct bpf_func_state *frame[MAX_CALL_FRAMES];
	
struct bpf_verifier_state *parent;
	
u32 curframe;
};

/* linked list of verifier states used to prune search */

struct bpf_verifier_state_list {
	
struct bpf_verifier_state state;
	
struct bpf_verifier_state_list *next;
};


struct bpf_insn_aux_data {
	
union {
		
enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
		
struct bpf_map *map_ptr;	/* pointer for call insn into lookup_elem */
		
s32 call_imm;			/* saved imm field of call insn */
	};
	
int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
	
bool seen; /* this insn was processed by the verifier */
};


#define MAX_USED_MAPS 64 
/* max number of maps accessed by one eBPF program */


#define BPF_VERIFIER_TMP_LOG_SIZE	1024


struct bpf_verifer_log {
	
u32 level;
	
char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
	
char __user *ubuf;
	
u32 len_used;
	
u32 len_total;
};


static inline bool bpf_verifier_log_full(const struct bpf_verifer_log *log) { return log->len_used >= log->len_total - 1; }

Contributors

PersonTokensPropCommitsCommitProp
Jakub Kiciński24100.00%1100.00%
Total24100.00%1100.00%

#define BPF_MAX_SUBPROGS 256 /* single container for all structs * one verifier_env per bpf_check() call */ struct bpf_verifier_env { struct bpf_prog *prog; /* eBPF program being verified */ const struct bpf_verifier_ops *ops; struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ int stack_size; /* number of states to be processed */ bool strict_alignment; /* perform strict pointer alignment checks */ struct bpf_verifier_state *cur_state; /* current verifier state */ struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ u32 used_map_cnt; /* number of used maps */ u32 id_gen; /* used to generate unique reg IDs */ bool allow_ptr_leaks; bool seen_direct_write; struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ struct bpf_verifer_log log; u32 subprog_starts[BPF_MAX_SUBPROGS]; /* computes the stack depth of each bpf function */ u16 subprog_stack_depth[BPF_MAX_SUBPROGS + 1]; u32 subprog_cnt; }; __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, const char *fmt, ...);
static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) { struct bpf_verifier_state *cur = env->cur_state; return cur->frame[cur->curframe]->regs; }

Contributors

PersonTokensPropCommitsCommitProp
Alexei Starovoitov35100.00%2100.00%
Total35100.00%2100.00%

int bpf_prog_offload_verifier_prep(struct bpf_verifier_env *env); int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx); #endif /* _LINUX_BPF_VERIFIER_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Jakub Kiciński25150.20%725.93%
Alexei Starovoitov15531.00%1037.04%
Edward Cree5811.60%414.81%
Quentin Monnet224.40%13.70%
Yonghong Song51.00%27.41%
Josef Bacik40.80%13.70%
David S. Miller40.80%13.70%
Daniel Borkmann10.20%13.70%
Total500100.00%27100.00%
Directory: include/linux
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.