Contributors: 21
	  
        
          | Author | 
          Tokens | 
          Token Proportion | 
          Commits | 
          Commit Proportion | 
        
	  
	  
        
        
          | Marek Szyprowski | 
          636 | 
          36.41% | 
          2 | 
          8.00% | 
        
        
          | Vladimir Murzin | 
          491 | 
          28.11% | 
          3 | 
          12.00% | 
        
        
          | Dmitry Baryshkov | 
          448 | 
          25.64% | 
          1 | 
          4.00% | 
        
        
          | Arnd Bergmann | 
          47 | 
          2.69% | 
          2 | 
          8.00% | 
        
        
          | Brian Starkey | 
          26 | 
          1.49% | 
          1 | 
          4.00% | 
        
        
          | Paul Mundt | 
          17 | 
          0.97% | 
          1 | 
          4.00% | 
        
        
          | Christoph Hellwig | 
          17 | 
          0.97% | 
          1 | 
          4.00% | 
        
        
          | Johannes Weiner | 
          11 | 
          0.63% | 
          1 | 
          4.00% | 
        
        
          | Bastian Hecht | 
          10 | 
          0.57% | 
          1 | 
          4.00% | 
        
        
          | Andrew Morton | 
          9 | 
          0.52% | 
          1 | 
          4.00% | 
        
        
          | Ingo Molnar | 
          8 | 
          0.46% | 
          1 | 
          4.00% | 
        
        
          | Björn Helgaas | 
          6 | 
          0.34% | 
          1 | 
          4.00% | 
        
        
          | Adrian McMenamin | 
          4 | 
          0.23% | 
          1 | 
          4.00% | 
        
        
          | Tejun Heo | 
          3 | 
          0.17% | 
          1 | 
          4.00% | 
        
        
          | George G. Davis | 
          3 | 
          0.17% | 
          1 | 
          4.00% | 
        
        
          | Muhammad Falak R Wani | 
          3 | 
          0.17% | 
          1 | 
          4.00% | 
        
        
          | Paul Gortmaker | 
          3 | 
          0.17% | 
          1 | 
          4.00% | 
        
        
          | Jan Beulich | 
          2 | 
          0.11% | 
          1 | 
          4.00% | 
        
        
          | Greg Kroah-Hartman | 
          1 | 
          0.06% | 
          1 | 
          4.00% | 
        
        
          | Marin Mitov | 
          1 | 
          0.06% | 
          1 | 
          4.00% | 
        
        
          | Robin Murphy | 
          1 | 
          0.06% | 
          1 | 
          4.00% | 
        
	  
	  
        
          | Total | 
          1747 | 
           | 
          25 | 
           | 
	    
	  
    
 
// SPDX-License-Identifier: GPL-2.0
/*
 * Coherent per-device memory handling.
 * Borrowed from i386
 */
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
struct dma_coherent_mem {
	void		*virt_base;
	dma_addr_t	device_base;
	unsigned long	pfn_base;
	int		size;
	int		flags;
	unsigned long	*bitmap;
	spinlock_t	spinlock;
	bool		use_dev_dma_pfn_offset;
};
static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
{
	if (dev && dev->dma_mem)
		return dev->dma_mem;
	return NULL;
}
static inline dma_addr_t dma_get_device_base(struct device *dev,
					     struct dma_coherent_mem * mem)
{
	if (mem->use_dev_dma_pfn_offset)
		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
	else
		return mem->device_base;
}
static int dma_init_coherent_memory(
	phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
	struct dma_coherent_mem **mem)
{
	struct dma_coherent_mem *dma_mem = NULL;
	void __iomem *mem_base = NULL;
	int pages = size >> PAGE_SHIFT;
	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
	int ret;
	if (!size) {
		ret = -EINVAL;
		goto out;
	}
	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
	if (!mem_base) {
		ret = -EINVAL;
		goto out;
	}
	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
	if (!dma_mem) {
		ret = -ENOMEM;
		goto out;
	}
	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!dma_mem->bitmap) {
		ret = -ENOMEM;
		goto out;
	}
	dma_mem->virt_base = mem_base;
	dma_mem->device_base = device_addr;
	dma_mem->pfn_base = PFN_DOWN(phys_addr);
	dma_mem->size = pages;
	dma_mem->flags = flags;
	spin_lock_init(&dma_mem->spinlock);
	*mem = dma_mem;
	return 0;
out:
	kfree(dma_mem);
	if (mem_base)
		memunmap(mem_base);
	return ret;
}
static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
{
	if (!mem)
		return;
	memunmap(mem->virt_base);
	kfree(mem->bitmap);
	kfree(mem);
}
static int dma_assign_coherent_memory(struct device *dev,
				      struct dma_coherent_mem *mem)
{
	if (!dev)
		return -ENODEV;
	if (dev->dma_mem)
		return -EBUSY;
	dev->dma_mem = mem;
	return 0;
}
int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
				dma_addr_t device_addr, size_t size, int flags)
{
	struct dma_coherent_mem *mem;
	int ret;
	ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
	if (ret)
		return ret;
	ret = dma_assign_coherent_memory(dev, mem);
	if (ret)
		dma_release_coherent_memory(mem);
	return ret;
}
EXPORT_SYMBOL(dma_declare_coherent_memory);
void dma_release_declared_memory(struct device *dev)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	if (!mem)
		return;
	dma_release_coherent_memory(mem);
	dev->dma_mem = NULL;
}
EXPORT_SYMBOL(dma_release_declared_memory);
void *dma_mark_declared_memory_occupied(struct device *dev,
					dma_addr_t device_addr, size_t size)
{
	struct dma_coherent_mem *mem = dev->dma_mem;
	unsigned long flags;
	int pos, err;
	size += device_addr & ~PAGE_MASK;
	if (!mem)
		return ERR_PTR(-EINVAL);
	spin_lock_irqsave(&mem->spinlock, flags);
	pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
	spin_unlock_irqrestore(&mem->spinlock, flags);
	if (err != 0)
		return ERR_PTR(err);
	return mem->virt_base + (pos << PAGE_SHIFT);
}
EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
		ssize_t size, dma_addr_t *dma_handle)
{
	int order = get_order(size);
	unsigned long flags;
	int pageno;
	void *ret;
	spin_lock_irqsave(&mem->spinlock, flags);
	if (unlikely(size > (mem->size << PAGE_SHIFT)))
		goto err;
	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
	if (unlikely(pageno < 0))
		goto err;
	/*
	 * Memory was found in the coherent area.
	 */
	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
	ret = mem->virt_base + (pageno << PAGE_SHIFT);
	spin_unlock_irqrestore(&mem->spinlock, flags);
	memset(ret, 0, size);
	return ret;
err:
	spin_unlock_irqrestore(&mem->spinlock, flags);
	return NULL;
}
/**
 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
 * @dev:	device from which we allocate memory
 * @size:	size of requested memory area
 * @dma_handle:	This will be filled with the correct dma handle
 * @ret:	This pointer will be filled with the virtual address
 *		to allocated area.
 *
 * This function should be only called from per-arch dma_alloc_coherent()
 * to support allocation from per-device coherent memory pools.
 *
 * Returns 0 if dma_alloc_coherent should continue with allocating from
 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
 */
int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
		dma_addr_t *dma_handle, void **ret)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
	if (!mem)
		return 0;
	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
	if (*ret)
		return 1;
	/*
	 * In the case where the allocation can not be satisfied from the
	 * per-device area, try to fall back to generic memory if the
	 * constraints allow it.
	 */
	return mem->flags & DMA_MEMORY_EXCLUSIVE;
}
EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
{
	if (!dma_coherent_default_memory)
		return NULL;
	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
			dma_handle);
}
static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
				       int order, void *vaddr)
{
	if (mem && vaddr >= mem->virt_base && vaddr <
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		unsigned long flags;
		spin_lock_irqsave(&mem->spinlock, flags);
		bitmap_release_region(mem->bitmap, page, order);
		spin_unlock_irqrestore(&mem->spinlock, flags);
		return 1;
	}
	return 0;
}
/**
 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
 * @dev:	device from which the memory was allocated
 * @order:	the order of pages allocated
 * @vaddr:	virtual address of allocated pages
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, releases that memory.
 *
 * Returns 1 if we correctly released the memory, or 0 if the caller should
 * proceed with releasing memory from generic pools.
 */
int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
	return __dma_release_from_coherent(mem, order, vaddr);
}
EXPORT_SYMBOL(dma_release_from_dev_coherent);
int dma_release_from_global_coherent(int order, void *vaddr)
{
	if (!dma_coherent_default_memory)
		return 0;
	return __dma_release_from_coherent(dma_coherent_default_memory, order,
			vaddr);
}
static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
{
	if (mem && vaddr >= mem->virt_base && vaddr + size <=
		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
		unsigned long off = vma->vm_pgoff;
		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
		int user_count = vma_pages(vma);
		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
		*ret = -ENXIO;
		if (off < count && user_count <= count - off) {
			unsigned long pfn = mem->pfn_base + start + off;
			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
					       user_count << PAGE_SHIFT,
					       vma->vm_page_prot);
		}
		return 1;
	}
	return 0;
}
/**
 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
 * @dev:	device from which the memory was allocated
 * @vma:	vm_area for the userspace memory
 * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
 * @size:	size of the memory buffer allocated
 * @ret:	result from remap_pfn_range()
 *
 * This checks whether the memory was allocated from the per-device
 * coherent memory pool and if so, maps that memory to the provided vma.
 *
 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
 * should return @ret, or 0 if they should proceed with mapping memory from
 * generic areas.
 */
int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
			   void *vaddr, size_t size, int *ret)
{
	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
}
EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
				   size_t size, int *ret)
{
	if (!dma_coherent_default_memory)
		return 0;
	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
					vaddr, size, ret);
}
/*
 * Support for reserved memory regions defined in device tree
 */
#ifdef CONFIG_OF_RESERVED_MEM
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
static struct reserved_mem *dma_reserved_default_memory __initdata;
static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
{
	struct dma_coherent_mem *mem = rmem->priv;
	int ret;
	if (!mem) {
		ret = dma_init_coherent_memory(rmem->base, rmem->base,
					       rmem->size,
					       DMA_MEMORY_EXCLUSIVE, &mem);
		if (ret) {
			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
				&rmem->base, (unsigned long)rmem->size / SZ_1M);
			return ret;
		}
	}
	mem->use_dev_dma_pfn_offset = true;
	rmem->priv = mem;
	dma_assign_coherent_memory(dev, mem);
	return 0;
}
static void rmem_dma_device_release(struct reserved_mem *rmem,
				    struct device *dev)
{
	if (dev)
		dev->dma_mem = NULL;
}
static const struct reserved_mem_ops rmem_dma_ops = {
	.device_init	= rmem_dma_device_init,
	.device_release	= rmem_dma_device_release,
};
static int __init rmem_dma_setup(struct reserved_mem *rmem)
{
	unsigned long node = rmem->fdt_node;
	if (of_get_flat_dt_prop(node, "reusable", NULL))
		return -EINVAL;
#ifdef CONFIG_ARM
	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
		pr_err("Reserved memory: regions without no-map are not yet supported\n");
		return -EINVAL;
	}
	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
		WARN(dma_reserved_default_memory,
		     "Reserved memory: region for default DMA coherent area is redefined\n");
		dma_reserved_default_memory = rmem;
	}
#endif
	rmem->ops = &rmem_dma_ops;
	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
		&rmem->base, (unsigned long)rmem->size / SZ_1M);
	return 0;
}
static int __init dma_init_reserved_memory(void)
{
	const struct reserved_mem_ops *ops;
	int ret;
	if (!dma_reserved_default_memory)
		return -ENOMEM;
	ops = dma_reserved_default_memory->ops;
	/*
	 * We rely on rmem_dma_device_init() does not propagate error of
	 * dma_assign_coherent_memory() for "NULL" device.
	 */
	ret = ops->device_init(dma_reserved_default_memory, NULL);
	if (!ret) {
		dma_coherent_default_memory = dma_reserved_default_memory->priv;
		pr_info("DMA: default coherent area is set\n");
	}
	return ret;
}
core_initcall(dma_init_reserved_memory);
RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
#endif