cregit-Linux how code gets into the kernel

Release 4.18 fs/xfs/scrub/scrub.c

Directory: fs/xfs/scrub
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2017 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_btree.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_inode.h"
#include "xfs_icache.h"
#include "xfs_itable.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_bmap.h"
#include "xfs_bmap_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_quota.h"
#include "xfs_qm.h"
#include "xfs_errortag.h"
#include "xfs_error.h"
#include "xfs_log.h"
#include "xfs_trans_priv.h"
#include "scrub/xfs_scrub.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/btree.h"
#include "scrub/repair.h"

/*
 * Online Scrub and Repair
 *
 * Traditionally, XFS (the kernel driver) did not know how to check or
 * repair on-disk data structures.  That task was left to the xfs_check
 * and xfs_repair tools, both of which require taking the filesystem
 * offline for a thorough but time consuming examination.  Online
 * scrub & repair, on the other hand, enables us to check the metadata
 * for obvious errors while carefully stepping around the filesystem's
 * ongoing operations, locking rules, etc.
 *
 * Given that most XFS metadata consist of records stored in a btree,
 * most of the checking functions iterate the btree blocks themselves
 * looking for irregularities.  When a record block is encountered, each
 * record can be checked for obviously bad values.  Record values can
 * also be cross-referenced against other btrees to look for potential
 * misunderstandings between pieces of metadata.
 *
 * It is expected that the checkers responsible for per-AG metadata
 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
 * metadata structure, and perform any relevant cross-referencing before
 * unlocking the AG and returning the results to userspace.  These
 * scrubbers must not keep an AG locked for too long to avoid tying up
 * the block and inode allocators.
 *
 * Block maps and b-trees rooted in an inode present a special challenge
 * because they can involve extents from any AG.  The general scrubber
 * structure of lock -> check -> xref -> unlock still holds, but AG
 * locking order rules /must/ be obeyed to avoid deadlocks.  The
 * ordering rule, of course, is that we must lock in increasing AG
 * order.  Helper functions are provided to track which AG headers we've
 * already locked.  If we detect an imminent locking order violation, we
 * can signal a potential deadlock, in which case the scrubber can jump
 * out to the top level, lock all the AGs in order, and retry the scrub.
 *
 * For file data (directories, extended attributes, symlinks) scrub, we
 * can simply lock the inode and walk the data.  For btree data
 * (directories and attributes) we follow the same btree-scrubbing
 * strategy outlined previously to check the records.
 *
 * We use a bit of trickery with transactions to avoid buffer deadlocks
 * if there is a cycle in the metadata.  The basic problem is that
 * travelling down a btree involves locking the current buffer at each
 * tree level.  If a pointer should somehow point back to a buffer that
 * we've already examined, we will deadlock due to the second buffer
 * locking attempt.  Note however that grabbing a buffer in transaction
 * context links the locked buffer to the transaction.  If we try to
 * re-grab the buffer in the context of the same transaction, we avoid
 * the second lock attempt and continue.  Between the verifier and the
 * scrubber, something will notice that something is amiss and report
 * the corruption.  Therefore, each scrubber will allocate an empty
 * transaction, attach buffers to it, and cancel the transaction at the
 * end of the scrub run.  Cancelling a non-dirty transaction simply
 * unlocks the buffers.
 *
 * There are four pieces of data that scrub can communicate to
 * userspace.  The first is the error code (errno), which can be used to
 * communicate operational errors in performing the scrub.  There are
 * also three flags that can be set in the scrub context.  If the data
 * structure itself is corrupt, the CORRUPT flag will be set.  If
 * the metadata is correct but otherwise suboptimal, the PREEN flag
 * will be set.
 *
 * We perform secondary validation of filesystem metadata by
 * cross-referencing every record with all other available metadata.
 * For example, for block mapping extents, we verify that there are no
 * records in the free space and inode btrees corresponding to that
 * space extent and that there is a corresponding entry in the reverse
 * mapping btree.  Inconsistent metadata is noted by setting the
 * XCORRUPT flag; btree query function errors are noted by setting the
 * XFAIL flag and deleting the cursor to prevent further attempts to
 * cross-reference with a defective btree.
 *
 * If a piece of metadata proves corrupt or suboptimal, the userspace
 * program can ask the kernel to apply some tender loving care (TLC) to
 * the metadata object by setting the REPAIR flag and re-calling the
 * scrub ioctl.  "Corruption" is defined by metadata violating the
 * on-disk specification; operations cannot continue if the violation is
 * left untreated.  It is possible for XFS to continue if an object is
 * "suboptimal", however performance may be degraded.  Repairs are
 * usually performed by rebuilding the metadata entirely out of
 * redundant metadata.  Optimizing, on the other hand, can sometimes be
 * done without rebuilding entire structures.
 *
 * Generally speaking, the repair code has the following code structure:
 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
 * The first check helps us figure out if we need to rebuild or simply
 * optimize the structure so that the rebuild knows what to do.  The
 * second check evaluates the completeness of the repair; that is what
 * is reported to userspace.
 */

/*
 * Scrub probe -- userspace uses this to probe if we're willing to scrub
 * or repair a given mountpoint.  This will be used by xfs_scrub to
 * probe the kernel's abilities to scrub (and repair) the metadata.  We
 * do this by validating the ioctl inputs from userspace, preparing the
 * filesystem for a scrub (or a repair) operation, and immediately
 * returning to userspace.  Userspace can use the returned errno and
 * structure state to decide (in broad terms) if scrub/repair are
 * supported by the running kernel.
 */

static int xfs_scrub_probe( struct xfs_scrub_context *sc) { int error = 0; if (xfs_scrub_should_terminate(sc, &error)) return error; return 0; }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong3196.88%150.00%
Christoph Hellwig13.12%150.00%
Total32100.00%2100.00%

/* Scrub setup and teardown */ /* Free all the resources and finish the transactions. */
STATIC int xfs_scrub_teardown( struct xfs_scrub_context *sc, struct xfs_inode *ip_in, int error) { xfs_scrub_ag_free(sc, &sc->sa); if (sc->tp) { if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) error = xfs_trans_commit(sc->tp); else xfs_trans_cancel(sc->tp); sc->tp = NULL; } if (sc->ip) { if (sc->ilock_flags) xfs_iunlock(sc->ip, sc->ilock_flags); if (sc->ip != ip_in && !xfs_internal_inum(sc->mp, sc->ip->i_ino)) iput(VFS_I(sc->ip)); sc->ip = NULL; } if (sc->has_quotaofflock) mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock); if (sc->buf) { kmem_free(sc->buf); sc->buf = NULL; } return error; }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong181100.00%7100.00%
Total181100.00%7100.00%

/* Scrubbing dispatch. */ static const struct xfs_scrub_meta_ops meta_scrub_ops[] = { [XFS_SCRUB_TYPE_PROBE] = { /* ioctl presence test */ .type = ST_NONE, .setup = xfs_scrub_setup_fs, .scrub = xfs_scrub_probe, .repair = xfs_repair_probe, }, [XFS_SCRUB_TYPE_SB] = { /* superblock */ .type = ST_PERAG, .setup = xfs_scrub_setup_fs, .scrub = xfs_scrub_superblock, .repair = xfs_repair_superblock, }, [XFS_SCRUB_TYPE_AGF] = { /* agf */ .type = ST_PERAG, .setup = xfs_scrub_setup_fs, .scrub = xfs_scrub_agf, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_AGFL]= { /* agfl */ .type = ST_PERAG, .setup = xfs_scrub_setup_fs, .scrub = xfs_scrub_agfl, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_AGI] = { /* agi */ .type = ST_PERAG, .setup = xfs_scrub_setup_fs, .scrub = xfs_scrub_agi, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_BNOBT] = { /* bnobt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_allocbt, .scrub = xfs_scrub_bnobt, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_allocbt, .scrub = xfs_scrub_cntbt, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_INOBT] = { /* inobt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_iallocbt, .scrub = xfs_scrub_inobt, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_FINOBT] = { /* finobt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_iallocbt, .scrub = xfs_scrub_finobt, .has = xfs_sb_version_hasfinobt, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_RMAPBT] = { /* rmapbt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_rmapbt, .scrub = xfs_scrub_rmapbt, .has = xfs_sb_version_hasrmapbt, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_REFCNTBT] = { /* refcountbt */ .type = ST_PERAG, .setup = xfs_scrub_setup_ag_refcountbt, .scrub = xfs_scrub_refcountbt, .has = xfs_sb_version_hasreflink, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_INODE] = { /* inode record */ .type = ST_INODE, .setup = xfs_scrub_setup_inode, .scrub = xfs_scrub_inode, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_BMBTD] = { /* inode data fork */ .type = ST_INODE, .setup = xfs_scrub_setup_inode_bmap, .scrub = xfs_scrub_bmap_data, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_BMBTA] = { /* inode attr fork */ .type = ST_INODE, .setup = xfs_scrub_setup_inode_bmap, .scrub = xfs_scrub_bmap_attr, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_BMBTC] = { /* inode CoW fork */ .type = ST_INODE, .setup = xfs_scrub_setup_inode_bmap, .scrub = xfs_scrub_bmap_cow, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_DIR] = { /* directory */ .type = ST_INODE, .setup = xfs_scrub_setup_directory, .scrub = xfs_scrub_directory, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_XATTR] = { /* extended attributes */ .type = ST_INODE, .setup = xfs_scrub_setup_xattr, .scrub = xfs_scrub_xattr, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_SYMLINK] = { /* symbolic link */ .type = ST_INODE, .setup = xfs_scrub_setup_symlink, .scrub = xfs_scrub_symlink, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_PARENT] = { /* parent pointers */ .type = ST_INODE, .setup = xfs_scrub_setup_parent, .scrub = xfs_scrub_parent, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_RTBITMAP] = { /* realtime bitmap */ .type = ST_FS, .setup = xfs_scrub_setup_rt, .scrub = xfs_scrub_rtbitmap, .has = xfs_sb_version_hasrealtime, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_RTSUM] = { /* realtime summary */ .type = ST_FS, .setup = xfs_scrub_setup_rt, .scrub = xfs_scrub_rtsummary, .has = xfs_sb_version_hasrealtime, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_UQUOTA] = { /* user quota */ .type = ST_FS, .setup = xfs_scrub_setup_quota, .scrub = xfs_scrub_quota, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_GQUOTA] = { /* group quota */ .type = ST_FS, .setup = xfs_scrub_setup_quota, .scrub = xfs_scrub_quota, .repair = xfs_repair_notsupported, }, [XFS_SCRUB_TYPE_PQUOTA] = { /* project quota */ .type = ST_FS, .setup = xfs_scrub_setup_quota, .scrub = xfs_scrub_quota, .repair = xfs_repair_notsupported, }, }; /* This isn't a stable feature, warn once per day. */
static inline void xfs_scrub_experimental_warning( struct xfs_mount *mp) { static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT( "xfs_scrub_warning", 86400 * HZ, 1); ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE); if (__ratelimit(&scrub_warning)) xfs_alert(mp, "EXPERIMENTAL online scrub feature in use. Use at your own risk!"); }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong51100.00%1100.00%
Total51100.00%1100.00%


static int xfs_scrub_validate_inputs( struct xfs_mount *mp, struct xfs_scrub_metadata *sm) { int error; const struct xfs_scrub_meta_ops *ops; error = -EINVAL; /* Check our inputs. */ sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN) goto out; /* sm_reserved[] must be zero */ if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved))) goto out; error = -ENOENT; /* Do we know about this type of metadata? */ if (sm->sm_type >= XFS_SCRUB_TYPE_NR) goto out; ops = &meta_scrub_ops[sm->sm_type]; if (ops->setup == NULL || ops->scrub == NULL) goto out; /* Does this fs even support this type of metadata? */ if (ops->has && !ops->has(&mp->m_sb)) goto out; error = -EINVAL; /* restricting fields must be appropriate for type */ switch (ops->type) { case ST_NONE: case ST_FS: if (sm->sm_ino || sm->sm_gen || sm->sm_agno) goto out; break; case ST_PERAG: if (sm->sm_ino || sm->sm_gen || sm->sm_agno >= mp->m_sb.sb_agcount) goto out; break; case ST_INODE: if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino)) goto out; break; default: goto out; } error = -EOPNOTSUPP; /* * We won't scrub any filesystem that doesn't have the ability * to record unwritten extents. The option was made default in * 2003, removed from mkfs in 2007, and cannot be disabled in * v5, so if we find a filesystem without this flag it's either * really old or totally unsupported. Avoid it either way. * We also don't support v1-v3 filesystems, which aren't * mountable. */ if (!xfs_sb_version_hasextflgbit(&mp->m_sb)) goto out; /* * We only want to repair read-write v5+ filesystems. Defer the check * for ops->repair until after our scrub confirms that we need to * perform repairs so that we avoid failing due to not supporting * repairing an object that doesn't need repairs. */ if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) { error = -EOPNOTSUPP; if (!xfs_sb_version_hascrc(&mp->m_sb)) goto out; error = -EROFS; if (mp->m_flags & XFS_MOUNT_RDONLY) goto out; } error = 0; out: return error; }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong15450.49%350.00%
Eric Sandeen15149.51%350.00%
Total305100.00%6100.00%

#ifdef CONFIG_XFS_ONLINE_REPAIR
static inline void xfs_scrub_postmortem(struct xfs_scrub_context *sc) { /* * Userspace asked us to repair something, we repaired it, rescanned * it, and the rescan says it's still broken. Scream about this in * the system logs. */ if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) && (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | XFS_SCRUB_OFLAG_XCORRUPT))) xfs_repair_failure(sc->mp); }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong46100.00%1100.00%
Total46100.00%1100.00%

#else
static inline void xfs_scrub_postmortem(struct xfs_scrub_context *sc) { /* * Userspace asked us to scrub something, it's broken, and we have no * way of fixing it. Scream in the logs. */ if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | XFS_SCRUB_OFLAG_XCORRUPT)) xfs_alert_ratelimited(sc->mp, "Corruption detected during scrub."); }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong36100.00%1100.00%
Total36100.00%1100.00%

#endif /* CONFIG_XFS_ONLINE_REPAIR */ /* Dispatch metadata scrubbing. */
int xfs_scrub_metadata( struct xfs_inode *ip, struct xfs_scrub_metadata *sm) { struct xfs_scrub_context sc; struct xfs_mount *mp = ip->i_mount; bool try_harder = false; bool already_fixed = false; int error = 0; BUILD_BUG_ON(sizeof(meta_scrub_ops) != (sizeof(struct xfs_scrub_meta_ops) * XFS_SCRUB_TYPE_NR)); trace_xfs_scrub_start(ip, sm, error); /* Forbidden if we are shut down or mounted norecovery. */ error = -ESHUTDOWN; if (XFS_FORCED_SHUTDOWN(mp)) goto out; error = -ENOTRECOVERABLE; if (mp->m_flags & XFS_MOUNT_NORECOVERY) goto out; error = xfs_scrub_validate_inputs(mp, sm); if (error) goto out; xfs_scrub_experimental_warning(mp); retry_op: /* Set up for the operation. */ memset(&sc, 0, sizeof(sc)); sc.mp = ip->i_mount; sc.sm = sm; sc.ops = &meta_scrub_ops[sm->sm_type]; sc.try_harder = try_harder; sc.sa.agno = NULLAGNUMBER; error = sc.ops->setup(&sc, ip); if (error) goto out_teardown; /* Scrub for errors. */ error = sc.ops->scrub(&sc); if (!try_harder && error == -EDEADLOCK) { /* * Scrubbers return -EDEADLOCK to mean 'try harder'. * Tear down everything we hold, then set up again with * preparation for worst-case scenarios. */ error = xfs_scrub_teardown(&sc, ip, 0); if (error) goto out; try_harder = true; goto retry_op; } else if (error) goto out_teardown; if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) && !already_fixed) { bool needs_fix; /* Let debug users force us into the repair routines. */ if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT | XFS_SCRUB_OFLAG_XCORRUPT | XFS_SCRUB_OFLAG_PREEN)); /* * If userspace asked for a repair but it wasn't necessary, * report that back to userspace. */ if (!needs_fix) { sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED; goto out_nofix; } /* * If it's broken, userspace wants us to fix it, and we haven't * already tried to fix it, then attempt a repair. */ error = xfs_repair_attempt(ip, &sc, &already_fixed); if (error == -EAGAIN) { if (sc.try_harder) try_harder = true; error = xfs_scrub_teardown(&sc, ip, 0); if (error) { xfs_repair_failure(mp); goto out; } goto retry_op; } } out_nofix: xfs_scrub_postmortem(&sc); out_teardown: error = xfs_scrub_teardown(&sc, ip, error); out: trace_xfs_scrub_done(ip, sm, error); if (error == -EFSCORRUPTED || error == -EFSBADCRC) { sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; error = 0; } return error; }

Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong36579.52%583.33%
Eric Sandeen9420.48%116.67%
Total459100.00%6100.00%


Overall Contributors

PersonTokensPropCommitsCommitProp
Darrick J. Wong145175.57%2382.14%
Eric Sandeen46624.27%310.71%
Dave Chinner20.10%13.57%
Christoph Hellwig10.05%13.57%
Total1920100.00%28100.00%
Directory: fs/xfs/scrub
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with cregit.