Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ming Lei | 371 | 35.10% | 4 | 21.05% |
Thomas Gleixner | 361 | 34.15% | 3 | 15.79% |
Christoph Hellwig | 263 | 24.88% | 6 | 31.58% |
Keith Busch | 42 | 3.97% | 3 | 15.79% |
Michael Hernandez | 13 | 1.23% | 1 | 5.26% |
Guilherme G. Piccoli | 6 | 0.57% | 1 | 5.26% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 5.26% |
Total | 1057 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016 Thomas Gleixner. * Copyright (C) 2016-2017 Christoph Hellwig. */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/cpu.h> static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, int cpus_per_vec) { const struct cpumask *siblmsk; int cpu, sibl; for ( ; cpus_per_vec > 0; ) { cpu = cpumask_first(nmsk); /* Should not happen, but I'm too lazy to think about it */ if (cpu >= nr_cpu_ids) return; cpumask_clear_cpu(cpu, nmsk); cpumask_set_cpu(cpu, irqmsk); cpus_per_vec--; /* If the cpu has siblings, use them first */ siblmsk = topology_sibling_cpumask(cpu); for (sibl = -1; cpus_per_vec > 0; ) { sibl = cpumask_next(sibl, siblmsk); if (sibl >= nr_cpu_ids) break; if (!cpumask_test_and_clear_cpu(sibl, nmsk)) continue; cpumask_set_cpu(sibl, irqmsk); cpus_per_vec--; } } } static cpumask_var_t *alloc_node_to_cpumask(void) { cpumask_var_t *masks; int node; masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); if (!masks) return NULL; for (node = 0; node < nr_node_ids; node++) { if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) goto out_unwind; } return masks; out_unwind: while (--node >= 0) free_cpumask_var(masks[node]); kfree(masks); return NULL; } static void free_node_to_cpumask(cpumask_var_t *masks) { int node; for (node = 0; node < nr_node_ids; node++) free_cpumask_var(masks[node]); kfree(masks); } static void build_node_to_cpumask(cpumask_var_t *masks) { int cpu; for_each_possible_cpu(cpu) cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); } static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, const struct cpumask *mask, nodemask_t *nodemsk) { int n, nodes = 0; /* Calculate the number of nodes in the supplied affinity mask */ for_each_node(n) { if (cpumask_intersects(mask, node_to_cpumask[n])) { node_set(n, *nodemsk); nodes++; } } return nodes; } static int irq_build_affinity_masks(const struct irq_affinity *affd, int startvec, int numvecs, cpumask_var_t *node_to_cpumask, const struct cpumask *cpu_mask, struct cpumask *nmsk, struct cpumask *masks) { int n, nodes, cpus_per_vec, extra_vecs, done = 0; int last_affv = affd->pre_vectors + numvecs; int curvec = startvec; nodemask_t nodemsk = NODE_MASK_NONE; if (!cpumask_weight(cpu_mask)) return 0; nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); /* * If the number of nodes in the mask is greater than or equal the * number of vectors we just spread the vectors across the nodes. */ if (numvecs <= nodes) { for_each_node_mask(n, nodemsk) { cpumask_copy(masks + curvec, node_to_cpumask[n]); if (++done == numvecs) break; if (++curvec == last_affv) curvec = affd->pre_vectors; } goto out; } for_each_node_mask(n, nodemsk) { int ncpus, v, vecs_to_assign, vecs_per_node; /* Spread the vectors per node */ vecs_per_node = (numvecs - (curvec - affd->pre_vectors)) / nodes; /* Get the cpus on this node which are in the mask */ cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); /* Calculate the number of cpus per vector */ ncpus = cpumask_weight(nmsk); vecs_to_assign = min(vecs_per_node, ncpus); /* Account for rounding errors */ extra_vecs = ncpus - vecs_to_assign * (ncpus / vecs_to_assign); for (v = 0; curvec < last_affv && v < vecs_to_assign; curvec++, v++) { cpus_per_vec = ncpus / vecs_to_assign; /* Account for extra vectors to compensate rounding errors */ if (extra_vecs) { cpus_per_vec++; --extra_vecs; } irq_spread_init_one(masks + curvec, nmsk, cpus_per_vec); } done += v; if (done >= numvecs) break; if (curvec >= last_affv) curvec = affd->pre_vectors; --nodes; } out: return done; } /** * irq_create_affinity_masks - Create affinity masks for multiqueue spreading * @nvecs: The total number of vectors * @affd: Description of the affinity requirements * * Returns the masks pointer or NULL if allocation failed. */ struct cpumask * irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd) { int affvecs = nvecs - affd->pre_vectors - affd->post_vectors; int curvec, usedvecs; cpumask_var_t nmsk, npresmsk, *node_to_cpumask; struct cpumask *masks = NULL; /* * If there aren't any vectors left after applying the pre/post * vectors don't bother with assigning affinity. */ if (nvecs == affd->pre_vectors + affd->post_vectors) return NULL; if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) return NULL; if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) goto outcpumsk; node_to_cpumask = alloc_node_to_cpumask(); if (!node_to_cpumask) goto outnpresmsk; masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); if (!masks) goto outnodemsk; /* Fill out vectors at the beginning that don't need affinity */ for (curvec = 0; curvec < affd->pre_vectors; curvec++) cpumask_copy(masks + curvec, irq_default_affinity); /* Stabilize the cpumasks */ get_online_cpus(); build_node_to_cpumask(node_to_cpumask); /* Spread on present CPUs starting from affd->pre_vectors */ usedvecs = irq_build_affinity_masks(affd, curvec, affvecs, node_to_cpumask, cpu_present_mask, nmsk, masks); /* * Spread on non present CPUs starting from the next vector to be * handled. If the spreading of present CPUs already exhausted the * vector space, assign the non present CPUs to the already spread * out vectors. */ if (usedvecs >= affvecs) curvec = affd->pre_vectors; else curvec = affd->pre_vectors + usedvecs; cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); usedvecs += irq_build_affinity_masks(affd, curvec, affvecs, node_to_cpumask, npresmsk, nmsk, masks); put_online_cpus(); /* Fill out vectors at the end that don't need affinity */ if (usedvecs >= affvecs) curvec = affd->pre_vectors + affvecs; else curvec = affd->pre_vectors + usedvecs; for (; curvec < nvecs; curvec++) cpumask_copy(masks + curvec, irq_default_affinity); outnodemsk: free_node_to_cpumask(node_to_cpumask); outnpresmsk: free_cpumask_var(npresmsk); outcpumsk: free_cpumask_var(nmsk); return masks; } /** * irq_calc_affinity_vectors - Calculate the optimal number of vectors * @minvec: The minimum number of vectors available * @maxvec: The maximum number of vectors available * @affd: Description of the affinity requirements */ int irq_calc_affinity_vectors(int minvec, int maxvec, const struct irq_affinity *affd) { int resv = affd->pre_vectors + affd->post_vectors; int vecs = maxvec - resv; int ret; if (resv > minvec) return 0; get_online_cpus(); ret = min_t(int, cpumask_weight(cpu_possible_mask), vecs) + resv; put_online_cpus(); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1