cregit-Linux how code gets into the kernel

Release 4.17 include/linux/mtd/rawnand.h

/*
 *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 *                        Steven J. Hill <sjhill@realitydiluted.com>
 *                        Thomas Gleixner <tglx@linutronix.de>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Info:
 *      Contains standard defines and IDs for NAND flash devices
 *
 * Changelog:
 *      See git changelog.
 */
#ifndef __LINUX_MTD_RAWNAND_H

#define __LINUX_MTD_RAWNAND_H

#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/flashchip.h>
#include <linux/mtd/bbm.h>
#include <linux/types.h>

struct mtd_info;
struct nand_flash_dev;
struct device_node;

/* Scan and identify a NAND device */
int nand_scan(struct mtd_info *mtd, int max_chips);
/*
 * Separate phases of nand_scan(), allowing board driver to intervene
 * and override command or ECC setup according to flash type.
 */
int nand_scan_ident(struct mtd_info *mtd, int max_chips,
			   struct nand_flash_dev *table);
int nand_scan_tail(struct mtd_info *mtd);

/* Unregister the MTD device and free resources held by the NAND device */
void nand_release(struct mtd_info *mtd);

/* Internal helper for board drivers which need to override command function */
void nand_wait_ready(struct mtd_info *mtd);

/* The maximum number of NAND chips in an array */

#define NAND_MAX_CHIPS		8

/*
 * Constants for hardware specific CLE/ALE/NCE function
 *
 * These are bits which can be or'ed to set/clear multiple
 * bits in one go.
 */
/* Select the chip by setting nCE to low */

#define NAND_NCE		0x01
/* Select the command latch by setting CLE to high */

#define NAND_CLE		0x02
/* Select the address latch by setting ALE to high */

#define NAND_ALE		0x04


#define NAND_CTRL_CLE		(NAND_NCE | NAND_CLE)

#define NAND_CTRL_ALE		(NAND_NCE | NAND_ALE)

#define NAND_CTRL_CHANGE	0x80

/*
 * Standard NAND flash commands
 */

#define NAND_CMD_READ0		0

#define NAND_CMD_READ1		1

#define NAND_CMD_RNDOUT		5

#define NAND_CMD_PAGEPROG	0x10

#define NAND_CMD_READOOB	0x50

#define NAND_CMD_ERASE1		0x60

#define NAND_CMD_STATUS		0x70

#define NAND_CMD_SEQIN		0x80

#define NAND_CMD_RNDIN		0x85

#define NAND_CMD_READID		0x90

#define NAND_CMD_ERASE2		0xd0

#define NAND_CMD_PARAM		0xec

#define NAND_CMD_GET_FEATURES	0xee

#define NAND_CMD_SET_FEATURES	0xef

#define NAND_CMD_RESET		0xff

/* Extended commands for large page devices */

#define NAND_CMD_READSTART	0x30

#define NAND_CMD_RNDOUTSTART	0xE0

#define NAND_CMD_CACHEDPROG	0x15


#define NAND_CMD_NONE		-1

/* Status bits */

#define NAND_STATUS_FAIL	0x01

#define NAND_STATUS_FAIL_N1	0x02

#define NAND_STATUS_TRUE_READY	0x20

#define NAND_STATUS_READY	0x40

#define NAND_STATUS_WP		0x80


#define NAND_DATA_IFACE_CHECK_ONLY	-1

/*
 * Constants for ECC_MODES
 */

typedef enum {
	
NAND_ECC_NONE,
	
NAND_ECC_SOFT,
	
NAND_ECC_HW,
	
NAND_ECC_HW_SYNDROME,
	
NAND_ECC_HW_OOB_FIRST,
	
NAND_ECC_ON_DIE,
} 
nand_ecc_modes_t;


enum nand_ecc_algo {
	
NAND_ECC_UNKNOWN,
	
NAND_ECC_HAMMING,
	
NAND_ECC_BCH,
};

/*
 * Constants for Hardware ECC
 */
/* Reset Hardware ECC for read */

#define NAND_ECC_READ		0
/* Reset Hardware ECC for write */

#define NAND_ECC_WRITE		1
/* Enable Hardware ECC before syndrome is read back from flash */

#define NAND_ECC_READSYN	2

/*
 * Enable generic NAND 'page erased' check. This check is only done when
 * ecc.correct() returns -EBADMSG.
 * Set this flag if your implementation does not fix bitflips in erased
 * pages and you want to rely on the default implementation.
 */

#define NAND_ECC_GENERIC_ERASED_CHECK	BIT(0)

#define NAND_ECC_MAXIMIZE		BIT(1)

/* Bit mask for flags passed to do_nand_read_ecc */

#define NAND_GET_DEVICE		0x80


/*
 * Option constants for bizarre disfunctionality and real
 * features.
 */
/* Buswidth is 16 bit */

#define NAND_BUSWIDTH_16	0x00000002
/* Chip has cache program function */

#define NAND_CACHEPRG		0x00000008
/*
 * Chip requires ready check on read (for auto-incremented sequential read).
 * True only for small page devices; large page devices do not support
 * autoincrement.
 */

#define NAND_NEED_READRDY	0x00000100

/* Chip does not allow subpage writes */

#define NAND_NO_SUBPAGE_WRITE	0x00000200

/* Device is one of 'new' xD cards that expose fake nand command set */

#define NAND_BROKEN_XD		0x00000400

/* Device behaves just like nand, but is readonly */

#define NAND_ROM		0x00000800

/* Device supports subpage reads */

#define NAND_SUBPAGE_READ	0x00001000

/*
 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
 * patterns.
 */

#define NAND_NEED_SCRAMBLING	0x00002000

/* Device needs 3rd row address cycle */

#define NAND_ROW_ADDR_3		0x00004000

/* Options valid for Samsung large page devices */

#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG

/* Macros to identify the above */

#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG))

#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))

#define NAND_HAS_SUBPAGE_WRITE(chip) !((chip)->options & NAND_NO_SUBPAGE_WRITE)

/* Non chip related options */
/* This option skips the bbt scan during initialization. */

#define NAND_SKIP_BBTSCAN	0x00010000
/* Chip may not exist, so silence any errors in scan */

#define NAND_SCAN_SILENT_NODEV	0x00040000
/*
 * Autodetect nand buswidth with readid/onfi.
 * This suppose the driver will configure the hardware in 8 bits mode
 * when calling nand_scan_ident, and update its configuration
 * before calling nand_scan_tail.
 */

#define NAND_BUSWIDTH_AUTO      0x00080000
/*
 * This option could be defined by controller drivers to protect against
 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
 */

#define NAND_USE_BOUNCE_BUFFER	0x00100000

/*
 * In case your controller is implementing ->cmd_ctrl() and is relying on the
 * default ->cmdfunc() implementation, you may want to let the core handle the
 * tCCS delay which is required when a column change (RNDIN or RNDOUT) is
 * requested.
 * If your controller already takes care of this delay, you don't need to set
 * this flag.
 */

#define NAND_WAIT_TCCS		0x00200000

/* Options set by nand scan */
/* Nand scan has allocated controller struct */

#define NAND_CONTROLLER_ALLOC	0x80000000

/* Cell info constants */

#define NAND_CI_CHIPNR_MSK	0x03

#define NAND_CI_CELLTYPE_MSK	0x0C

#define NAND_CI_CELLTYPE_SHIFT	2

/* Keep gcc happy */
struct nand_chip;

/* ONFI features */

#define ONFI_FEATURE_16_BIT_BUS		(1 << 0)

#define ONFI_FEATURE_EXT_PARAM_PAGE	(1 << 7)

/* ONFI timing mode, used in both asynchronous and synchronous mode */

#define ONFI_TIMING_MODE_0		(1 << 0)

#define ONFI_TIMING_MODE_1		(1 << 1)

#define ONFI_TIMING_MODE_2		(1 << 2)

#define ONFI_TIMING_MODE_3		(1 << 3)

#define ONFI_TIMING_MODE_4		(1 << 4)

#define ONFI_TIMING_MODE_5		(1 << 5)

#define ONFI_TIMING_MODE_UNKNOWN	(1 << 6)

/* ONFI feature number/address */

#define ONFI_FEATURE_NUMBER		256

#define ONFI_FEATURE_ADDR_TIMING_MODE	0x1

/* Vendor-specific feature address (Micron) */

#define ONFI_FEATURE_ADDR_READ_RETRY	0x89

#define ONFI_FEATURE_ON_DIE_ECC		0x90

#define   ONFI_FEATURE_ON_DIE_ECC_EN	BIT(3)

/* ONFI subfeature parameters length */

#define ONFI_SUBFEATURE_PARAM_LEN	4

/* ONFI optional commands SET/GET FEATURES supported? */

#define ONFI_OPT_CMD_SET_GET_FEATURES	(1 << 2)


struct nand_onfi_params {
	/* rev info and features block */
	/* 'O' 'N' 'F' 'I'  */
	
u8 sig[4];
	
__le16 revision;
	
__le16 features;
	
__le16 opt_cmd;
	
u8 reserved0[2];
	
__le16 ext_param_page_length; /* since ONFI 2.1 */
	
u8 num_of_param_pages;        /* since ONFI 2.1 */
	
u8 reserved1[17];

	/* manufacturer information block */
	
char manufacturer[12];
	
char model[20];
	
u8 jedec_id;
	
__le16 date_code;
	
u8 reserved2[13];

	/* memory organization block */
	
__le32 byte_per_page;
	
__le16 spare_bytes_per_page;
	
__le32 data_bytes_per_ppage;
	
__le16 spare_bytes_per_ppage;
	
__le32 pages_per_block;
	
__le32 blocks_per_lun;
	
u8 lun_count;
	
u8 addr_cycles;
	
u8 bits_per_cell;
	
__le16 bb_per_lun;
	
__le16 block_endurance;
	
u8 guaranteed_good_blocks;
	
__le16 guaranteed_block_endurance;
	
u8 programs_per_page;
	
u8 ppage_attr;
	
u8 ecc_bits;
	
u8 interleaved_bits;
	
u8 interleaved_ops;
	
u8 reserved3[13];

	/* electrical parameter block */
	
u8 io_pin_capacitance_max;
	
__le16 async_timing_mode;
	
__le16 program_cache_timing_mode;
	
__le16 t_prog;
	
__le16 t_bers;
	
__le16 t_r;
	
__le16 t_ccs;
	
__le16 src_sync_timing_mode;
	
u8 src_ssync_features;
	
__le16 clk_pin_capacitance_typ;
	
__le16 io_pin_capacitance_typ;
	
__le16 input_pin_capacitance_typ;
	
u8 input_pin_capacitance_max;
	
u8 driver_strength_support;
	
__le16 t_int_r;
	
__le16 t_adl;
	
u8 reserved4[8];

	/* vendor */
	
__le16 vendor_revision;
	
u8 vendor[88];

	
__le16 crc;

} __packed;


#define ONFI_CRC_BASE	0x4F4E

/* Extended ECC information Block Definition (since ONFI 2.1) */

struct onfi_ext_ecc_info {
	
u8 ecc_bits;
	
u8 codeword_size;
	
__le16 bb_per_lun;
	
__le16 block_endurance;
	
u8 reserved[2];

} __packed;


#define ONFI_SECTION_TYPE_0	0	
/* Unused section. */

#define ONFI_SECTION_TYPE_1	1	
/* for additional sections. */

#define ONFI_SECTION_TYPE_2	2	
/* for ECC information. */

struct onfi_ext_section {
	
u8 type;
	
u8 length;

} __packed;


#define ONFI_EXT_SECTION_MAX 8

/* Extended Parameter Page Definition (since ONFI 2.1) */

struct onfi_ext_param_page {
	
__le16 crc;
	
u8 sig[4];             /* 'E' 'P' 'P' 'S' */
	
u8 reserved0[10];
	
struct onfi_ext_section sections[ONFI_EXT_SECTION_MAX];

	/*
         * The actual size of the Extended Parameter Page is in
         * @ext_param_page_length of nand_onfi_params{}.
         * The following are the variable length sections.
         * So we do not add any fields below. Please see the ONFI spec.
         */

} __packed;


struct jedec_ecc_info {
	
u8 ecc_bits;
	
u8 codeword_size;
	
__le16 bb_per_lun;
	
__le16 block_endurance;
	
u8 reserved[2];

} __packed;

/* JEDEC features */

#define JEDEC_FEATURE_16_BIT_BUS	(1 << 0)


struct nand_jedec_params {
	/* rev info and features block */
	/* 'J' 'E' 'S' 'D'  */
	
u8 sig[4];
	
__le16 revision;
	
__le16 features;
	
u8 opt_cmd[3];
	
__le16 sec_cmd;
	
u8 num_of_param_pages;
	
u8 reserved0[18];

	/* manufacturer information block */
	
char manufacturer[12];
	
char model[20];
	
u8 jedec_id[6];
	
u8 reserved1[10];

	/* memory organization block */
	
__le32 byte_per_page;
	
__le16 spare_bytes_per_page;
	
u8 reserved2[6];
	
__le32 pages_per_block;
	
__le32 blocks_per_lun;
	
u8 lun_count;
	
u8 addr_cycles;
	
u8 bits_per_cell;
	
u8 programs_per_page;
	
u8 multi_plane_addr;
	
u8 multi_plane_op_attr;
	
u8 reserved3[38];

	/* electrical parameter block */
	
__le16 async_sdr_speed_grade;
	
__le16 toggle_ddr_speed_grade;
	
__le16 sync_ddr_speed_grade;
	
u8 async_sdr_features;
	
u8 toggle_ddr_features;
	
u8 sync_ddr_features;
	
__le16 t_prog;
	
__le16 t_bers;
	
__le16 t_r;
	
__le16 t_r_multi_plane;
	
__le16 t_ccs;
	
__le16 io_pin_capacitance_typ;
	
__le16 input_pin_capacitance_typ;
	
__le16 clk_pin_capacitance_typ;
	
u8 driver_strength_support;
	
__le16 t_adl;
	
u8 reserved4[36];

	/* ECC and endurance block */
	
u8 guaranteed_good_blocks;
	
__le16 guaranteed_block_endurance;
	
struct jedec_ecc_info ecc_info[4];
	
u8 reserved5[29];

	/* reserved */
	
u8 reserved6[148];

	/* vendor */
	
__le16 vendor_rev_num;
	
u8 reserved7[88];

	/* CRC for Parameter Page */
	
__le16 crc;

} __packed;

/**
 * struct onfi_params - ONFI specific parameters that will be reused
 * @version: ONFI version (BCD encoded), 0 if ONFI is not supported
 * @tPROG: Page program time
 * @tBERS: Block erase time
 * @tR: Page read time
 * @tCCS: Change column setup time
 * @async_timing_mode: Supported asynchronous timing mode
 * @vendor_revision: Vendor specific revision number
 * @vendor: Vendor specific data
 */

struct onfi_params {
	
int version;
	
u16 tPROG;
	
u16 tBERS;
	
u16 tR;
	
u16 tCCS;
	
u16 async_timing_mode;
	
u16 vendor_revision;
	
u8 vendor[88];
};

/**
 * struct nand_parameters - NAND generic parameters from the parameter page
 * @model: Model name
 * @supports_set_get_features: The NAND chip supports setting/getting features
 * @set_feature_list: Bitmap of features that can be set
 * @get_feature_list: Bitmap of features that can be get
 * @onfi: ONFI specific parameters
 */

struct nand_parameters {
	/* Generic parameters */
	
char model[100];
	
bool supports_set_get_features;
	DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
	DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);

	/* ONFI parameters */
	
struct onfi_params onfi;
};

/* The maximum expected count of bytes in the NAND ID sequence */

#define NAND_MAX_ID_LEN 8

/**
 * struct nand_id - NAND id structure
 * @data: buffer containing the id bytes.
 * @len: ID length.
 */

struct nand_id {
	
u8 data[NAND_MAX_ID_LEN];
	
int len;
};

/**
 * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independent devices
 * @lock:               protection lock
 * @active:             the mtd device which holds the controller currently
 * @wq:                 wait queue to sleep on if a NAND operation is in
 *                      progress used instead of the per chip wait queue
 *                      when a hw controller is available.
 */

struct nand_hw_control {
	
spinlock_t lock;
	
struct nand_chip *active;
	
wait_queue_head_t wq;
};


static inline void nand_hw_control_init(struct nand_hw_control *nfc) { nfc->active = NULL; spin_lock_init(&nfc->lock); init_waitqueue_head(&nfc->wq); }

Contributors

PersonTokensPropCommitsCommitProp
Marc Gonzalez34100.00%1100.00%
Total34100.00%1100.00%

/** * struct nand_ecc_step_info - ECC step information of ECC engine * @stepsize: data bytes per ECC step * @strengths: array of supported strengths * @nstrengths: number of supported strengths */ struct nand_ecc_step_info { int stepsize; const int *strengths; int nstrengths; }; /** * struct nand_ecc_caps - capability of ECC engine * @stepinfos: array of ECC step information * @nstepinfos: number of ECC step information * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step */ struct nand_ecc_caps { const struct nand_ecc_step_info *stepinfos; int nstepinfos; int (*calc_ecc_bytes)(int step_size, int strength); }; /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ static const int __name##_strengths[] = { __VA_ARGS__ }; \ static const struct nand_ecc_step_info __name##_stepinfo = { \ .stepsize = __step, \ .strengths = __name##_strengths, \ .nstrengths = ARRAY_SIZE(__name##_strengths), \ }; \ static const struct nand_ecc_caps __name = { \ .stepinfos = &__name##_stepinfo, \ .nstepinfos = 1, \ .calc_ecc_bytes = __calc, \ } /** * struct nand_ecc_ctrl - Control structure for ECC * @mode: ECC mode * @algo: ECC algorithm * @steps: number of ECC steps per page * @size: data bytes per ECC step * @bytes: ECC bytes per step * @strength: max number of correctible bits per ECC step * @total: total number of ECC bytes per page * @prepad: padding information for syndrome based ECC generators * @postpad: padding information for syndrome based ECC generators * @options: ECC specific options (see NAND_ECC_XXX flags defined above) * @priv: pointer to private ECC control data * @calc_buf: buffer for calculated ECC, size is oobsize. * @code_buf: buffer for ECC read from flash, size is oobsize. * @hwctl: function to control hardware ECC generator. Must only * be provided if an hardware ECC is available * @calculate: function for ECC calculation or readback from ECC hardware * @correct: function for ECC correction, matching to ECC generator (sw/hw). * Should return a positive number representing the number of * corrected bitflips, -EBADMSG if the number of bitflips exceed * ECC strength, or any other error code if the error is not * directly related to correction. * If -EBADMSG is returned the input buffers should be left * untouched. * @read_page_raw: function to read a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and always return contiguous in-band and * out-of-band data even if they're not stored * contiguously on the NAND chip (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @write_page_raw: function to write a raw page without ECC. This function * should hide the specific layout used by the ECC * controller and consider the passed data as contiguous * in-band and out-of-band data. ECC controller is * responsible for doing the appropriate transformations * to adapt to its specific layout (e.g. * NAND_ECC_HW_SYNDROME interleaves in-band and * out-of-band data). * @read_page: function to read a page according to the ECC generator * requirements; returns maximum number of bitflips corrected in * any single ECC step, -EIO hw error * @read_subpage: function to read parts of the page covered by ECC; * returns same as read_page() * @write_subpage: function to write parts of the page covered by ECC. * @write_page: function to write a page according to the ECC generator * requirements. * @write_oob_raw: function to write chip OOB data without ECC * @read_oob_raw: function to read chip OOB data without ECC * @read_oob: function to read chip OOB data * @write_oob: function to write chip OOB data */ struct nand_ecc_ctrl { nand_ecc_modes_t mode; enum nand_ecc_algo algo; int steps; int size; int bytes; int total; int strength; int prepad; int postpad; unsigned int options; void *priv; u8 *calc_buf; u8 *code_buf; void (*hwctl)(struct mtd_info *mtd, int mode); int (*calculate)(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code); int (*correct)(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc); int (*read_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*write_page_raw)(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page); int (*read_subpage)(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offs, uint32_t len, uint8_t *buf, int page); int (*write_subpage)(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, uint32_t data_len, const uint8_t *data_buf, int oob_required, int page); int (*write_page)(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); int (*write_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*read_oob_raw)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*read_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page); int (*write_oob)(struct mtd_info *mtd, struct nand_chip *chip, int page); }; /** * struct nand_sdr_timings - SDR NAND chip timings * * This struct defines the timing requirements of a SDR NAND chip. * These information can be found in every NAND datasheets and the timings * meaning are described in the ONFI specifications: * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing * Parameters) * * All these timings are expressed in picoseconds. * * @tBERS_max: Block erase time * @tCCS_min: Change column setup time * @tPROG_max: Page program time * @tR_max: Page read time * @tALH_min: ALE hold time * @tADL_min: ALE to data loading time * @tALS_min: ALE setup time * @tAR_min: ALE to RE# delay * @tCEA_max: CE# access time * @tCEH_min: CE# high hold time * @tCH_min: CE# hold time * @tCHZ_max: CE# high to output hi-Z * @tCLH_min: CLE hold time * @tCLR_min: CLE to RE# delay * @tCLS_min: CLE setup time * @tCOH_min: CE# high to output hold * @tCS_min: CE# setup time * @tDH_min: Data hold time * @tDS_min: Data setup time * @tFEAT_max: Busy time for Set Features and Get Features * @tIR_min: Output hi-Z to RE# low * @tITC_max: Interface and Timing Mode Change time * @tRC_min: RE# cycle time * @tREA_max: RE# access time * @tREH_min: RE# high hold time * @tRHOH_min: RE# high to output hold * @tRHW_min: RE# high to WE# low * @tRHZ_max: RE# high to output hi-Z * @tRLOH_min: RE# low to output hold * @tRP_min: RE# pulse width * @tRR_min: Ready to RE# low (data only) * @tRST_max: Device reset time, measured from the falling edge of R/B# to the * rising edge of R/B#. * @tWB_max: WE# high to SR[6] low * @tWC_min: WE# cycle time * @tWH_min: WE# high hold time * @tWHR_min: WE# high to RE# low * @tWP_min: WE# pulse width * @tWW_min: WP# transition to WE# low */ struct nand_sdr_timings { u64 tBERS_max; u32 tCCS_min; u64 tPROG_max; u64 tR_max; u32 tALH_min; u32 tADL_min; u32 tALS_min; u32 tAR_min; u32 tCEA_max; u32 tCEH_min; u32 tCH_min; u32 tCHZ_max; u32 tCLH_min; u32 tCLR_min; u32 tCLS_min; u32 tCOH_min; u32 tCS_min; u32 tDH_min; u32 tDS_min; u32 tFEAT_max; u32 tIR_min; u32 tITC_max; u32 tRC_min; u32 tREA_max; u32 tREH_min; u32 tRHOH_min; u32 tRHW_min; u32 tRHZ_max; u32 tRLOH_min; u32 tRP_min; u32 tRR_min; u64 tRST_max; u32 tWB_max; u32 tWC_min; u32 tWH_min; u32 tWHR_min; u32 tWP_min; u32 tWW_min; }; /** * enum nand_data_interface_type - NAND interface timing type * @NAND_SDR_IFACE: Single Data Rate interface */ enum nand_data_interface_type { NAND_SDR_IFACE, }; /** * struct nand_data_interface - NAND interface timing * @type: type of the timing * @timings: The timing, type according to @type */ struct nand_data_interface { enum nand_data_interface_type type; union { struct nand_sdr_timings sdr; } timings; }; /** * nand_get_sdr_timings - get SDR timing from data interface * @conf: The data interface */
static inline const struct nand_sdr_timings * nand_get_sdr_timings(const struct nand_data_interface *conf) { if (conf->type != NAND_SDR_IFACE) return ERR_PTR(-EINVAL); return &conf->timings.sdr; }

Contributors

PersonTokensPropCommitsCommitProp
Sascha Hauer39100.00%1100.00%
Total39100.00%1100.00%

/** * struct nand_manufacturer_ops - NAND Manufacturer operations * @detect: detect the NAND memory organization and capabilities * @init: initialize all vendor specific fields (like the ->read_retry() * implementation) if any. * @cleanup: the ->init() function may have allocated resources, ->cleanup() * is here to let vendor specific code release those resources. */ struct nand_manufacturer_ops { void (*detect)(struct nand_chip *chip); int (*init)(struct nand_chip *chip); void (*cleanup)(struct nand_chip *chip); }; /** * struct nand_op_cmd_instr - Definition of a command instruction * @opcode: the command to issue in one cycle */ struct nand_op_cmd_instr { u8 opcode; }; /** * struct nand_op_addr_instr - Definition of an address instruction * @naddrs: length of the @addrs array * @addrs: array containing the address cycles to issue */ struct nand_op_addr_instr { unsigned int naddrs; const u8 *addrs; }; /** * struct nand_op_data_instr - Definition of a data instruction * @len: number of data bytes to move * @in: buffer to fill when reading from the NAND chip * @out: buffer to read from when writing to the NAND chip * @force_8bit: force 8-bit access * * Please note that "in" and "out" are inverted from the ONFI specification * and are from the controller perspective, so a "in" is a read from the NAND * chip while a "out" is a write to the NAND chip. */ struct nand_op_data_instr { unsigned int len; union { void *in; const void *out; } buf; bool force_8bit; }; /** * struct nand_op_waitrdy_instr - Definition of a wait ready instruction * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms */ struct nand_op_waitrdy_instr { unsigned int timeout_ms; }; /** * enum nand_op_instr_type - Definition of all instruction types * @NAND_OP_CMD_INSTR: command instruction * @NAND_OP_ADDR_INSTR: address instruction * @NAND_OP_DATA_IN_INSTR: data in instruction * @NAND_OP_DATA_OUT_INSTR: data out instruction * @NAND_OP_WAITRDY_INSTR: wait ready instruction */ enum nand_op_instr_type { NAND_OP_CMD_INSTR, NAND_OP_ADDR_INSTR, NAND_OP_DATA_IN_INSTR, NAND_OP_DATA_OUT_INSTR, NAND_OP_WAITRDY_INSTR, }; /** * struct nand_op_instr - Instruction object * @type: the instruction type * @cmd/@addr/@data/@waitrdy: extra data associated to the instruction. * You'll have to use the appropriate element * depending on @type * @delay_ns: delay the controller should apply after the instruction has been * issued on the bus. Most modern controllers have internal timings * control logic, and in this case, the controller driver can ignore * this field. */ struct nand_op_instr { enum nand_op_instr_type type; union { struct nand_op_cmd_instr cmd; struct nand_op_addr_instr addr; struct nand_op_data_instr data; struct nand_op_waitrdy_instr waitrdy; } ctx; unsigned int delay_ns; }; /* * Special handling must be done for the WAITRDY timeout parameter as it usually * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or * tBERS (during an erase) which all of them are u64 values that cannot be * divided by usual kernel macros and must be handled with the special * DIV_ROUND_UP_ULL() macro. * * Cast to type of dividend is needed here to guarantee that the result won't * be an unsigned long long when the dividend is an unsigned long (or smaller), * which is what the compiler does when it sees ternary operator with 2 * different return types (picks the largest type to make sure there's no * loss). */ #define __DIVIDE(dividend, divisor) ({ \ (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ DIV_ROUND_UP(dividend, divisor) : \ DIV_ROUND_UP_ULL(dividend, divisor)); \ }) #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) #define NAND_OP_CMD(id, ns) \ { \ .type = NAND_OP_CMD_INSTR, \ .ctx.cmd.opcode = id, \ .delay_ns = ns, \ } #define NAND_OP_ADDR(ncycles, cycles, ns) \ { \ .type = NAND_OP_ADDR_INSTR, \ .ctx.addr = { \ .naddrs = ncycles, \ .addrs = cycles, \ }, \ .delay_ns = ns, \ } #define NAND_OP_DATA_IN(l, b, ns) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .ctx.data = { \ .len = l, \ .buf.in = b, \ .force_8bit = false, \ }, \ .delay_ns = ns, \ } #define NAND_OP_DATA_OUT(l, b, ns) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .ctx.data = { \ .len = l, \ .buf.out = b, \ .force_8bit = false, \ }, \ .delay_ns = ns, \ } #define NAND_OP_8BIT_DATA_IN(l, b, ns) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .ctx.data = { \ .len = l, \ .buf.in = b, \ .force_8bit = true, \ }, \ .delay_ns = ns, \ } #define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .ctx.data = { \ .len = l, \ .buf.out = b, \ .force_8bit = true, \ }, \ .delay_ns = ns, \ } #define NAND_OP_WAIT_RDY(tout_ms, ns) \ { \ .type = NAND_OP_WAITRDY_INSTR, \ .ctx.waitrdy.timeout_ms = tout_ms, \ .delay_ns = ns, \ } /** * struct nand_subop - a sub operation * @instrs: array of instructions * @ninstrs: length of the @instrs array * @first_instr_start_off: offset to start from for the first instruction * of the sub-operation * @last_instr_end_off: offset to end at (excluded) for the last instruction * of the sub-operation * * Both @first_instr_start_off and @last_instr_end_off only apply to data or * address instructions. * * When an operation cannot be handled as is by the NAND controller, it will * be split by the parser into sub-operations which will be passed to the * controller driver. */ struct nand_subop { const struct nand_op_instr *instrs; unsigned int ninstrs; unsigned int first_instr_start_off; unsigned int last_instr_end_off; }; int nand_subop_get_addr_start_off(const struct nand_subop *subop, unsigned int op_id); int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, unsigned int op_id); int nand_subop_get_data_start_off(const struct nand_subop *subop, unsigned int op_id); int nand_subop_get_data_len(const struct nand_subop *subop, unsigned int op_id); /** * struct nand_op_parser_addr_constraints - Constraints for address instructions * @maxcycles: maximum number of address cycles the controller can issue in a * single step */ struct nand_op_parser_addr_constraints { unsigned int maxcycles; }; /** * struct nand_op_parser_data_constraints - Constraints for data instructions * @maxlen: maximum data length that the controller can handle in a single step */ struct nand_op_parser_data_constraints { unsigned int maxlen; }; /** * struct nand_op_parser_pattern_elem - One element of a pattern * @type: the instructuction type * @optional: whether this element of the pattern is optional or mandatory * @addr/@data: address or data constraint (number of cycles or data length) */ struct nand_op_parser_pattern_elem { enum nand_op_instr_type type; bool optional; union { struct nand_op_parser_addr_constraints addr; struct nand_op_parser_data_constraints data; } ctx; }; #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ { \ .type = NAND_OP_CMD_INSTR, \ .optional = _opt, \ } #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ { \ .type = NAND_OP_ADDR_INSTR, \ .optional = _opt, \ .ctx.addr.maxcycles = _maxcycles, \ } #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ { \ .type = NAND_OP_DATA_IN_INSTR, \ .optional = _opt, \ .ctx.data.maxlen = _maxlen, \ } #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ { \ .type = NAND_OP_DATA_OUT_INSTR, \ .optional = _opt, \ .ctx.data.maxlen = _maxlen, \ } #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ { \ .type = NAND_OP_WAITRDY_INSTR, \ .optional = _opt, \ } /** * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor * @elems: array of pattern elements * @nelems: number of pattern elements in @elems array * @exec: the function that will issue a sub-operation * * A pattern is a list of elements, each element reprensenting one instruction * with its constraints. The pattern itself is used by the core to match NAND * chip operation with NAND controller operations. * Once a match between a NAND controller operation pattern and a NAND chip * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() * hook is called so that the controller driver can issue the operation on the * bus. * * Controller drivers should declare as many patterns as they support and pass * this list of patterns (created with the help of the following macro) to * the nand_op_parser_exec_op() helper. */ struct nand_op_parser_pattern { const struct nand_op_parser_pattern_elem *elems; unsigned int nelems; int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); }; #define NAND_OP_PARSER_PATTERN(_exec, ...) \ { \ .exec = _exec, \ .elems = (struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ sizeof(struct nand_op_parser_pattern_elem), \ } /** * struct nand_op_parser - NAND controller operation parser descriptor * @patterns: array of supported patterns * @npatterns: length of the @patterns array * * The parser descriptor is just an array of supported patterns which will be * iterated by nand_op_parser_exec_op() everytime it tries to execute an * NAND operation (or tries to determine if a specific operation is supported). * * It is worth mentioning that patterns will be tested in their declaration * order, and the first match will be taken, so it's important to order patterns * appropriately so that simple/inefficient patterns are placed at the end of * the list. Usually, this is where you put single instruction patterns. */ struct nand_op_parser { const struct nand_op_parser_pattern *patterns; unsigned int npatterns; }; #define NAND_OP_PARSER(...) \ { \ .patterns = (struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ sizeof(struct nand_op_parser_pattern), \ } /** * struct nand_operation - NAND operation descriptor * @instrs: array of instructions to execute * @ninstrs: length of the @instrs array * * The actual operation structure that will be passed to chip->exec_op(). */ struct nand_operation { const struct nand_op_instr *instrs; unsigned int ninstrs; }; #define NAND_OPERATION(_instrs) \ { \ .instrs = _instrs, \ .ninstrs = ARRAY_SIZE(_instrs), \ } int nand_op_parser_exec_op(struct nand_chip *chip, const struct nand_op_parser *parser, const struct nand_operation *op, bool check_only); /** * struct nand_chip - NAND Private Flash Chip Data * @mtd: MTD device registered to the MTD framework * @IO_ADDR_R: [BOARDSPECIFIC] address to read the 8 I/O lines of the * flash device * @IO_ADDR_W: [BOARDSPECIFIC] address to write the 8 I/O lines of the * flash device. * @read_byte: [REPLACEABLE] read one byte from the chip * @read_word: [REPLACEABLE] read one word from the chip * @write_byte: [REPLACEABLE] write a single byte to the chip on the * low 8 I/O lines * @write_buf: [REPLACEABLE] write data from the buffer to the chip * @read_buf: [REPLACEABLE] read data from the chip into the buffer * @select_chip: [REPLACEABLE] select chip nr * @block_bad: [REPLACEABLE] check if a block is bad, using OOB markers * @block_markbad: [REPLACEABLE] mark a block bad * @cmd_ctrl: [BOARDSPECIFIC] hardwarespecific function for controlling * ALE/CLE/nCE. Also used to write command and address * @dev_ready: [BOARDSPECIFIC] hardwarespecific function for accessing * device ready/busy line. If set to NULL no access to * ready/busy is available and the ready/busy information * is read from the chip status register. * @cmdfunc: [REPLACEABLE] hardwarespecific function for writing * commands to the chip. * @waitfunc: [REPLACEABLE] hardwarespecific function for wait on * ready. * @exec_op: controller specific method to execute NAND operations. * This method replaces ->cmdfunc(), * ->{read,write}_{buf,byte,word}(), ->dev_ready() and * ->waifunc(). * @setup_read_retry: [FLASHSPECIFIC] flash (vendor) specific function for * setting the read-retry mode. Mostly needed for MLC NAND. * @ecc: [BOARDSPECIFIC] ECC control structure * @buf_align: minimum buffer alignment required by a platform * @hwcontrol: platform-specific hardware control structure * @erase: [REPLACEABLE] erase function * @scan_bbt: [REPLACEABLE] function to scan bad block table * @chip_delay: [BOARDSPECIFIC] chip dependent delay for transferring * data from array to read regs (tR). * @state: [INTERN] the current state of the NAND device * @oob_poi: "poison value buffer," used for laying out OOB data * before writing * @page_shift: [INTERN] number of address bits in a page (column * address bits). * @phys_erase_shift: [INTERN] number of address bits in a physical eraseblock * @bbt_erase_shift: [INTERN] number of address bits in a bbt entry * @chip_shift: [INTERN] number of address bits in one chip * @options: [BOARDSPECIFIC] various chip options. They can partly * be set to inform nand_scan about special functionality. * See the defines for further explanation. * @bbt_options: [INTERN] bad block specific options. All options used * here must come from bbm.h. By default, these options * will be copied to the appropriate nand_bbt_descr's. * @badblockpos: [INTERN] position of the bad block marker in the oob * area. * @badblockbits: [INTERN] minimum number of set bits in a good block's * bad block marker position; i.e., BBM == 11110111b is * not bad when badblockbits == 7 * @bits_per_cell: [INTERN] number of bits per cell. i.e., 1 means SLC. * @ecc_strength_ds: [INTERN] ECC correctability from the datasheet. * Minimum amount of bit errors per @ecc_step_ds guaranteed * to be correctable. If unknown, set to zero. * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, * also from the datasheet. It is the recommended ECC step * size, if known; if unknown, set to zero. * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is * set to the actually used ONFI mode if the chip is * ONFI compliant or deduced from the datasheet if * the NAND chip is not ONFI compliant. * @numchips: [INTERN] number of physical chips * @chipsize: [INTERN] the size of one chip for multichip arrays * @pagemask: [INTERN] page number mask = number of (pages / chip) - 1 * @data_buf: [INTERN] buffer for data, size is (page size + oobsize). * @pagebuf: [INTERN] holds the pagenumber which is currently in * data_buf. * @pagebuf_bitflips: [INTERN] holds the bitflip count for the page which is * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID * @parameters: [INTERN] holds generic parameters under an easily * readable form. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a * this nand device will encounter their life times. * @blocks_per_die: [INTERN] The number of PEBs in a die * @data_interface: [INTERN] NAND interface timing information * @read_retries: [INTERN] the number of read retry modes supported * @set_features: [REPLACEABLE] set the NAND chip features * @get_features: [REPLACEABLE] get the NAND chip features * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this * means the configuration should not be applied but * only checked. * @bbt: [INTERN] bad block table pointer * @bbt_td: [REPLACEABLE] bad block table descriptor for flash * lookup. * @bbt_md: [REPLACEABLE] bad block table mirror descriptor * @badblock_pattern: [REPLACEABLE] bad block scan pattern used for initial * bad block scan. * @controller: [REPLACEABLE] a pointer to a hardware controller * structure which is shared among multiple independent * devices. * @priv: [OPTIONAL] pointer to private chip data * @manufacturer: [INTERN] Contains manufacturer information */ struct nand_chip { struct mtd_info mtd; void __iomem *IO_ADDR_R; void __iomem *IO_ADDR_W; uint8_t (*read_byte)(struct mtd_info *mtd); u16 (*read_word)(struct mtd_info *mtd); void (*write_byte)(struct mtd_info *mtd, uint8_t byte); void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); void (*select_chip)(struct mtd_info *mtd, int chip); int (*block_bad)(struct mtd_info *mtd, loff_t ofs); int (*block_markbad)(struct mtd_info *mtd, loff_t ofs); void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); int (*dev_ready)(struct mtd_info *mtd); void (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr); int(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this); int (*exec_op)(struct nand_chip *chip, const struct nand_operation *op, bool check_only); int (*erase)(struct mtd_info *mtd, int page); int (*scan_bbt)(struct mtd_info *mtd); int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip, int feature_addr, uint8_t *subfeature_para); int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip, int feature_addr, uint8_t *subfeature_para); int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode); int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, const struct nand_data_interface *conf); int chip_delay; unsigned int options; unsigned int bbt_options; int page_shift; int phys_erase_shift; int bbt_erase_shift; int chip_shift; int numchips; uint64_t chipsize; int pagemask; u8 *data_buf; int pagebuf; unsigned int pagebuf_bitflips; int subpagesize; uint8_t bits_per_cell; uint16_t ecc_strength_ds; uint16_t ecc_step_ds; int onfi_timing_mode_default; int badblockpos; int badblockbits; struct nand_id id; struct nand_parameters parameters; u16 max_bb_per_die; u32 blocks_per_die; struct nand_data_interface data_interface; int read_retries; flstate_t state; uint8_t *oob_poi; struct nand_hw_control *controller; struct nand_ecc_ctrl ecc; unsigned long buf_align; struct nand_hw_control hwcontrol; uint8_t *bbt; struct nand_bbt_descr *bbt_td; struct nand_bbt_descr *bbt_md; struct nand_bbt_descr *badblock_pattern; void *priv; struct { const struct nand_manufacturer *desc; void *priv; } manufacturer; };
static inline int nand_exec_op(struct nand_chip *chip, const struct nand_operation *op) { if (!chip->exec_op) return -ENOTSUPP; return chip->exec_op(chip, op, false); }

Contributors

PersonTokensPropCommitsCommitProp
Miquel Raynal41100.00%1100.00%
Total41100.00%1100.00%

extern const struct mtd_ooblayout_ops nand_ooblayout_sp_ops; extern const struct mtd_ooblayout_ops nand_ooblayout_lp_ops;
static inline void nand_set_flash_node(struct nand_chip *chip, struct device_node *np) { mtd_set_of_node(&chip->mtd, np); }

Contributors

PersonTokensPropCommitsCommitProp
Brian Norris2177.78%150.00%
Boris Brezillon622.22%150.00%
Total27100.00%2100.00%


static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) { return mtd_get_of_node(&chip->mtd); }

Contributors

PersonTokensPropCommitsCommitProp
Brian Norris1878.26%150.00%
Boris Brezillon521.74%150.00%
Total23100.00%2100.00%


static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) { return container_of(mtd, struct nand_chip, mtd); }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon25100.00%2100.00%
Total25100.00%2100.00%


static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) { return &chip->mtd; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon20100.00%1100.00%
Total20100.00%1100.00%


static inline void *nand_get_controller_data(struct nand_chip *chip) { return chip->priv; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon18100.00%1100.00%
Total18100.00%1100.00%


static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) { chip->priv = priv; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon22100.00%1100.00%
Total22100.00%1100.00%


static inline void nand_set_manufacturer_data(struct nand_chip *chip, void *priv) { chip->manufacturer.priv = priv; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon24100.00%1100.00%
Total24100.00%1100.00%


static inline void *nand_get_manufacturer_data(struct nand_chip *chip) { return chip->manufacturer.priv; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon20100.00%1100.00%
Total20100.00%1100.00%

/* * NAND Flash Manufacturer ID Codes */ #define NAND_MFR_TOSHIBA 0x98 #define NAND_MFR_ESMT 0xc8 #define NAND_MFR_SAMSUNG 0xec #define NAND_MFR_FUJITSU 0x04 #define NAND_MFR_NATIONAL 0x8f #define NAND_MFR_RENESAS 0x07 #define NAND_MFR_STMICRO 0x20 #define NAND_MFR_HYNIX 0xad #define NAND_MFR_MICRON 0x2c #define NAND_MFR_AMD 0x01 #define NAND_MFR_MACRONIX 0xc2 #define NAND_MFR_EON 0x92 #define NAND_MFR_SANDISK 0x45 #define NAND_MFR_INTEL 0x89 #define NAND_MFR_ATO 0x9b #define NAND_MFR_WINBOND 0xef /* * A helper for defining older NAND chips where the second ID byte fully * defined the chip, including the geometry (chip size, eraseblock size, page * size). All these chips have 512 bytes NAND page size. */ #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } /* * A helper for defining newer chips which report their page size and * eraseblock size via the extended ID bytes. * * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the * device ID now only represented a particular total chip size (and voltage, * buswidth), and the page size, eraseblock size, and OOB size could vary while * using the same device ID. */ #define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ .options = (opts) } #define NAND_ECC_INFO(_strength, _step) \ { .strength_ds = (_strength), .step_ds = (_step) } #define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) #define NAND_ECC_STEP(type) ((type)->ecc.step_ds) /** * struct nand_flash_dev - NAND Flash Device ID Structure * @name: a human-readable name of the NAND chip * @dev_id: the device ID (the second byte of the full chip ID array) * @mfr_id: manufecturer ID part of the full chip ID array (refers the same * memory address as @id[0]) * @dev_id: device ID part of the full chip ID array (refers the same memory * address as @id[1]) * @id: full device ID array * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as * well as the eraseblock size) is determined from the extended NAND * chip ID array) * @chipsize: total chip size in MiB * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) * @options: stores various chip bit options * @id_len: The valid length of the @id. * @oobsize: OOB size * @ecc: ECC correctability and step information from the datasheet. * @ecc.strength_ds: The ECC correctability from the datasheet, same as the * @ecc_strength_ds in nand_chip{}. * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the * @ecc_step_ds in nand_chip{}, also from the datasheet. * For example, the "4bit ECC for each 512Byte" can be set with * NAND_ECC_INFO(4, 512). * @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND * reset. Should be deduced from timings described * in the datasheet. * */ struct nand_flash_dev { char *name; union { struct { uint8_t mfr_id; uint8_t dev_id; }; uint8_t id[NAND_MAX_ID_LEN]; }; unsigned int pagesize; unsigned int chipsize; unsigned int erasesize; unsigned int options; uint16_t id_len; uint16_t oobsize; struct { uint16_t strength_ds; uint16_t step_ds; } ecc; int onfi_timing_mode_default; }; /** * struct nand_manufacturer - NAND Flash Manufacturer structure * @name: Manufacturer name * @id: manufacturer ID code of device. * @ops: manufacturer operations */ struct nand_manufacturer { int id; char *name; const struct nand_manufacturer_ops *ops; }; const struct nand_manufacturer *nand_get_manufacturer(u8 id);
static inline const char * nand_manufacturer_name(const struct nand_manufacturer *manufacturer) { return manufacturer ? manufacturer->name : "Unknown"; }

Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon24100.00%1100.00%
Total24100.00%1100.00%

extern struct nand_flash_dev nand_flash_ids[]; extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops; extern const struct nand_manufacturer_ops samsung_nand_manuf_ops; extern const struct nand_manufacturer_ops hynix_nand_manuf_ops; extern const struct nand_manufacturer_ops micron_nand_manuf_ops; extern const struct nand_manufacturer_ops amd_nand_manuf_ops; extern const struct nand_manufacturer_ops macronix_nand_manuf_ops; int nand_default_bbt(struct mtd_info *mtd); int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs); int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs); int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt); int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt); int nand_do_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf); /** * struct platform_nand_chip - chip level device structure * @nr_chips: max. number of chips to scan for * @chip_offset: chip number offset * @nr_partitions: number of partitions pointed to by partitions (or zero) * @partitions: mtd partition list * @chip_delay: R/B delay value in us * @options: Option flags, e.g. 16bit buswidth * @bbt_options: BBT option flags, e.g. NAND_BBT_USE_FLASH * @part_probe_types: NULL-terminated array of probe types */ struct platform_nand_chip { int nr_chips; int chip_offset; int nr_partitions; struct mtd_partition *partitions; int chip_delay; unsigned int options; unsigned int bbt_options; const char **part_probe_types; }; /* Keep gcc happy */ struct platform_device; /** * struct platform_nand_ctrl - controller level device structure * @probe: platform specific function to probe/setup hardware * @remove: platform specific function to remove/teardown hardware * @hwcontrol: platform specific hardware control structure * @dev_ready: platform specific function to read ready/busy pin * @select_chip: platform specific chip select function * @cmd_ctrl: platform specific function for controlling * ALE/CLE/nCE. Also used to write command and address * @write_buf: platform specific function for write buffer * @read_buf: platform specific function for read buffer * @read_byte: platform specific function to read one byte from chip * @priv: private data to transport driver specific settings * * All fields are optional and depend on the hardware driver requirements */ struct platform_nand_ctrl { int (*probe)(struct platform_device *pdev); void (*remove)(struct platform_device *pdev); void (*hwcontrol)(struct mtd_info *mtd, int cmd); int (*dev_ready)(struct mtd_info *mtd); void (*select_chip)(struct mtd_info *mtd, int chip); void (*cmd_ctrl)(struct mtd_info *mtd, int dat, unsigned int ctrl); void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len); void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len); unsigned char (*read_byte)(struct mtd_info *mtd); void *priv; }; /** * struct platform_nand_data - container structure for platform-specific data * @chip: chip level chip structure * @ctrl: controller level device structure */ struct platform_nand_data { struct platform_nand_chip chip; struct platform_nand_ctrl ctrl; }; /* return the supported asynchronous timing mode. */
static inline int onfi_get_async_timing_mode(struct nand_chip *chip) { if (!chip->parameters.onfi.version) return ONFI_TIMING_MODE_UNKNOWN; return chip->parameters.onfi.async_timing_mode; }

Contributors

PersonTokensPropCommitsCommitProp
Huang Shijie2777.14%150.00%
Miquel Raynal822.86%150.00%
Total35100.00%2100.00%

int onfi_fill_data_interface(struct nand_chip *chip, enum nand_data_interface_type type, int timing_mode); /* * Check if it is a SLC nand. * The !nand_is_slc() can be used to check the MLC/TLC nand chips. * We do not distinguish the MLC and TLC now. */
static inline bool nand_is_slc(struct nand_chip *chip) { WARN(chip->bits_per_cell == 0, "chip->bits_per_cell is used uninitialized\n"); return chip->bits_per_cell == 1; }

Contributors

PersonTokensPropCommitsCommitProp
Huang Shijie1963.33%266.67%
Lothar Waßmann1136.67%133.33%
Total30100.00%3100.00%

/** * Check if the opcode's address should be sent only on the lower 8 bits * @command: opcode to check */
static inline int nand_opcode_8bits(unsigned int command) { switch (command) { case NAND_CMD_READID: case NAND_CMD_PARAM: case NAND_CMD_GET_FEATURES: case NAND_CMD_SET_FEATURES: return 1; default: break; } return 0; }

Contributors

PersonTokensPropCommitsCommitProp
David Mosberger-Tang2259.46%133.33%
Brian Norris1437.84%133.33%
Huang Shijie12.70%133.33%
Total37100.00%3100.00%

/* get timing characteristics from ONFI timing mode. */ const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode); int nand_check_erased_ecc_chunk(void *data, int datalen, void *ecc, int ecclen, void *extraoob, int extraooblen, int threshold); int nand_check_ecc_caps(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail); int nand_match_ecc_req(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail); int nand_maximize_ecc(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail); /* Default write_oob implementation */ int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default write_oob syndrome implementation */ int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default read_oob implementation */ int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Default read_oob syndrome implementation */ int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */ int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param); int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param); /* Stub used by drivers that do not support GET/SET FEATURES operations */ int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, int addr, u8 *subfeature_param); /* Default read_page_raw implementation */ int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page); /* Default write_page_raw implementation */ int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page); /* Reset and initialize a NAND device */ int nand_reset(struct nand_chip *chip, int chipnr); /* NAND operation helpers */ int nand_reset_op(struct nand_chip *chip); int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, unsigned int len); int nand_status_op(struct nand_chip *chip, u8 *status); int nand_exit_status_op(struct nand_chip *chip); int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); int nand_read_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len); int nand_change_read_column_op(struct nand_chip *chip, unsigned int offset_in_page, void *buf, unsigned int len, bool force_8bit); int nand_read_oob_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len); int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len); int nand_prog_page_end_op(struct nand_chip *chip); int nand_prog_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len); int nand_change_write_column_op(struct nand_chip *chip, unsigned int offset_in_page, const void *buf, unsigned int len, bool force_8bit); int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, bool force_8bit); int nand_write_data_op(struct nand_chip *chip, const void *buf, unsigned int len, bool force_8bit); /* Free resources held by the NAND device */ void nand_cleanup(struct nand_chip *chip); /* Default extended ID decoding function */ void nand_decode_ext_id(struct nand_chip *chip); /* * External helper for controller drivers that have to implement the WAITRDY * instruction and have no physical pin to check it. */ int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); #endif /* __LINUX_MTD_RAWNAND_H */

Overall Contributors

PersonTokensPropCommitsCommitProp
Boris Brezillon80718.78%3621.18%
Miquel Raynal70316.36%95.29%
Huang Shijie54612.71%158.82%
David Woodhouse52712.27%74.12%
Thomas Gleixner3758.73%158.82%
Sascha Hauer1984.61%31.76%
Florian Fainelli1784.14%21.18%
Brian Norris1774.12%2212.94%
Masahiro Yamada1363.17%52.94%
Linus Torvalds (pre-git)882.05%21.18%
Thomas Petazzoni611.42%31.76%
Artem B. Bityutskiy561.30%74.12%
Marc Gonzalez410.95%21.18%
Vitaly Wool390.91%10.59%
Alexander Clouter390.91%10.59%
Alexey Korolev320.74%10.59%
Gupta Pekon310.72%10.59%
H Hartley Sweeten280.65%10.59%
David Mosberger-Tang270.63%21.18%
David A. Marlin270.63%10.59%
Rafał Miłecki180.42%21.18%
Uwe Kleine-König150.35%10.59%
Maxim Levitsky130.30%21.18%
John Crispin130.30%10.59%
Ezequiel García120.28%10.59%
Lothar Waßmann110.26%10.59%
Richard Weinberger110.26%10.59%
Sneha Narnakaje80.19%21.18%
Jean-Louis Thekekara70.16%10.59%
Jeff Westfahl70.16%10.59%
Mike Dunn70.16%21.18%
Alessandro Rubini70.16%21.18%
Zach Brown60.14%10.59%
Scott Wood50.12%10.59%
Steven J. Hill40.09%10.59%
Andrey Jr. Melnikov40.09%10.59%
sshahrom@micron.com40.09%10.59%
Ben Dooks40.09%10.59%
Sebastian Andrzej Siewior40.09%21.18%
Ivan Djelic40.09%10.59%
Nicolas S. Dade40.09%10.59%
Kamal Dasu30.07%10.59%
Geert Uytterhoeven20.05%10.59%
Matthieu Castet20.05%10.59%
Randy Dunlap20.05%21.18%
Josh Wu20.05%10.59%
Adrian Hunter10.02%10.59%
Total4296100.00%170100.00%
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.