cregit-Linux how code gets into the kernel

Release 4.16 include/linux/gfp.h

Directory: include/linux
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_GFP_H

#define __LINUX_GFP_H

#include <linux/mmdebug.h>
#include <linux/mmzone.h>
#include <linux/stddef.h>
#include <linux/linkage.h>
#include <linux/topology.h>

struct vm_area_struct;

/*
 * In case of changes, please don't forget to update
 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
 */

/* Plain integer GFP bitmasks. Do not use this directly. */

#define ___GFP_DMA		0x01u

#define ___GFP_HIGHMEM		0x02u

#define ___GFP_DMA32		0x04u

#define ___GFP_MOVABLE		0x08u

#define ___GFP_RECLAIMABLE	0x10u

#define ___GFP_HIGH		0x20u

#define ___GFP_IO		0x40u

#define ___GFP_FS		0x80u

#define ___GFP_NOWARN		0x200u

#define ___GFP_RETRY_MAYFAIL	0x400u

#define ___GFP_NOFAIL		0x800u

#define ___GFP_NORETRY		0x1000u

#define ___GFP_MEMALLOC		0x2000u

#define ___GFP_COMP		0x4000u

#define ___GFP_ZERO		0x8000u

#define ___GFP_NOMEMALLOC	0x10000u

#define ___GFP_HARDWALL		0x20000u

#define ___GFP_THISNODE		0x40000u

#define ___GFP_ATOMIC		0x80000u

#define ___GFP_ACCOUNT		0x100000u

#define ___GFP_DIRECT_RECLAIM	0x400000u

#define ___GFP_WRITE		0x800000u

#define ___GFP_KSWAPD_RECLAIM	0x1000000u
#ifdef CONFIG_LOCKDEP

#define ___GFP_NOLOCKDEP	0x2000000u
#else

#define ___GFP_NOLOCKDEP	0
#endif
/* If the above are modified, __GFP_BITS_SHIFT may need updating */

/*
 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
 *
 * Do not put any conditional on these. If necessary modify the definitions
 * without the underscores and use them consistently. The definitions here may
 * be used in bit comparisons.
 */

#define __GFP_DMA	((__force gfp_t)___GFP_DMA)

#define __GFP_HIGHMEM	((__force gfp_t)___GFP_HIGHMEM)

#define __GFP_DMA32	((__force gfp_t)___GFP_DMA32)

#define __GFP_MOVABLE	((__force gfp_t)___GFP_MOVABLE)  
/* ZONE_MOVABLE allowed */

#define GFP_ZONEMASK	(__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)

/*
 * Page mobility and placement hints
 *
 * These flags provide hints about how mobile the page is. Pages with similar
 * mobility are placed within the same pageblocks to minimise problems due
 * to external fragmentation.
 *
 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be
 *   moved by page migration during memory compaction or can be reclaimed.
 *
 * __GFP_RECLAIMABLE is used for slab allocations that specify
 *   SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
 *
 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
 *   these pages will be spread between local zones to avoid all the dirty
 *   pages being in one zone (fair zone allocation policy).
 *
 * __GFP_HARDWALL enforces the cpuset memory allocation policy.
 *
 * __GFP_THISNODE forces the allocation to be satisified from the requested
 *   node with no fallbacks or placement policy enforcements.
 *
 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
 */

#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)

#define __GFP_WRITE	((__force gfp_t)___GFP_WRITE)

#define __GFP_HARDWALL   ((__force gfp_t)___GFP_HARDWALL)

#define __GFP_THISNODE	((__force gfp_t)___GFP_THISNODE)

#define __GFP_ACCOUNT	((__force gfp_t)___GFP_ACCOUNT)

/*
 * Watermark modifiers -- controls access to emergency reserves
 *
 * __GFP_HIGH indicates that the caller is high-priority and that granting
 *   the request is necessary before the system can make forward progress.
 *   For example, creating an IO context to clean pages.
 *
 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
 *   high priority. Users are typically interrupt handlers. This may be
 *   used in conjunction with __GFP_HIGH
 *
 * __GFP_MEMALLOC allows access to all memory. This should only be used when
 *   the caller guarantees the allocation will allow more memory to be freed
 *   very shortly e.g. process exiting or swapping. Users either should
 *   be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
 *
 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
 *   This takes precedence over the __GFP_MEMALLOC flag if both are set.
 */

#define __GFP_ATOMIC	((__force gfp_t)___GFP_ATOMIC)

#define __GFP_HIGH	((__force gfp_t)___GFP_HIGH)

#define __GFP_MEMALLOC	((__force gfp_t)___GFP_MEMALLOC)

#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)

/*
 * Reclaim modifiers
 *
 * __GFP_IO can start physical IO.
 *
 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
 *   allocator recursing into the filesystem which might already be holding
 *   locks.
 *
 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
 *   This flag can be cleared to avoid unnecessary delays when a fallback
 *   option is available.
 *
 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
 *   the low watermark is reached and have it reclaim pages until the high
 *   watermark is reached. A caller may wish to clear this flag when fallback
 *   options are available and the reclaim is likely to disrupt the system. The
 *   canonical example is THP allocation where a fallback is cheap but
 *   reclaim/compaction may cause indirect stalls.
 *
 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
 *
 * The default allocator behavior depends on the request size. We have a concept
 * of so called costly allocations (with order > PAGE_ALLOC_COSTLY_ORDER).
 * !costly allocations are too essential to fail so they are implicitly
 * non-failing by default (with some exceptions like OOM victims might fail so
 * the caller still has to check for failures) while costly requests try to be
 * not disruptive and back off even without invoking the OOM killer.
 * The following three modifiers might be used to override some of these
 * implicit rules
 *
 * __GFP_NORETRY: The VM implementation will try only very lightweight
 *   memory direct reclaim to get some memory under memory pressure (thus
 *   it can sleep). It will avoid disruptive actions like OOM killer. The
 *   caller must handle the failure which is quite likely to happen under
 *   heavy memory pressure. The flag is suitable when failure can easily be
 *   handled at small cost, such as reduced throughput
 *
 * __GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
 *   procedures that have previously failed if there is some indication
 *   that progress has been made else where.  It can wait for other
 *   tasks to attempt high level approaches to freeing memory such as
 *   compaction (which removes fragmentation) and page-out.
 *   There is still a definite limit to the number of retries, but it is
 *   a larger limit than with __GFP_NORETRY.
 *   Allocations with this flag may fail, but only when there is
 *   genuinely little unused memory. While these allocations do not
 *   directly trigger the OOM killer, their failure indicates that
 *   the system is likely to need to use the OOM killer soon.  The
 *   caller must handle failure, but can reasonably do so by failing
 *   a higher-level request, or completing it only in a much less
 *   efficient manner.
 *   If the allocation does fail, and the caller is in a position to
 *   free some non-essential memory, doing so could benefit the system
 *   as a whole.
 *
 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
 *   cannot handle allocation failures. The allocation could block
 *   indefinitely but will never return with failure. Testing for
 *   failure is pointless.
 *   New users should be evaluated carefully (and the flag should be
 *   used only when there is no reasonable failure policy) but it is
 *   definitely preferable to use the flag rather than opencode endless
 *   loop around allocator.
 *   Using this flag for costly allocations is _highly_ discouraged.
 */

#define __GFP_IO	((__force gfp_t)___GFP_IO)

#define __GFP_FS	((__force gfp_t)___GFP_FS)

#define __GFP_DIRECT_RECLAIM	((__force gfp_t)___GFP_DIRECT_RECLAIM) 
/* Caller can reclaim */

#define __GFP_KSWAPD_RECLAIM	((__force gfp_t)___GFP_KSWAPD_RECLAIM) 
/* kswapd can wake */

#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))

#define __GFP_RETRY_MAYFAIL	((__force gfp_t)___GFP_RETRY_MAYFAIL)

#define __GFP_NOFAIL	((__force gfp_t)___GFP_NOFAIL)

#define __GFP_NORETRY	((__force gfp_t)___GFP_NORETRY)

/*
 * Action modifiers
 *
 * __GFP_NOWARN suppresses allocation failure reports.
 *
 * __GFP_COMP address compound page metadata.
 *
 * __GFP_ZERO returns a zeroed page on success.
 */

#define __GFP_NOWARN	((__force gfp_t)___GFP_NOWARN)

#define __GFP_COMP	((__force gfp_t)___GFP_COMP)

#define __GFP_ZERO	((__force gfp_t)___GFP_ZERO)

/* Disable lockdep for GFP context tracking */

#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)

/* Room for N __GFP_FOO bits */

#define __GFP_BITS_SHIFT (25 + IS_ENABLED(CONFIG_LOCKDEP))

#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))

/*
 * Useful GFP flag combinations that are commonly used. It is recommended
 * that subsystems start with one of these combinations and then set/clear
 * __GFP_FOO flags as necessary.
 *
 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
 *   watermark is applied to allow access to "atomic reserves"
 *
 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires
 *   ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
 *
 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
 *   accounted to kmemcg.
 *
 * GFP_NOWAIT is for kernel allocations that should not stall for direct
 *   reclaim, start physical IO or use any filesystem callback.
 *
 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages
 *   that do not require the starting of any physical IO.
 *   Please try to avoid using this flag directly and instead use
 *   memalloc_noio_{save,restore} to mark the whole scope which cannot
 *   perform any IO with a short explanation why. All allocation requests
 *   will inherit GFP_NOIO implicitly.
 *
 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
 *   Please try to avoid using this flag directly and instead use
 *   memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
 *   recurse into the FS layer with a short explanation why. All allocation
 *   requests will inherit GFP_NOFS implicitly.
 *
 * GFP_USER is for userspace allocations that also need to be directly
 *   accessibly by the kernel or hardware. It is typically used by hardware
 *   for buffers that are mapped to userspace (e.g. graphics) that hardware
 *   still must DMA to. cpuset limits are enforced for these allocations.
 *
 * GFP_DMA exists for historical reasons and should be avoided where possible.
 *   The flags indicates that the caller requires that the lowest zone be
 *   used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
 *   it would require careful auditing as some users really require it and
 *   others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
 *   lowest zone as a type of emergency reserve.
 *
 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
 *   address.
 *
 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
 *   do not need to be directly accessible by the kernel but that cannot
 *   move once in use. An example may be a hardware allocation that maps
 *   data directly into userspace but has no addressing limitations.
 *
 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
 *   need direct access to but can use kmap() when access is required. They
 *   are expected to be movable via page reclaim or page migration. Typically,
 *   pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
 *
 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
 *   compound allocations that will generally fail quickly if memory is not
 *   available and will not wake kswapd/kcompactd on failure. The _LIGHT
 *   version does not attempt reclaim/compaction at all and is by default used
 *   in page fault path, while the non-light is used by khugepaged.
 */

#define GFP_ATOMIC	(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)

#define GFP_KERNEL	(__GFP_RECLAIM | __GFP_IO | __GFP_FS)

#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)

#define GFP_NOWAIT	(__GFP_KSWAPD_RECLAIM)

#define GFP_NOIO	(__GFP_RECLAIM)

#define GFP_NOFS	(__GFP_RECLAIM | __GFP_IO)

#define GFP_USER	(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)

#define GFP_DMA		__GFP_DMA

#define GFP_DMA32	__GFP_DMA32

#define GFP_HIGHUSER	(GFP_USER | __GFP_HIGHMEM)

#define GFP_HIGHUSER_MOVABLE	(GFP_HIGHUSER | __GFP_MOVABLE)

#define GFP_TRANSHUGE_LIGHT	((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
                         __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)

#define GFP_TRANSHUGE	(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)

/* Convert GFP flags to their corresponding migrate type */

#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)

#define GFP_MOVABLE_SHIFT 3


static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) { VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Group based on mobility */ return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; }

Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman6296.88%266.67%
David Rientjes23.12%133.33%
Total64100.00%3100.00%

#undef GFP_MOVABLE_MASK #undef GFP_MOVABLE_SHIFT
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) { return !!(gfp_flags & __GFP_DIRECT_RECLAIM); }

Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman1680.00%150.00%
Joshua Clayton420.00%150.00%
Total20100.00%2100.00%

#ifdef CONFIG_HIGHMEM #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM #else #define OPT_ZONE_HIGHMEM ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA #define OPT_ZONE_DMA ZONE_DMA #else #define OPT_ZONE_DMA ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA32 #define OPT_ZONE_DMA32 ZONE_DMA32 #else #define OPT_ZONE_DMA32 ZONE_NORMAL #endif /* * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT * bits long and there are 16 of them to cover all possible combinations of * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. * * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. * But GFP_MOVABLE is not only a zone specifier but also an allocation * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". * * bit result * ================= * 0x0 => NORMAL * 0x1 => DMA or NORMAL * 0x2 => HIGHMEM or NORMAL * 0x3 => BAD (DMA+HIGHMEM) * 0x4 => DMA32 or DMA or NORMAL * 0x5 => BAD (DMA+DMA32) * 0x6 => BAD (HIGHMEM+DMA32) * 0x7 => BAD (HIGHMEM+DMA32+DMA) * 0x8 => NORMAL (MOVABLE+0) * 0x9 => DMA or NORMAL (MOVABLE+DMA) * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) * 0xb => BAD (MOVABLE+HIGHMEM+DMA) * 0xc => DMA32 (MOVABLE+DMA32) * 0xd => BAD (MOVABLE+DMA32+DMA) * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) * * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. */ #if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 /* ZONE_DEVICE is not a valid GFP zone specifier */ #define GFP_ZONES_SHIFT 2 #else #define GFP_ZONES_SHIFT ZONES_SHIFT #endif #if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG #error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer #endif #define GFP_ZONE_TABLE ( \ (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ ) /* * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per * entry starting with bit 0. Bit is set if the combination is not * allowed. */ #define GFP_ZONE_BAD ( \ 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32) \ | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ )
static inline enum zone_type gfp_zone(gfp_t flags) { enum zone_type z; int bit = (__force int) (flags & GFP_ZONEMASK); z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & ((1 << GFP_ZONES_SHIFT) - 1); VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); return z; }

Contributors

PersonTokensPropCommitsCommitProp
Christoph Lameter4976.56%342.86%
Mel Gorman69.38%114.29%
Namhyung Kim69.38%114.29%
Dan J Williams23.12%114.29%
Dave Hansen11.56%114.29%
Total64100.00%7100.00%

/* * There is only one page-allocator function, and two main namespaces to * it. The alloc_page*() variants return 'struct page *' and as such * can allocate highmem pages, the *get*page*() variants return * virtual kernel addresses to the allocated page(s). */
static inline int gfp_zonelist(gfp_t flags) { #ifdef CONFIG_NUMA if (unlikely(flags & __GFP_THISNODE)) return ZONELIST_NOFALLBACK; #endif return ZONELIST_FALLBACK; }

Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman2376.67%150.00%
Yaowei Bai723.33%150.00%
Total30100.00%2100.00%

/* * We get the zone list from the current node and the gfp_mask. * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. * There are two zonelists per node, one for all zones with memory and * one containing just zones from the node the zonelist belongs to. * * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets * optimized to &contig_page_data at compile-time. */
static inline struct zonelist *node_zonelist(int nid, gfp_t flags) { return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); }

Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman28100.00%2100.00%
Total28100.00%2100.00%

#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }

Contributors

PersonTokensPropCommitsCommitProp
Paolo 'Blaisorblade' Giarrusso14100.00%1100.00%
Total14100.00%1100.00%

#endif #ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }

Contributors

PersonTokensPropCommitsCommitProp
Nicholas Piggin14100.00%1100.00%
Total14100.00%1100.00%

#endif struct page * __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, nodemask_t *nodemask);
static inline struct page * __alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) { return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); }

Contributors

PersonTokensPropCommitsCommitProp
Motohiro Kosaki2787.10%133.33%
Vlastimil Babka39.68%133.33%
Mel Gorman13.23%133.33%
Total31100.00%3100.00%

/* * Allocate pages, preferring the node given as nid. The node must be valid and * online. For more general interface, see alloc_pages_node(). */
static inline struct page * __alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); VM_WARN_ON(!node_online(nid)); return __alloc_pages(gfp_mask, order, nid); }

Contributors

PersonTokensPropCommitsCommitProp
Vlastimil Babka1632.65%225.00%
Motohiro Kosaki1428.57%112.50%
Mel Gorman1020.41%225.00%
Andi Kleen510.20%112.50%
Linus Torvalds36.12%112.50%
Andrew Morton12.04%112.50%
Total49100.00%8100.00%

/* * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, * prefer the current CPU's closest node. Otherwise node must be valid and * online. */
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { if (nid == NUMA_NO_NODE) nid = numa_mem_id(); return __alloc_pages_node(nid, gfp_mask, order); }

Contributors

PersonTokensPropCommitsCommitProp
Linus Torvalds1332.50%110.00%
Vlastimil Babka1230.00%330.00%
Andrew Morton1025.00%220.00%
Andi Kleen25.00%110.00%
Al Viro12.50%110.00%
Mel Gorman12.50%110.00%
David Rientjes12.50%110.00%
Total40100.00%10100.00%

#ifdef CONFIG_NUMA extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
static inline struct page * alloc_pages(gfp_t gfp_mask, unsigned int order) { return alloc_pages_current(gfp_mask, order); }

Contributors

PersonTokensPropCommitsCommitProp
Andrew Morton2395.83%150.00%
Al Viro14.17%150.00%
Total24100.00%2100.00%

extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage); #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) #else #define alloc_pages(gfp_mask, order) \ alloc_pages_node(numa_node_id(), gfp_mask, order) #define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ alloc_pages(gfp_mask, order) #define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ alloc_pages(gfp_mask, order) #endif #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) #define alloc_page_vma(gfp_mask, vma, addr) \ alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) #define alloc_page_vma_node(gfp_mask, vma, addr, node) \ alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); extern unsigned long get_zeroed_page(gfp_t gfp_mask); void *alloc_pages_exact(size_t size, gfp_t gfp_mask); void free_pages_exact(void *virt, size_t size); void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); #define __get_free_page(gfp_mask) \ __get_free_pages((gfp_mask), 0) #define __get_dma_pages(gfp_mask, order) \ __get_free_pages((gfp_mask) | GFP_DMA, (order)) extern void __free_pages(struct page *page, unsigned int order); extern void free_pages(unsigned long addr, unsigned int order); extern void free_unref_page(struct page *page); extern void free_unref_page_list(struct list_head *list); struct page_frag_cache; extern void __page_frag_cache_drain(struct page *page, unsigned int count); extern void *page_frag_alloc(struct page_frag_cache *nc, unsigned int fragsz, gfp_t gfp_mask); extern void page_frag_free(void *addr); #define __free_page(page) __free_pages((page), 0) #define free_page(addr) free_pages((addr), 0) void page_alloc_init(void); void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); void drain_all_pages(struct zone *zone); void drain_local_pages(struct zone *zone); void page_alloc_init_late(void); /* * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what * GFP flags are used before interrupts are enabled. Once interrupts are * enabled, it is set to __GFP_BITS_MASK while the system is running. During * hibernation, it is used by PM to avoid I/O during memory allocation while * devices are suspended. */ extern gfp_t gfp_allowed_mask; /* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); extern void pm_restrict_gfp_mask(void); extern void pm_restore_gfp_mask(void); #ifdef CONFIG_PM_SLEEP extern bool pm_suspended_storage(void); #else
static inline bool pm_suspended_storage(void) { return false; }

Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman12100.00%1100.00%
Total12100.00%1100.00%

#endif /* CONFIG_PM_SLEEP */ #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) /* The below functions must be run on a range from a single zone. */ extern int alloc_contig_range(unsigned long start, unsigned long end, unsigned migratetype, gfp_t gfp_mask); extern void free_contig_range(unsigned long pfn, unsigned nr_pages); #endif #ifdef CONFIG_CMA /* CMA stuff */ extern void init_cma_reserved_pageblock(struct page *page); #endif #endif /* __LINUX_GFP_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Mel Gorman28921.91%1917.76%
Christoph Lameter14510.99%98.41%
Linus Torvalds1249.40%21.87%
Andrew Morton1138.57%109.35%
Vlastimil Babka826.22%98.41%
Namhyung Kim816.14%10.93%
Harvey Harrison483.64%10.93%
Motohiro Kosaki473.56%10.93%
Alexander Duyck443.34%43.74%
Michal Nazarewicz433.26%32.80%
Andi Kleen423.18%54.67%
Dan J Williams322.43%10.93%
Michal Hocko282.12%54.67%
Aneesh Kumar K.V231.74%10.93%
Andrea Arcangeli231.74%21.87%
Timur Tabi221.67%10.93%
Nicholas Piggin211.59%21.87%
Paolo 'Blaisorblade' Giarrusso191.44%10.93%
Vladimir Davydov151.14%32.80%
Rafael J. Wysocki120.91%32.80%
Konstantin Khlebnikov90.68%10.93%
Yaowei Bai70.53%10.93%
Benjamin Herrenschmidt60.45%10.93%
Johannes Weiner60.45%21.87%
Al Viro50.38%21.87%
Joshua Clayton40.30%10.93%
Matt Mooney40.30%21.87%
Rusty Russell30.23%10.93%
Sasha Levin30.23%10.93%
David Rientjes30.23%21.87%
Lucas Stach30.23%10.93%
Jeff Dike20.15%10.93%
Vegard Nossum20.15%10.93%
Paul Jackson20.15%10.93%
Jianyu Zhan20.15%10.93%
Greg Kroah-Hartman10.08%10.93%
Satoru Takeuchi10.08%10.93%
Hao Lee10.08%10.93%
Fabian Frederick10.08%10.93%
Dave Hansen10.08%10.93%
Total1319100.00%107100.00%
Directory: include/linux
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.