Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Fastabend | 11839 | 95.31% | 48 | 70.59% |
Daniel Borkmann | 399 | 3.21% | 10 | 14.71% |
Sean Young | 86 | 0.69% | 1 | 1.47% |
Prashant Bhole | 32 | 0.26% | 1 | 1.47% |
Yonghong Song | 16 | 0.13% | 1 | 1.47% |
Martin KaFai Lau | 16 | 0.13% | 1 | 1.47% |
Eric Dumazet | 8 | 0.06% | 1 | 1.47% |
Eric Biggers | 8 | 0.06% | 1 | 1.47% |
Chenbo Feng | 6 | 0.05% | 1 | 1.47% |
Dan Carpenter | 5 | 0.04% | 1 | 1.47% |
Jakub Kiciński | 4 | 0.03% | 1 | 1.47% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 1.47% |
Total | 12421 | 68 |
/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ /* A BPF sock_map is used to store sock objects. This is primarly used * for doing socket redirect with BPF helper routines. * * A sock map may have BPF programs attached to it, currently a program * used to parse packets and a program to provide a verdict and redirect * decision on the packet are supported. Any programs attached to a sock * map are inherited by sock objects when they are added to the map. If * no BPF programs are attached the sock object may only be used for sock * redirect. * * A sock object may be in multiple maps, but can only inherit a single * parse or verdict program. If adding a sock object to a map would result * in having multiple parsing programs the update will return an EBUSY error. * * For reference this program is similar to devmap used in XDP context * reviewing these together may be useful. For an example please review * ./samples/bpf/sockmap/. */ #include <linux/bpf.h> #include <net/sock.h> #include <linux/filter.h> #include <linux/errno.h> #include <linux/file.h> #include <linux/kernel.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/workqueue.h> #include <linux/list.h> #include <linux/mm.h> #include <net/strparser.h> #include <net/tcp.h> #include <linux/ptr_ring.h> #include <net/inet_common.h> #include <linux/sched/signal.h> #define SOCK_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY) struct bpf_sock_progs { struct bpf_prog *bpf_tx_msg; struct bpf_prog *bpf_parse; struct bpf_prog *bpf_verdict; }; struct bpf_stab { struct bpf_map map; struct sock **sock_map; struct bpf_sock_progs progs; raw_spinlock_t lock; }; struct bucket { struct hlist_head head; raw_spinlock_t lock; }; struct bpf_htab { struct bpf_map map; struct bucket *buckets; atomic_t count; u32 n_buckets; u32 elem_size; struct bpf_sock_progs progs; struct rcu_head rcu; }; struct htab_elem { struct rcu_head rcu; struct hlist_node hash_node; u32 hash; struct sock *sk; char key[0]; }; enum smap_psock_state { SMAP_TX_RUNNING, }; struct smap_psock_map_entry { struct list_head list; struct bpf_map *map; struct sock **entry; struct htab_elem __rcu *hash_link; }; struct smap_psock { struct rcu_head rcu; refcount_t refcnt; /* datapath variables */ struct sk_buff_head rxqueue; bool strp_enabled; /* datapath error path cache across tx work invocations */ int save_rem; int save_off; struct sk_buff *save_skb; /* datapath variables for tx_msg ULP */ struct sock *sk_redir; int apply_bytes; int cork_bytes; int sg_size; int eval; struct sk_msg_buff *cork; struct list_head ingress; struct strparser strp; struct bpf_prog *bpf_tx_msg; struct bpf_prog *bpf_parse; struct bpf_prog *bpf_verdict; struct list_head maps; spinlock_t maps_lock; /* Back reference used when sock callback trigger sockmap operations */ struct sock *sock; unsigned long state; struct work_struct tx_work; struct work_struct gc_work; struct proto *sk_proto; void (*save_unhash)(struct sock *sk); void (*save_close)(struct sock *sk, long timeout); void (*save_data_ready)(struct sock *sk); void (*save_write_space)(struct sock *sk); }; static void smap_release_sock(struct smap_psock *psock, struct sock *sock); static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len); static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); static int bpf_tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags); static void bpf_tcp_unhash(struct sock *sk); static void bpf_tcp_close(struct sock *sk, long timeout); static inline struct smap_psock *smap_psock_sk(const struct sock *sk) { return rcu_dereference_sk_user_data(sk); } static bool bpf_tcp_stream_read(const struct sock *sk) { struct smap_psock *psock; bool empty = true; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) goto out; empty = list_empty(&psock->ingress); out: rcu_read_unlock(); return !empty; } enum { SOCKMAP_IPV4, SOCKMAP_IPV6, SOCKMAP_NUM_PROTS, }; enum { SOCKMAP_BASE, SOCKMAP_TX, SOCKMAP_NUM_CONFIGS, }; static struct proto *saved_tcpv6_prot __read_mostly; static DEFINE_SPINLOCK(tcpv6_prot_lock); static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS]; static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS], struct proto *base) { prot[SOCKMAP_BASE] = *base; prot[SOCKMAP_BASE].unhash = bpf_tcp_unhash; prot[SOCKMAP_BASE].close = bpf_tcp_close; prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg; prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read; prot[SOCKMAP_TX] = prot[SOCKMAP_BASE]; prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg; prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage; } static void update_sk_prot(struct sock *sk, struct smap_psock *psock) { int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4; int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE; sk->sk_prot = &bpf_tcp_prots[family][conf]; } static int bpf_tcp_init(struct sock *sk) { struct smap_psock *psock; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) { rcu_read_unlock(); return -EINVAL; } if (unlikely(psock->sk_proto)) { rcu_read_unlock(); return -EBUSY; } psock->save_unhash = sk->sk_prot->unhash; psock->save_close = sk->sk_prot->close; psock->sk_proto = sk->sk_prot; /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */ if (sk->sk_family == AF_INET6 && unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) { spin_lock_bh(&tcpv6_prot_lock); if (likely(sk->sk_prot != saved_tcpv6_prot)) { build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot); smp_store_release(&saved_tcpv6_prot, sk->sk_prot); } spin_unlock_bh(&tcpv6_prot_lock); } update_sk_prot(sk, psock); rcu_read_unlock(); return 0; } static void smap_release_sock(struct smap_psock *psock, struct sock *sock); static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge); static void bpf_tcp_release(struct sock *sk) { struct smap_psock *psock; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) goto out; if (psock->cork) { free_start_sg(psock->sock, psock->cork, true); kfree(psock->cork); psock->cork = NULL; } if (psock->sk_proto) { sk->sk_prot = psock->sk_proto; psock->sk_proto = NULL; } out: rcu_read_unlock(); } static struct htab_elem *lookup_elem_raw(struct hlist_head *head, u32 hash, void *key, u32 key_size) { struct htab_elem *l; hlist_for_each_entry_rcu(l, head, hash_node) { if (l->hash == hash && !memcmp(&l->key, key, key_size)) return l; } return NULL; } static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) { return &htab->buckets[hash & (htab->n_buckets - 1)]; } static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash) { return &__select_bucket(htab, hash)->head; } static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) { atomic_dec(&htab->count); kfree_rcu(l, rcu); } static struct smap_psock_map_entry *psock_map_pop(struct sock *sk, struct smap_psock *psock) { struct smap_psock_map_entry *e; spin_lock_bh(&psock->maps_lock); e = list_first_entry_or_null(&psock->maps, struct smap_psock_map_entry, list); if (e) list_del(&e->list); spin_unlock_bh(&psock->maps_lock); return e; } static void bpf_tcp_remove(struct sock *sk, struct smap_psock *psock) { struct smap_psock_map_entry *e; struct sk_msg_buff *md, *mtmp; struct sock *osk; if (psock->cork) { free_start_sg(psock->sock, psock->cork, true); kfree(psock->cork); psock->cork = NULL; } list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { list_del(&md->list); free_start_sg(psock->sock, md, true); kfree(md); } e = psock_map_pop(sk, psock); while (e) { if (e->entry) { struct bpf_stab *stab = container_of(e->map, struct bpf_stab, map); raw_spin_lock_bh(&stab->lock); osk = *e->entry; if (osk == sk) { *e->entry = NULL; smap_release_sock(psock, sk); } raw_spin_unlock_bh(&stab->lock); } else { struct htab_elem *link = rcu_dereference(e->hash_link); struct bpf_htab *htab = container_of(e->map, struct bpf_htab, map); struct hlist_head *head; struct htab_elem *l; struct bucket *b; b = __select_bucket(htab, link->hash); head = &b->head; raw_spin_lock_bh(&b->lock); l = lookup_elem_raw(head, link->hash, link->key, htab->map.key_size); /* If another thread deleted this object skip deletion. * The refcnt on psock may or may not be zero. */ if (l && l == link) { hlist_del_rcu(&link->hash_node); smap_release_sock(psock, link->sk); free_htab_elem(htab, link); } raw_spin_unlock_bh(&b->lock); } kfree(e); e = psock_map_pop(sk, psock); } } static void bpf_tcp_unhash(struct sock *sk) { void (*unhash_fun)(struct sock *sk); struct smap_psock *psock; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) { rcu_read_unlock(); if (sk->sk_prot->unhash) sk->sk_prot->unhash(sk); return; } unhash_fun = psock->save_unhash; bpf_tcp_remove(sk, psock); rcu_read_unlock(); unhash_fun(sk); } static void bpf_tcp_close(struct sock *sk, long timeout) { void (*close_fun)(struct sock *sk, long timeout); struct smap_psock *psock; lock_sock(sk); rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) { rcu_read_unlock(); release_sock(sk); return sk->sk_prot->close(sk, timeout); } close_fun = psock->save_close; bpf_tcp_remove(sk, psock); rcu_read_unlock(); release_sock(sk); close_fun(sk, timeout); } enum __sk_action { __SK_DROP = 0, __SK_PASS, __SK_REDIRECT, __SK_NONE, }; static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = { .name = "bpf_tcp", .uid = TCP_ULP_BPF, .user_visible = false, .owner = NULL, .init = bpf_tcp_init, .release = bpf_tcp_release, }; static int memcopy_from_iter(struct sock *sk, struct sk_msg_buff *md, struct iov_iter *from, int bytes) { struct scatterlist *sg = md->sg_data; int i = md->sg_curr, rc = -ENOSPC; do { int copy; char *to; if (md->sg_copybreak >= sg[i].length) { md->sg_copybreak = 0; if (++i == MAX_SKB_FRAGS) i = 0; if (i == md->sg_end) break; } copy = sg[i].length - md->sg_copybreak; to = sg_virt(&sg[i]) + md->sg_copybreak; md->sg_copybreak += copy; if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) rc = copy_from_iter_nocache(to, copy, from); else rc = copy_from_iter(to, copy, from); if (rc != copy) { rc = -EFAULT; goto out; } bytes -= copy; if (!bytes) break; md->sg_copybreak = 0; if (++i == MAX_SKB_FRAGS) i = 0; } while (i != md->sg_end); out: md->sg_curr = i; return rc; } static int bpf_tcp_push(struct sock *sk, int apply_bytes, struct sk_msg_buff *md, int flags, bool uncharge) { bool apply = apply_bytes; struct scatterlist *sg; int offset, ret = 0; struct page *p; size_t size; while (1) { sg = md->sg_data + md->sg_start; size = (apply && apply_bytes < sg->length) ? apply_bytes : sg->length; offset = sg->offset; tcp_rate_check_app_limited(sk); p = sg_page(sg); retry: ret = do_tcp_sendpages(sk, p, offset, size, flags); if (ret != size) { if (ret > 0) { if (apply) apply_bytes -= ret; sg->offset += ret; sg->length -= ret; size -= ret; offset += ret; if (uncharge) sk_mem_uncharge(sk, ret); goto retry; } return ret; } if (apply) apply_bytes -= ret; sg->offset += ret; sg->length -= ret; if (uncharge) sk_mem_uncharge(sk, ret); if (!sg->length) { put_page(p); md->sg_start++; if (md->sg_start == MAX_SKB_FRAGS) md->sg_start = 0; sg_init_table(sg, 1); if (md->sg_start == md->sg_end) break; } if (apply && !apply_bytes) break; } return 0; } static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md) { struct scatterlist *sg = md->sg_data + md->sg_start; if (md->sg_copy[md->sg_start]) { md->data = md->data_end = 0; } else { md->data = sg_virt(sg); md->data_end = md->data + sg->length; } } static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md) { struct scatterlist *sg = md->sg_data; int i = md->sg_start; do { int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length; sk_mem_uncharge(sk, uncharge); bytes -= uncharge; if (!bytes) break; i++; if (i == MAX_SKB_FRAGS) i = 0; } while (i != md->sg_end); } static void free_bytes_sg(struct sock *sk, int bytes, struct sk_msg_buff *md, bool charge) { struct scatterlist *sg = md->sg_data; int i = md->sg_start, free; while (bytes && sg[i].length) { free = sg[i].length; if (bytes < free) { sg[i].length -= bytes; sg[i].offset += bytes; if (charge) sk_mem_uncharge(sk, bytes); break; } if (charge) sk_mem_uncharge(sk, sg[i].length); put_page(sg_page(&sg[i])); bytes -= sg[i].length; sg[i].length = 0; sg[i].page_link = 0; sg[i].offset = 0; i++; if (i == MAX_SKB_FRAGS) i = 0; } md->sg_start = i; } static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md, bool charge) { struct scatterlist *sg = md->sg_data; int i = start, free = 0; while (sg[i].length) { free += sg[i].length; if (charge) sk_mem_uncharge(sk, sg[i].length); if (!md->skb) put_page(sg_page(&sg[i])); sg[i].length = 0; sg[i].page_link = 0; sg[i].offset = 0; i++; if (i == MAX_SKB_FRAGS) i = 0; } if (md->skb) consume_skb(md->skb); return free; } static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge) { int free = free_sg(sk, md->sg_start, md, charge); md->sg_start = md->sg_end; return free; } static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md) { return free_sg(sk, md->sg_curr, md, true); } static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md) { return ((_rc == SK_PASS) ? (md->sk_redir ? __SK_REDIRECT : __SK_PASS) : __SK_DROP); } static unsigned int smap_do_tx_msg(struct sock *sk, struct smap_psock *psock, struct sk_msg_buff *md) { struct bpf_prog *prog; unsigned int rc, _rc; preempt_disable(); rcu_read_lock(); /* If the policy was removed mid-send then default to 'accept' */ prog = READ_ONCE(psock->bpf_tx_msg); if (unlikely(!prog)) { _rc = SK_PASS; goto verdict; } bpf_compute_data_pointers_sg(md); md->sk = sk; rc = (*prog->bpf_func)(md, prog->insnsi); psock->apply_bytes = md->apply_bytes; /* Moving return codes from UAPI namespace into internal namespace */ _rc = bpf_map_msg_verdict(rc, md); /* The psock has a refcount on the sock but not on the map and because * we need to drop rcu read lock here its possible the map could be * removed between here and when we need it to execute the sock * redirect. So do the map lookup now for future use. */ if (_rc == __SK_REDIRECT) { if (psock->sk_redir) sock_put(psock->sk_redir); psock->sk_redir = do_msg_redirect_map(md); if (!psock->sk_redir) { _rc = __SK_DROP; goto verdict; } sock_hold(psock->sk_redir); } verdict: rcu_read_unlock(); preempt_enable(); return _rc; } static int bpf_tcp_ingress(struct sock *sk, int apply_bytes, struct smap_psock *psock, struct sk_msg_buff *md, int flags) { bool apply = apply_bytes; size_t size, copied = 0; struct sk_msg_buff *r; int err = 0, i; r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL); if (unlikely(!r)) return -ENOMEM; lock_sock(sk); r->sg_start = md->sg_start; i = md->sg_start; do { size = (apply && apply_bytes < md->sg_data[i].length) ? apply_bytes : md->sg_data[i].length; if (!sk_wmem_schedule(sk, size)) { if (!copied) err = -ENOMEM; break; } sk_mem_charge(sk, size); r->sg_data[i] = md->sg_data[i]; r->sg_data[i].length = size; md->sg_data[i].length -= size; md->sg_data[i].offset += size; copied += size; if (md->sg_data[i].length) { get_page(sg_page(&r->sg_data[i])); r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1; } else { i++; if (i == MAX_SKB_FRAGS) i = 0; r->sg_end = i; } if (apply) { apply_bytes -= size; if (!apply_bytes) break; } } while (i != md->sg_end); md->sg_start = i; if (!err) { list_add_tail(&r->list, &psock->ingress); sk->sk_data_ready(sk); } else { free_start_sg(sk, r, true); kfree(r); } release_sock(sk); return err; } static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send, struct sk_msg_buff *md, int flags) { bool ingress = !!(md->flags & BPF_F_INGRESS); struct smap_psock *psock; int err = 0; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) goto out_rcu; if (!refcount_inc_not_zero(&psock->refcnt)) goto out_rcu; rcu_read_unlock(); if (ingress) { err = bpf_tcp_ingress(sk, send, psock, md, flags); } else { lock_sock(sk); err = bpf_tcp_push(sk, send, md, flags, false); release_sock(sk); } smap_release_sock(psock, sk); return err; out_rcu: rcu_read_unlock(); return 0; } static inline void bpf_md_init(struct smap_psock *psock) { if (!psock->apply_bytes) { psock->eval = __SK_NONE; if (psock->sk_redir) { sock_put(psock->sk_redir); psock->sk_redir = NULL; } } } static void apply_bytes_dec(struct smap_psock *psock, int i) { if (psock->apply_bytes) { if (psock->apply_bytes < i) psock->apply_bytes = 0; else psock->apply_bytes -= i; } } static int bpf_exec_tx_verdict(struct smap_psock *psock, struct sk_msg_buff *m, struct sock *sk, int *copied, int flags) { bool cork = false, enospc = (m->sg_start == m->sg_end); struct sock *redir; int err = 0; int send; more_data: if (psock->eval == __SK_NONE) psock->eval = smap_do_tx_msg(sk, psock, m); if (m->cork_bytes && m->cork_bytes > psock->sg_size && !enospc) { psock->cork_bytes = m->cork_bytes - psock->sg_size; if (!psock->cork) { psock->cork = kcalloc(1, sizeof(struct sk_msg_buff), GFP_ATOMIC | __GFP_NOWARN); if (!psock->cork) { err = -ENOMEM; goto out_err; } } memcpy(psock->cork, m, sizeof(*m)); goto out_err; } send = psock->sg_size; if (psock->apply_bytes && psock->apply_bytes < send) send = psock->apply_bytes; switch (psock->eval) { case __SK_PASS: err = bpf_tcp_push(sk, send, m, flags, true); if (unlikely(err)) { *copied -= free_start_sg(sk, m, true); break; } apply_bytes_dec(psock, send); psock->sg_size -= send; break; case __SK_REDIRECT: redir = psock->sk_redir; apply_bytes_dec(psock, send); if (psock->cork) { cork = true; psock->cork = NULL; } return_mem_sg(sk, send, m); release_sock(sk); err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags); lock_sock(sk); if (unlikely(err < 0)) { int free = free_start_sg(sk, m, false); psock->sg_size = 0; if (!cork) *copied -= free; } else { psock->sg_size -= send; } if (cork) { free_start_sg(sk, m, true); psock->sg_size = 0; kfree(m); m = NULL; err = 0; } break; case __SK_DROP: default: free_bytes_sg(sk, send, m, true); apply_bytes_dec(psock, send); *copied -= send; psock->sg_size -= send; err = -EACCES; break; } if (likely(!err)) { bpf_md_init(psock); if (m && m->sg_data[m->sg_start].page_link && m->sg_data[m->sg_start].length) goto more_data; } out_err: return err; } static int bpf_wait_data(struct sock *sk, struct smap_psock *psk, int flags, long timeo, int *err) { int rc; DEFINE_WAIT_FUNC(wait, woken_wake_function); add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); rc = sk_wait_event(sk, &timeo, !list_empty(&psk->ingress) || !skb_queue_empty(&sk->sk_receive_queue), &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); return rc; } static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct iov_iter *iter = &msg->msg_iter; struct smap_psock *psock; int copied = 0; if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (!skb_queue_empty(&sk->sk_receive_queue)) return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) goto out; if (unlikely(!refcount_inc_not_zero(&psock->refcnt))) goto out; rcu_read_unlock(); lock_sock(sk); bytes_ready: while (copied != len) { struct scatterlist *sg; struct sk_msg_buff *md; int i; md = list_first_entry_or_null(&psock->ingress, struct sk_msg_buff, list); if (unlikely(!md)) break; i = md->sg_start; do { struct page *page; int n, copy; sg = &md->sg_data[i]; copy = sg->length; page = sg_page(sg); if (copied + copy > len) copy = len - copied; n = copy_page_to_iter(page, sg->offset, copy, iter); if (n != copy) { md->sg_start = i; release_sock(sk); smap_release_sock(psock, sk); return -EFAULT; } copied += copy; sg->offset += copy; sg->length -= copy; sk_mem_uncharge(sk, copy); if (!sg->length) { i++; if (i == MAX_SKB_FRAGS) i = 0; if (!md->skb) put_page(page); } if (copied == len) break; } while (i != md->sg_end); md->sg_start = i; if (!sg->length && md->sg_start == md->sg_end) { list_del(&md->list); if (md->skb) consume_skb(md->skb); kfree(md); } } if (!copied) { long timeo; int data; int err = 0; timeo = sock_rcvtimeo(sk, nonblock); data = bpf_wait_data(sk, psock, flags, timeo, &err); if (data) { if (!skb_queue_empty(&sk->sk_receive_queue)) { release_sock(sk); smap_release_sock(psock, sk); copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); return copied; } goto bytes_ready; } if (err) copied = err; } release_sock(sk); smap_release_sock(psock, sk); return copied; out: rcu_read_unlock(); return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len); } static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS; struct sk_msg_buff md = {0}; unsigned int sg_copy = 0; struct smap_psock *psock; int copied = 0, err = 0; struct scatterlist *sg; long timeo; /* Its possible a sock event or user removed the psock _but_ the ops * have not been reprogrammed yet so we get here. In this case fallback * to tcp_sendmsg. Note this only works because we _only_ ever allow * a single ULP there is no hierarchy here. */ rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) { rcu_read_unlock(); return tcp_sendmsg(sk, msg, size); } /* Increment the psock refcnt to ensure its not released while sending a * message. Required because sk lookup and bpf programs are used in * separate rcu critical sections. Its OK if we lose the map entry * but we can't lose the sock reference. */ if (!refcount_inc_not_zero(&psock->refcnt)) { rcu_read_unlock(); return tcp_sendmsg(sk, msg, size); } sg = md.sg_data; sg_init_marker(sg, MAX_SKB_FRAGS); rcu_read_unlock(); lock_sock(sk); timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); while (msg_data_left(msg)) { struct sk_msg_buff *m = NULL; bool enospc = false; int copy; if (sk->sk_err) { err = -sk->sk_err; goto out_err; } copy = msg_data_left(msg); if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; m = psock->cork_bytes ? psock->cork : &md; m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end; err = sk_alloc_sg(sk, copy, m->sg_data, m->sg_start, &m->sg_end, &sg_copy, m->sg_end - 1); if (err) { if (err != -ENOSPC) goto wait_for_memory; enospc = true; copy = sg_copy; } err = memcopy_from_iter(sk, m, &msg->msg_iter, copy); if (err < 0) { free_curr_sg(sk, m); goto out_err; } psock->sg_size += copy; copied += copy; sg_copy = 0; /* When bytes are being corked skip running BPF program and * applying verdict unless there is no more buffer space. In * the ENOSPC case simply run BPF prorgram with currently * accumulated data. We don't have much choice at this point * we could try extending the page frags or chaining complex * frags but even in these cases _eventually_ we will hit an * OOM scenario. More complex recovery schemes may be * implemented in the future, but BPF programs must handle * the case where apply_cork requests are not honored. The * canonical method to verify this is to check data length. */ if (psock->cork_bytes) { if (copy > psock->cork_bytes) psock->cork_bytes = 0; else psock->cork_bytes -= copy; if (psock->cork_bytes && !enospc) goto out_cork; /* All cork bytes accounted for re-run filter */ psock->eval = __SK_NONE; psock->cork_bytes = 0; } err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); if (unlikely(err < 0)) goto out_err; continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: err = sk_stream_wait_memory(sk, &timeo); if (err) { if (m && m != psock->cork) free_start_sg(sk, m, true); goto out_err; } } out_err: if (err < 0) err = sk_stream_error(sk, msg->msg_flags, err); out_cork: release_sock(sk); smap_release_sock(psock, sk); return copied ? copied : err; } static int bpf_tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct sk_msg_buff md = {0}, *m = NULL; int err = 0, copied = 0; struct smap_psock *psock; struct scatterlist *sg; bool enospc = false; rcu_read_lock(); psock = smap_psock_sk(sk); if (unlikely(!psock)) goto accept; if (!refcount_inc_not_zero(&psock->refcnt)) goto accept; rcu_read_unlock(); lock_sock(sk); if (psock->cork_bytes) { m = psock->cork; sg = &m->sg_data[m->sg_end]; } else { m = &md; sg = m->sg_data; sg_init_marker(sg, MAX_SKB_FRAGS); } /* Catch case where ring is full and sendpage is stalled. */ if (unlikely(m->sg_end == m->sg_start && m->sg_data[m->sg_end].length)) goto out_err; psock->sg_size += size; sg_set_page(sg, page, size, offset); get_page(page); m->sg_copy[m->sg_end] = true; sk_mem_charge(sk, size); m->sg_end++; copied = size; if (m->sg_end == MAX_SKB_FRAGS) m->sg_end = 0; if (m->sg_end == m->sg_start) enospc = true; if (psock->cork_bytes) { if (size > psock->cork_bytes) psock->cork_bytes = 0; else psock->cork_bytes -= size; if (psock->cork_bytes && !enospc) goto out_err; /* All cork bytes accounted for re-run filter */ psock->eval = __SK_NONE; psock->cork_bytes = 0; } err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags); out_err: release_sock(sk); smap_release_sock(psock, sk); return copied ? copied : err; accept: rcu_read_unlock(); return tcp_sendpage(sk, page, offset, size, flags); } static void bpf_tcp_msg_add(struct smap_psock *psock, struct sock *sk, struct bpf_prog *tx_msg) { struct bpf_prog *orig_tx_msg; orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg); if (orig_tx_msg) bpf_prog_put(orig_tx_msg); } static int bpf_tcp_ulp_register(void) { build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot); /* Once BPF TX ULP is registered it is never unregistered. It * will be in the ULP list for the lifetime of the system. Doing * duplicate registers is not a problem. */ return tcp_register_ulp(&bpf_tcp_ulp_ops); } static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb) { struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict); int rc; if (unlikely(!prog)) return __SK_DROP; skb_orphan(skb); /* We need to ensure that BPF metadata for maps is also cleared * when we orphan the skb so that we don't have the possibility * to reference a stale map. */ TCP_SKB_CB(skb)->bpf.sk_redir = NULL; skb->sk = psock->sock; bpf_compute_data_end_sk_skb(skb); preempt_disable(); rc = (*prog->bpf_func)(skb, prog->insnsi); preempt_enable(); skb->sk = NULL; /* Moving return codes from UAPI namespace into internal namespace */ return rc == SK_PASS ? (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) : __SK_DROP; } static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb) { struct sock *sk = psock->sock; int copied = 0, num_sg; struct sk_msg_buff *r; r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC); if (unlikely(!r)) return -EAGAIN; if (!sk_rmem_schedule(sk, skb, skb->len)) { kfree(r); return -EAGAIN; } sg_init_table(r->sg_data, MAX_SKB_FRAGS); num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len); if (unlikely(num_sg < 0)) { kfree(r); return num_sg; } sk_mem_charge(sk, skb->len); copied = skb->len; r->sg_start = 0; r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg; r->skb = skb; list_add_tail(&r->list, &psock->ingress); sk->sk_data_ready(sk); return copied; } static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb) { struct smap_psock *peer; struct sock *sk; __u32 in; int rc; rc = smap_verdict_func(psock, skb); switch (rc) { case __SK_REDIRECT: sk = do_sk_redirect_map(skb); if (!sk) { kfree_skb(skb); break; } peer = smap_psock_sk(sk); in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) || !test_bit(SMAP_TX_RUNNING, &peer->state))) { kfree_skb(skb); break; } if (!in && sock_writeable(sk)) { skb_set_owner_w(skb, sk); skb_queue_tail(&peer->rxqueue, skb); schedule_work(&peer->tx_work); break; } else if (in && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { skb_queue_tail(&peer->rxqueue, skb); schedule_work(&peer->tx_work); break; } /* Fall through and free skb otherwise */ case __SK_DROP: default: kfree_skb(skb); } } static void smap_report_sk_error(struct smap_psock *psock, int err) { struct sock *sk = psock->sock; sk->sk_err = err; sk->sk_error_report(sk); } static void smap_read_sock_strparser(struct strparser *strp, struct sk_buff *skb) { struct smap_psock *psock; rcu_read_lock(); psock = container_of(strp, struct smap_psock, strp); smap_do_verdict(psock, skb); rcu_read_unlock(); } /* Called with lock held on socket */ static void smap_data_ready(struct sock *sk) { struct smap_psock *psock; rcu_read_lock(); psock = smap_psock_sk(sk); if (likely(psock)) { write_lock_bh(&sk->sk_callback_lock); strp_data_ready(&psock->strp); write_unlock_bh(&sk->sk_callback_lock); } rcu_read_unlock(); } static void smap_tx_work(struct work_struct *w) { struct smap_psock *psock; struct sk_buff *skb; int rem, off, n; psock = container_of(w, struct smap_psock, tx_work); /* lock sock to avoid losing sk_socket at some point during loop */ lock_sock(psock->sock); if (psock->save_skb) { skb = psock->save_skb; rem = psock->save_rem; off = psock->save_off; psock->save_skb = NULL; goto start; } while ((skb = skb_dequeue(&psock->rxqueue))) { __u32 flags; rem = skb->len; off = 0; start: flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS; do { if (likely(psock->sock->sk_socket)) { if (flags) n = smap_do_ingress(psock, skb); else n = skb_send_sock_locked(psock->sock, skb, off, rem); } else { n = -EINVAL; } if (n <= 0) { if (n == -EAGAIN) { /* Retry when space is available */ psock->save_skb = skb; psock->save_rem = rem; psock->save_off = off; goto out; } /* Hard errors break pipe and stop xmit */ smap_report_sk_error(psock, n ? -n : EPIPE); clear_bit(SMAP_TX_RUNNING, &psock->state); kfree_skb(skb); goto out; } rem -= n; off += n; } while (rem); if (!flags) kfree_skb(skb); } out: release_sock(psock->sock); } static void smap_write_space(struct sock *sk) { struct smap_psock *psock; void (*write_space)(struct sock *sk); rcu_read_lock(); psock = smap_psock_sk(sk); if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state))) schedule_work(&psock->tx_work); write_space = psock->save_write_space; rcu_read_unlock(); write_space(sk); } static void smap_stop_sock(struct smap_psock *psock, struct sock *sk) { if (!psock->strp_enabled) return; sk->sk_data_ready = psock->save_data_ready; sk->sk_write_space = psock->save_write_space; psock->save_data_ready = NULL; psock->save_write_space = NULL; strp_stop(&psock->strp); psock->strp_enabled = false; } static void smap_destroy_psock(struct rcu_head *rcu) { struct smap_psock *psock = container_of(rcu, struct smap_psock, rcu); /* Now that a grace period has passed there is no longer * any reference to this sock in the sockmap so we can * destroy the psock, strparser, and bpf programs. But, * because we use workqueue sync operations we can not * do it in rcu context */ schedule_work(&psock->gc_work); } static bool psock_is_smap_sk(struct sock *sk) { return inet_csk(sk)->icsk_ulp_ops == &bpf_tcp_ulp_ops; } static void smap_release_sock(struct smap_psock *psock, struct sock *sock) { if (refcount_dec_and_test(&psock->refcnt)) { if (psock_is_smap_sk(sock)) tcp_cleanup_ulp(sock); write_lock_bh(&sock->sk_callback_lock); smap_stop_sock(psock, sock); write_unlock_bh(&sock->sk_callback_lock); clear_bit(SMAP_TX_RUNNING, &psock->state); rcu_assign_sk_user_data(sock, NULL); call_rcu_sched(&psock->rcu, smap_destroy_psock); } } static int smap_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) { struct smap_psock *psock; struct bpf_prog *prog; int rc; rcu_read_lock(); psock = container_of(strp, struct smap_psock, strp); prog = READ_ONCE(psock->bpf_parse); if (unlikely(!prog)) { rcu_read_unlock(); return skb->len; } /* Attach socket for bpf program to use if needed we can do this * because strparser clones the skb before handing it to a upper * layer, meaning skb_orphan has been called. We NULL sk on the * way out to ensure we don't trigger a BUG_ON in skb/sk operations * later and because we are not charging the memory of this skb to * any socket yet. */ skb->sk = psock->sock; bpf_compute_data_end_sk_skb(skb); rc = (*prog->bpf_func)(skb, prog->insnsi); skb->sk = NULL; rcu_read_unlock(); return rc; } static int smap_read_sock_done(struct strparser *strp, int err) { return err; } static int smap_init_sock(struct smap_psock *psock, struct sock *sk) { static const struct strp_callbacks cb = { .rcv_msg = smap_read_sock_strparser, .parse_msg = smap_parse_func_strparser, .read_sock_done = smap_read_sock_done, }; return strp_init(&psock->strp, sk, &cb); } static void smap_init_progs(struct smap_psock *psock, struct bpf_prog *verdict, struct bpf_prog *parse) { struct bpf_prog *orig_parse, *orig_verdict; orig_parse = xchg(&psock->bpf_parse, parse); orig_verdict = xchg(&psock->bpf_verdict, verdict); if (orig_verdict) bpf_prog_put(orig_verdict); if (orig_parse) bpf_prog_put(orig_parse); } static void smap_start_sock(struct smap_psock *psock, struct sock *sk) { if (sk->sk_data_ready == smap_data_ready) return; psock->save_data_ready = sk->sk_data_ready; psock->save_write_space = sk->sk_write_space; sk->sk_data_ready = smap_data_ready; sk->sk_write_space = smap_write_space; psock->strp_enabled = true; } static void sock_map_remove_complete(struct bpf_stab *stab) { bpf_map_area_free(stab->sock_map); kfree(stab); } static void smap_gc_work(struct work_struct *w) { struct smap_psock_map_entry *e, *tmp; struct sk_msg_buff *md, *mtmp; struct smap_psock *psock; psock = container_of(w, struct smap_psock, gc_work); /* no callback lock needed because we already detached sockmap ops */ if (psock->strp_enabled) strp_done(&psock->strp); cancel_work_sync(&psock->tx_work); __skb_queue_purge(&psock->rxqueue); /* At this point all strparser and xmit work must be complete */ if (psock->bpf_parse) bpf_prog_put(psock->bpf_parse); if (psock->bpf_verdict) bpf_prog_put(psock->bpf_verdict); if (psock->bpf_tx_msg) bpf_prog_put(psock->bpf_tx_msg); if (psock->cork) { free_start_sg(psock->sock, psock->cork, true); kfree(psock->cork); } list_for_each_entry_safe(md, mtmp, &psock->ingress, list) { list_del(&md->list); free_start_sg(psock->sock, md, true); kfree(md); } list_for_each_entry_safe(e, tmp, &psock->maps, list) { list_del(&e->list); kfree(e); } if (psock->sk_redir) sock_put(psock->sk_redir); sock_put(psock->sock); kfree(psock); } static struct smap_psock *smap_init_psock(struct sock *sock, int node) { struct smap_psock *psock; psock = kzalloc_node(sizeof(struct smap_psock), GFP_ATOMIC | __GFP_NOWARN, node); if (!psock) return ERR_PTR(-ENOMEM); psock->eval = __SK_NONE; psock->sock = sock; skb_queue_head_init(&psock->rxqueue); INIT_WORK(&psock->tx_work, smap_tx_work); INIT_WORK(&psock->gc_work, smap_gc_work); INIT_LIST_HEAD(&psock->maps); INIT_LIST_HEAD(&psock->ingress); refcount_set(&psock->refcnt, 1); spin_lock_init(&psock->maps_lock); rcu_assign_sk_user_data(sock, psock); sock_hold(sock); return psock; } static struct bpf_map *sock_map_alloc(union bpf_attr *attr) { struct bpf_stab *stab; u64 cost; int err; if (!capable(CAP_NET_ADMIN)) return ERR_PTR(-EPERM); /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); err = bpf_tcp_ulp_register(); if (err && err != -EEXIST) return ERR_PTR(err); stab = kzalloc(sizeof(*stab), GFP_USER); if (!stab) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&stab->map, attr); raw_spin_lock_init(&stab->lock); /* make sure page count doesn't overflow */ cost = (u64) stab->map.max_entries * sizeof(struct sock *); err = -EINVAL; if (cost >= U32_MAX - PAGE_SIZE) goto free_stab; stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; /* if map size is larger than memlock limit, reject it early */ err = bpf_map_precharge_memlock(stab->map.pages); if (err) goto free_stab; err = -ENOMEM; stab->sock_map = bpf_map_area_alloc(stab->map.max_entries * sizeof(struct sock *), stab->map.numa_node); if (!stab->sock_map) goto free_stab; return &stab->map; free_stab: kfree(stab); return ERR_PTR(err); } static void smap_list_map_remove(struct smap_psock *psock, struct sock **entry) { struct smap_psock_map_entry *e, *tmp; spin_lock_bh(&psock->maps_lock); list_for_each_entry_safe(e, tmp, &psock->maps, list) { if (e->entry == entry) { list_del(&e->list); kfree(e); } } spin_unlock_bh(&psock->maps_lock); } static void smap_list_hash_remove(struct smap_psock *psock, struct htab_elem *hash_link) { struct smap_psock_map_entry *e, *tmp; spin_lock_bh(&psock->maps_lock); list_for_each_entry_safe(e, tmp, &psock->maps, list) { struct htab_elem *c = rcu_dereference(e->hash_link); if (c == hash_link) { list_del(&e->list); kfree(e); } } spin_unlock_bh(&psock->maps_lock); } static void sock_map_free(struct bpf_map *map) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); int i; synchronize_rcu(); /* At this point no update, lookup or delete operations can happen. * However, be aware we can still get a socket state event updates, * and data ready callabacks that reference the psock from sk_user_data * Also psock worker threads are still in-flight. So smap_release_sock * will only free the psock after cancel_sync on the worker threads * and a grace period expire to ensure psock is really safe to remove. */ rcu_read_lock(); raw_spin_lock_bh(&stab->lock); for (i = 0; i < stab->map.max_entries; i++) { struct smap_psock *psock; struct sock *sock; sock = stab->sock_map[i]; if (!sock) continue; stab->sock_map[i] = NULL; psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get the * sk_callback_lock before this case but after xchg happens * causing the refcnt to hit zero and sock user data (psock) * to be null and queued for garbage collection. */ if (likely(psock)) { smap_list_map_remove(psock, &stab->sock_map[i]); smap_release_sock(psock, sock); } } raw_spin_unlock_bh(&stab->lock); rcu_read_unlock(); sock_map_remove_complete(stab); } static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); u32 i = key ? *(u32 *)key : U32_MAX; u32 *next = (u32 *)next_key; if (i >= stab->map.max_entries) { *next = 0; return 0; } if (i == stab->map.max_entries - 1) return -ENOENT; *next = i + 1; return 0; } struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); if (key >= map->max_entries) return NULL; return READ_ONCE(stab->sock_map[key]); } static int sock_map_delete_elem(struct bpf_map *map, void *key) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); struct smap_psock *psock; int k = *(u32 *)key; struct sock *sock; if (k >= map->max_entries) return -EINVAL; raw_spin_lock_bh(&stab->lock); sock = stab->sock_map[k]; stab->sock_map[k] = NULL; raw_spin_unlock_bh(&stab->lock); if (!sock) return -EINVAL; psock = smap_psock_sk(sock); if (!psock) return 0; if (psock->bpf_parse) { write_lock_bh(&sock->sk_callback_lock); smap_stop_sock(psock, sock); write_unlock_bh(&sock->sk_callback_lock); } smap_list_map_remove(psock, &stab->sock_map[k]); smap_release_sock(psock, sock); return 0; } /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are * done inside rcu critical sections. This ensures on updates that the psock * will not be released via smap_release_sock() until concurrent updates/deletes * complete. All operations operate on sock_map using cmpxchg and xchg * operations to ensure we do not get stale references. Any reads into the * map must be done with READ_ONCE() because of this. * * A psock is destroyed via call_rcu and after any worker threads are cancelled * and syncd so we are certain all references from the update/lookup/delete * operations as well as references in the data path are no longer in use. * * Psocks may exist in multiple maps, but only a single set of parse/verdict * programs may be inherited from the maps it belongs to. A reference count * is kept with the total number of references to the psock from all maps. The * psock will not be released until this reaches zero. The psock and sock * user data data use the sk_callback_lock to protect critical data structures * from concurrent access. This allows us to avoid two updates from modifying * the user data in sock and the lock is required anyways for modifying * callbacks, we simply increase its scope slightly. * * Rules to follow, * - psock must always be read inside RCU critical section * - sk_user_data must only be modified inside sk_callback_lock and read * inside RCU critical section. * - psock->maps list must only be read & modified inside sk_callback_lock * - sock_map must use READ_ONCE and (cmp)xchg operations * - BPF verdict/parse programs must use READ_ONCE and xchg operations */ static int __sock_map_ctx_update_elem(struct bpf_map *map, struct bpf_sock_progs *progs, struct sock *sock, void *key) { struct bpf_prog *verdict, *parse, *tx_msg; struct smap_psock *psock; bool new = false; int err = 0; /* 1. If sock map has BPF programs those will be inherited by the * sock being added. If the sock is already attached to BPF programs * this results in an error. */ verdict = READ_ONCE(progs->bpf_verdict); parse = READ_ONCE(progs->bpf_parse); tx_msg = READ_ONCE(progs->bpf_tx_msg); if (parse && verdict) { /* bpf prog refcnt may be zero if a concurrent attach operation * removes the program after the above READ_ONCE() but before * we increment the refcnt. If this is the case abort with an * error. */ verdict = bpf_prog_inc_not_zero(verdict); if (IS_ERR(verdict)) return PTR_ERR(verdict); parse = bpf_prog_inc_not_zero(parse); if (IS_ERR(parse)) { bpf_prog_put(verdict); return PTR_ERR(parse); } } if (tx_msg) { tx_msg = bpf_prog_inc_not_zero(tx_msg); if (IS_ERR(tx_msg)) { if (parse && verdict) { bpf_prog_put(parse); bpf_prog_put(verdict); } return PTR_ERR(tx_msg); } } psock = smap_psock_sk(sock); /* 2. Do not allow inheriting programs if psock exists and has * already inherited programs. This would create confusion on * which parser/verdict program is running. If no psock exists * create one. Inside sk_callback_lock to ensure concurrent create * doesn't update user data. */ if (psock) { if (!psock_is_smap_sk(sock)) { err = -EBUSY; goto out_progs; } if (READ_ONCE(psock->bpf_parse) && parse) { err = -EBUSY; goto out_progs; } if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) { err = -EBUSY; goto out_progs; } if (!refcount_inc_not_zero(&psock->refcnt)) { err = -EAGAIN; goto out_progs; } } else { psock = smap_init_psock(sock, map->numa_node); if (IS_ERR(psock)) { err = PTR_ERR(psock); goto out_progs; } set_bit(SMAP_TX_RUNNING, &psock->state); new = true; } /* 3. At this point we have a reference to a valid psock that is * running. Attach any BPF programs needed. */ if (tx_msg) bpf_tcp_msg_add(psock, sock, tx_msg); if (new) { err = tcp_set_ulp_id(sock, TCP_ULP_BPF); if (err) goto out_free; } if (parse && verdict && !psock->strp_enabled) { err = smap_init_sock(psock, sock); if (err) goto out_free; smap_init_progs(psock, verdict, parse); write_lock_bh(&sock->sk_callback_lock); smap_start_sock(psock, sock); write_unlock_bh(&sock->sk_callback_lock); } return err; out_free: smap_release_sock(psock, sock); out_progs: if (parse && verdict) { bpf_prog_put(parse); bpf_prog_put(verdict); } if (tx_msg) bpf_prog_put(tx_msg); return err; } static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); struct bpf_sock_progs *progs = &stab->progs; struct sock *osock, *sock = skops->sk; struct smap_psock_map_entry *e; struct smap_psock *psock; u32 i = *(u32 *)key; int err; if (unlikely(flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= stab->map.max_entries)) return -E2BIG; e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); if (!e) return -ENOMEM; err = __sock_map_ctx_update_elem(map, progs, sock, key); if (err) goto out; /* psock guaranteed to be present. */ psock = smap_psock_sk(sock); raw_spin_lock_bh(&stab->lock); osock = stab->sock_map[i]; if (osock && flags == BPF_NOEXIST) { err = -EEXIST; goto out_unlock; } if (!osock && flags == BPF_EXIST) { err = -ENOENT; goto out_unlock; } e->entry = &stab->sock_map[i]; e->map = map; spin_lock_bh(&psock->maps_lock); list_add_tail(&e->list, &psock->maps); spin_unlock_bh(&psock->maps_lock); stab->sock_map[i] = sock; if (osock) { psock = smap_psock_sk(osock); smap_list_map_remove(psock, &stab->sock_map[i]); smap_release_sock(psock, osock); } raw_spin_unlock_bh(&stab->lock); return 0; out_unlock: smap_release_sock(psock, sock); raw_spin_unlock_bh(&stab->lock); out: kfree(e); return err; } int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type) { struct bpf_sock_progs *progs; struct bpf_prog *orig; if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); progs = &stab->progs; } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); progs = &htab->progs; } else { return -EINVAL; } switch (type) { case BPF_SK_MSG_VERDICT: orig = xchg(&progs->bpf_tx_msg, prog); break; case BPF_SK_SKB_STREAM_PARSER: orig = xchg(&progs->bpf_parse, prog); break; case BPF_SK_SKB_STREAM_VERDICT: orig = xchg(&progs->bpf_verdict, prog); break; default: return -EOPNOTSUPP; } if (orig) bpf_prog_put(orig); return 0; } int sockmap_get_from_fd(const union bpf_attr *attr, int type, struct bpf_prog *prog) { int ufd = attr->target_fd; struct bpf_map *map; struct fd f; int err; f = fdget(ufd); map = __bpf_map_get(f); if (IS_ERR(map)) return PTR_ERR(map); err = sock_map_prog(map, prog, attr->attach_type); fdput(f); return err; } static void *sock_map_lookup(struct bpf_map *map, void *key) { return NULL; } static int sock_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { struct bpf_sock_ops_kern skops; u32 fd = *(u32 *)value; struct socket *socket; int err; socket = sockfd_lookup(fd, &err); if (!socket) return err; skops.sk = socket->sk; if (!skops.sk) { fput(socket->file); return -EINVAL; } /* ULPs are currently supported only for TCP sockets in ESTABLISHED * state. */ if (skops.sk->sk_type != SOCK_STREAM || skops.sk->sk_protocol != IPPROTO_TCP || skops.sk->sk_state != TCP_ESTABLISHED) { fput(socket->file); return -EOPNOTSUPP; } lock_sock(skops.sk); preempt_disable(); rcu_read_lock(); err = sock_map_ctx_update_elem(&skops, map, key, flags); rcu_read_unlock(); preempt_enable(); release_sock(skops.sk); fput(socket->file); return err; } static void sock_map_release(struct bpf_map *map) { struct bpf_sock_progs *progs; struct bpf_prog *orig; if (map->map_type == BPF_MAP_TYPE_SOCKMAP) { struct bpf_stab *stab = container_of(map, struct bpf_stab, map); progs = &stab->progs; } else { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); progs = &htab->progs; } orig = xchg(&progs->bpf_parse, NULL); if (orig) bpf_prog_put(orig); orig = xchg(&progs->bpf_verdict, NULL); if (orig) bpf_prog_put(orig); orig = xchg(&progs->bpf_tx_msg, NULL); if (orig) bpf_prog_put(orig); } static struct bpf_map *sock_hash_alloc(union bpf_attr *attr) { struct bpf_htab *htab; int i, err; u64 cost; if (!capable(CAP_NET_ADMIN)) return ERR_PTR(-EPERM); /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size == 0 || attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK) return ERR_PTR(-EINVAL); if (attr->key_size > MAX_BPF_STACK) /* eBPF programs initialize keys on stack, so they cannot be * larger than max stack size */ return ERR_PTR(-E2BIG); err = bpf_tcp_ulp_register(); if (err && err != -EEXIST) return ERR_PTR(err); htab = kzalloc(sizeof(*htab), GFP_USER); if (!htab) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&htab->map, attr); htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); htab->elem_size = sizeof(struct htab_elem) + round_up(htab->map.key_size, 8); err = -EINVAL; if (htab->n_buckets == 0 || htab->n_buckets > U32_MAX / sizeof(struct bucket)) goto free_htab; cost = (u64) htab->n_buckets * sizeof(struct bucket) + (u64) htab->elem_size * htab->map.max_entries; if (cost >= U32_MAX - PAGE_SIZE) goto free_htab; htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; err = bpf_map_precharge_memlock(htab->map.pages); if (err) goto free_htab; err = -ENOMEM; htab->buckets = bpf_map_area_alloc( htab->n_buckets * sizeof(struct bucket), htab->map.numa_node); if (!htab->buckets) goto free_htab; for (i = 0; i < htab->n_buckets; i++) { INIT_HLIST_HEAD(&htab->buckets[i].head); raw_spin_lock_init(&htab->buckets[i].lock); } return &htab->map; free_htab: kfree(htab); return ERR_PTR(err); } static void __bpf_htab_free(struct rcu_head *rcu) { struct bpf_htab *htab; htab = container_of(rcu, struct bpf_htab, rcu); bpf_map_area_free(htab->buckets); kfree(htab); } static void sock_hash_free(struct bpf_map *map) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); int i; synchronize_rcu(); /* At this point no update, lookup or delete operations can happen. * However, be aware we can still get a socket state event updates, * and data ready callabacks that reference the psock from sk_user_data * Also psock worker threads are still in-flight. So smap_release_sock * will only free the psock after cancel_sync on the worker threads * and a grace period expire to ensure psock is really safe to remove. */ rcu_read_lock(); for (i = 0; i < htab->n_buckets; i++) { struct bucket *b = __select_bucket(htab, i); struct hlist_head *head; struct hlist_node *n; struct htab_elem *l; raw_spin_lock_bh(&b->lock); head = &b->head; hlist_for_each_entry_safe(l, n, head, hash_node) { struct sock *sock = l->sk; struct smap_psock *psock; hlist_del_rcu(&l->hash_node); psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get * the sk_callback_lock before this case but after xchg * causing the refcnt to hit zero and sock user data * (psock) to be null and queued for garbage collection. */ if (likely(psock)) { smap_list_hash_remove(psock, l); smap_release_sock(psock, sock); } free_htab_elem(htab, l); } raw_spin_unlock_bh(&b->lock); } rcu_read_unlock(); call_rcu(&htab->rcu, __bpf_htab_free); } static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab, void *key, u32 key_size, u32 hash, struct sock *sk, struct htab_elem *old_elem) { struct htab_elem *l_new; if (atomic_inc_return(&htab->count) > htab->map.max_entries) { if (!old_elem) { atomic_dec(&htab->count); return ERR_PTR(-E2BIG); } } l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, htab->map.numa_node); if (!l_new) { atomic_dec(&htab->count); return ERR_PTR(-ENOMEM); } memcpy(l_new->key, key, key_size); l_new->sk = sk; l_new->hash = hash; return l_new; } static inline u32 htab_map_hash(const void *key, u32 key_len) { return jhash(key, key_len, 0); } static int sock_hash_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct htab_elem *l, *next_l; struct hlist_head *h; u32 hash, key_size; int i = 0; WARN_ON_ONCE(!rcu_read_lock_held()); key_size = map->key_size; if (!key) goto find_first_elem; hash = htab_map_hash(key, key_size); h = select_bucket(htab, hash); l = lookup_elem_raw(h, hash, key, key_size); if (!l) goto find_first_elem; next_l = hlist_entry_safe( rcu_dereference_raw(hlist_next_rcu(&l->hash_node)), struct htab_elem, hash_node); if (next_l) { memcpy(next_key, next_l->key, key_size); return 0; } /* no more elements in this hash list, go to the next bucket */ i = hash & (htab->n_buckets - 1); i++; find_first_elem: /* iterate over buckets */ for (; i < htab->n_buckets; i++) { h = select_bucket(htab, i); /* pick first element in the bucket */ next_l = hlist_entry_safe( rcu_dereference_raw(hlist_first_rcu(h)), struct htab_elem, hash_node); if (next_l) { /* if it's not empty, just return it */ memcpy(next_key, next_l->key, key_size); return 0; } } /* iterated over all buckets and all elements */ return -ENOENT; } static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 map_flags) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct bpf_sock_progs *progs = &htab->progs; struct htab_elem *l_new = NULL, *l_old; struct smap_psock_map_entry *e = NULL; struct hlist_head *head; struct smap_psock *psock; u32 key_size, hash; struct sock *sock; struct bucket *b; int err; sock = skops->sk; if (sock->sk_type != SOCK_STREAM || sock->sk_protocol != IPPROTO_TCP) return -EOPNOTSUPP; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); if (!e) return -ENOMEM; WARN_ON_ONCE(!rcu_read_lock_held()); key_size = map->key_size; hash = htab_map_hash(key, key_size); b = __select_bucket(htab, hash); head = &b->head; err = __sock_map_ctx_update_elem(map, progs, sock, key); if (err) goto err; /* psock is valid here because otherwise above *ctx_update_elem would * have thrown an error. It is safe to skip error check. */ psock = smap_psock_sk(sock); raw_spin_lock_bh(&b->lock); l_old = lookup_elem_raw(head, hash, key, key_size); if (l_old && map_flags == BPF_NOEXIST) { err = -EEXIST; goto bucket_err; } if (!l_old && map_flags == BPF_EXIST) { err = -ENOENT; goto bucket_err; } l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old); if (IS_ERR(l_new)) { err = PTR_ERR(l_new); goto bucket_err; } rcu_assign_pointer(e->hash_link, l_new); e->map = map; spin_lock_bh(&psock->maps_lock); list_add_tail(&e->list, &psock->maps); spin_unlock_bh(&psock->maps_lock); /* add new element to the head of the list, so that * concurrent search will find it before old elem */ hlist_add_head_rcu(&l_new->hash_node, head); if (l_old) { psock = smap_psock_sk(l_old->sk); hlist_del_rcu(&l_old->hash_node); smap_list_hash_remove(psock, l_old); smap_release_sock(psock, l_old->sk); free_htab_elem(htab, l_old); } raw_spin_unlock_bh(&b->lock); return 0; bucket_err: smap_release_sock(psock, sock); raw_spin_unlock_bh(&b->lock); err: kfree(e); return err; } static int sock_hash_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { struct bpf_sock_ops_kern skops; u32 fd = *(u32 *)value; struct socket *socket; int err; socket = sockfd_lookup(fd, &err); if (!socket) return err; skops.sk = socket->sk; if (!skops.sk) { fput(socket->file); return -EINVAL; } /* ULPs are currently supported only for TCP sockets in ESTABLISHED * state. */ if (skops.sk->sk_type != SOCK_STREAM || skops.sk->sk_protocol != IPPROTO_TCP || skops.sk->sk_state != TCP_ESTABLISHED) { fput(socket->file); return -EOPNOTSUPP; } lock_sock(skops.sk); preempt_disable(); rcu_read_lock(); err = sock_hash_ctx_update_elem(&skops, map, key, flags); rcu_read_unlock(); preempt_enable(); release_sock(skops.sk); fput(socket->file); return err; } static int sock_hash_delete_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_head *head; struct bucket *b; struct htab_elem *l; u32 hash, key_size; int ret = -ENOENT; key_size = map->key_size; hash = htab_map_hash(key, key_size); b = __select_bucket(htab, hash); head = &b->head; raw_spin_lock_bh(&b->lock); l = lookup_elem_raw(head, hash, key, key_size); if (l) { struct sock *sock = l->sk; struct smap_psock *psock; hlist_del_rcu(&l->hash_node); psock = smap_psock_sk(sock); /* This check handles a racing sock event that can get the * sk_callback_lock before this case but after xchg happens * causing the refcnt to hit zero and sock user data (psock) * to be null and queued for garbage collection. */ if (likely(psock)) { smap_list_hash_remove(psock, l); smap_release_sock(psock, sock); } free_htab_elem(htab, l); ret = 0; } raw_spin_unlock_bh(&b->lock); return ret; } struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key) { struct bpf_htab *htab = container_of(map, struct bpf_htab, map); struct hlist_head *head; struct htab_elem *l; u32 key_size, hash; struct bucket *b; struct sock *sk; key_size = map->key_size; hash = htab_map_hash(key, key_size); b = __select_bucket(htab, hash); head = &b->head; l = lookup_elem_raw(head, hash, key, key_size); sk = l ? l->sk : NULL; return sk; } const struct bpf_map_ops sock_map_ops = { .map_alloc = sock_map_alloc, .map_free = sock_map_free, .map_lookup_elem = sock_map_lookup, .map_get_next_key = sock_map_get_next_key, .map_update_elem = sock_map_update_elem, .map_delete_elem = sock_map_delete_elem, .map_release_uref = sock_map_release, .map_check_btf = map_check_no_btf, }; const struct bpf_map_ops sock_hash_ops = { .map_alloc = sock_hash_alloc, .map_free = sock_hash_free, .map_lookup_elem = sock_map_lookup, .map_get_next_key = sock_hash_get_next_key, .map_update_elem = sock_hash_update_elem, .map_delete_elem = sock_hash_delete_elem, .map_release_uref = sock_map_release, .map_check_btf = map_check_no_btf, }; static bool bpf_is_valid_sock_op(struct bpf_sock_ops_kern *ops) { return ops->op == BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB || ops->op == BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB; } BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock, struct bpf_map *, map, void *, key, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held()); /* ULPs are currently supported only for TCP sockets in ESTABLISHED * state. This checks that the sock ops triggering the update is * one indicating we are (or will be soon) in an ESTABLISHED state. */ if (!bpf_is_valid_sock_op(bpf_sock)) return -EOPNOTSUPP; return sock_map_ctx_update_elem(bpf_sock, map, key, flags); } const struct bpf_func_proto bpf_sock_map_update_proto = { .func = bpf_sock_map_update, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock, struct bpf_map *, map, void *, key, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held()); if (!bpf_is_valid_sock_op(bpf_sock)) return -EOPNOTSUPP; return sock_hash_ctx_update_elem(bpf_sock, map, key, flags); } const struct bpf_func_proto bpf_sock_hash_update_proto = { .func = bpf_sock_hash_update, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1