Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul E. McKenney | 4806 | 99.03% | 28 | 82.35% |
Ildar Ismagilov | 30 | 0.62% | 2 | 5.88% |
Joe Perches | 7 | 0.14% | 1 | 2.94% |
Matthew Wilcox | 4 | 0.08% | 1 | 2.94% |
Ingo Molnar | 3 | 0.06% | 1 | 2.94% |
Paolo Bonzini | 3 | 0.06% | 1 | 2.94% |
Total | 4853 | 34 |
/* * Sleepable Read-Copy Update mechanism for mutual exclusion. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * * Copyright (C) IBM Corporation, 2006 * Copyright (C) Fujitsu, 2012 * * Author: Paul McKenney <paulmck@us.ibm.com> * Lai Jiangshan <laijs@cn.fujitsu.com> * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #define pr_fmt(fmt) "rcu: " fmt #include <linux/export.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/preempt.h> #include <linux/rcupdate_wait.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/srcu.h> #include "rcu.h" #include "rcu_segcblist.h" /* Holdoff in nanoseconds for auto-expediting. */ #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; module_param(exp_holdoff, ulong, 0444); /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ static ulong counter_wrap_check = (ULONG_MAX >> 2); module_param(counter_wrap_check, ulong, 0444); static void srcu_invoke_callbacks(struct work_struct *work); static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); static void process_srcu(struct work_struct *work); /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ #define spin_lock_rcu_node(p) \ do { \ spin_lock(&ACCESS_PRIVATE(p, lock)); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) #define spin_lock_irq_rcu_node(p) \ do { \ spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_unlock_irq_rcu_node(p) \ spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) #define spin_lock_irqsave_rcu_node(p, flags) \ do { \ spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ smp_mb__after_unlock_lock(); \ } while (0) #define spin_unlock_irqrestore_rcu_node(p, flags) \ spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ /* * Initialize SRCU combining tree. Note that statically allocated * srcu_struct structures might already have srcu_read_lock() and * srcu_read_unlock() running against them. So if the is_static parameter * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. */ static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) { int cpu; int i; int level = 0; int levelspread[RCU_NUM_LVLS]; struct srcu_data *sdp; struct srcu_node *snp; struct srcu_node *snp_first; /* Work out the overall tree geometry. */ sp->level[0] = &sp->node[0]; for (i = 1; i < rcu_num_lvls; i++) sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; rcu_init_levelspread(levelspread, num_rcu_lvl); /* Each pass through this loop initializes one srcu_node structure. */ rcu_for_each_node_breadth_first(sp, snp) { spin_lock_init(&ACCESS_PRIVATE(snp, lock)); WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != ARRAY_SIZE(snp->srcu_data_have_cbs)); for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { snp->srcu_have_cbs[i] = 0; snp->srcu_data_have_cbs[i] = 0; } snp->srcu_gp_seq_needed_exp = 0; snp->grplo = -1; snp->grphi = -1; if (snp == &sp->node[0]) { /* Root node, special case. */ snp->srcu_parent = NULL; continue; } /* Non-root node. */ if (snp == sp->level[level + 1]) level++; snp->srcu_parent = sp->level[level - 1] + (snp - sp->level[level]) / levelspread[level - 1]; } /* * Initialize the per-CPU srcu_data array, which feeds into the * leaves of the srcu_node tree. */ WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != ARRAY_SIZE(sdp->srcu_unlock_count)); level = rcu_num_lvls - 1; snp_first = sp->level[level]; for_each_possible_cpu(cpu) { sdp = per_cpu_ptr(sp->sda, cpu); spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); rcu_segcblist_init(&sdp->srcu_cblist); sdp->srcu_cblist_invoking = false; sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; sdp->mynode = &snp_first[cpu / levelspread[level]]; for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { if (snp->grplo < 0) snp->grplo = cpu; snp->grphi = cpu; } sdp->cpu = cpu; INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); sdp->sp = sp; sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); if (is_static) continue; /* Dynamically allocated, better be no srcu_read_locks()! */ for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { sdp->srcu_lock_count[i] = 0; sdp->srcu_unlock_count[i] = 0; } } } /* * Initialize non-compile-time initialized fields, including the * associated srcu_node and srcu_data structures. The is_static * parameter is passed through to init_srcu_struct_nodes(), and * also tells us that ->sda has already been wired up to srcu_data. */ static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) { mutex_init(&sp->srcu_cb_mutex); mutex_init(&sp->srcu_gp_mutex); sp->srcu_idx = 0; sp->srcu_gp_seq = 0; sp->srcu_barrier_seq = 0; mutex_init(&sp->srcu_barrier_mutex); atomic_set(&sp->srcu_barrier_cpu_cnt, 0); INIT_DELAYED_WORK(&sp->work, process_srcu); if (!is_static) sp->sda = alloc_percpu(struct srcu_data); init_srcu_struct_nodes(sp, is_static); sp->srcu_gp_seq_needed_exp = 0; sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ return sp->sda ? 0 : -ENOMEM; } #ifdef CONFIG_DEBUG_LOCK_ALLOC int __init_srcu_struct(struct srcu_struct *sp, const char *name, struct lock_class_key *key) { /* Don't re-initialize a lock while it is held. */ debug_check_no_locks_freed((void *)sp, sizeof(*sp)); lockdep_init_map(&sp->dep_map, name, key, 0); spin_lock_init(&ACCESS_PRIVATE(sp, lock)); return init_srcu_struct_fields(sp, false); } EXPORT_SYMBOL_GPL(__init_srcu_struct); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /** * init_srcu_struct - initialize a sleep-RCU structure * @sp: structure to initialize. * * Must invoke this on a given srcu_struct before passing that srcu_struct * to any other function. Each srcu_struct represents a separate domain * of SRCU protection. */ int init_srcu_struct(struct srcu_struct *sp) { spin_lock_init(&ACCESS_PRIVATE(sp, lock)); return init_srcu_struct_fields(sp, false); } EXPORT_SYMBOL_GPL(init_srcu_struct); #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ /* * First-use initialization of statically allocated srcu_struct * structure. Wiring up the combining tree is more than can be * done with compile-time initialization, so this check is added * to each update-side SRCU primitive. Use sp->lock, which -is- * compile-time initialized, to resolve races involving multiple * CPUs trying to garner first-use privileges. */ static void check_init_srcu_struct(struct srcu_struct *sp) { unsigned long flags; WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT); /* The smp_load_acquire() pairs with the smp_store_release(). */ if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ return; /* Already initialized. */ spin_lock_irqsave_rcu_node(sp, flags); if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { spin_unlock_irqrestore_rcu_node(sp, flags); return; } init_srcu_struct_fields(sp, true); spin_unlock_irqrestore_rcu_node(sp, flags); } /* * Returns approximate total of the readers' ->srcu_lock_count[] values * for the rank of per-CPU counters specified by idx. */ static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) { int cpu; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); sum += READ_ONCE(cpuc->srcu_lock_count[idx]); } return sum; } /* * Returns approximate total of the readers' ->srcu_unlock_count[] values * for the rank of per-CPU counters specified by idx. */ static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) { int cpu; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); } return sum; } /* * Return true if the number of pre-existing readers is determined to * be zero. */ static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) { unsigned long unlocks; unlocks = srcu_readers_unlock_idx(sp, idx); /* * Make sure that a lock is always counted if the corresponding * unlock is counted. Needs to be a smp_mb() as the read side may * contain a read from a variable that is written to before the * synchronize_srcu() in the write side. In this case smp_mb()s * A and B act like the store buffering pattern. * * This smp_mb() also pairs with smp_mb() C to prevent accesses * after the synchronize_srcu() from being executed before the * grace period ends. */ smp_mb(); /* A */ /* * If the locks are the same as the unlocks, then there must have * been no readers on this index at some time in between. This does * not mean that there are no more readers, as one could have read * the current index but not have incremented the lock counter yet. * * So suppose that the updater is preempted here for so long * that more than ULONG_MAX non-nested readers come and go in * the meantime. It turns out that this cannot result in overflow * because if a reader modifies its unlock count after we read it * above, then that reader's next load of ->srcu_idx is guaranteed * to get the new value, which will cause it to operate on the * other bank of counters, where it cannot contribute to the * overflow of these counters. This means that there is a maximum * of 2*NR_CPUS increments, which cannot overflow given current * systems, especially not on 64-bit systems. * * OK, how about nesting? This does impose a limit on nesting * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, * especially on 64-bit systems. */ return srcu_readers_lock_idx(sp, idx) == unlocks; } /** * srcu_readers_active - returns true if there are readers. and false * otherwise * @sp: which srcu_struct to count active readers (holding srcu_read_lock). * * Note that this is not an atomic primitive, and can therefore suffer * severe errors when invoked on an active srcu_struct. That said, it * can be useful as an error check at cleanup time. */ static bool srcu_readers_active(struct srcu_struct *sp) { int cpu; unsigned long sum = 0; for_each_possible_cpu(cpu) { struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); sum += READ_ONCE(cpuc->srcu_lock_count[0]); sum += READ_ONCE(cpuc->srcu_lock_count[1]); sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); } return sum; } #define SRCU_INTERVAL 1 /* * Return grace-period delay, zero if there are expedited grace * periods pending, SRCU_INTERVAL otherwise. */ static unsigned long srcu_get_delay(struct srcu_struct *sp) { if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), READ_ONCE(sp->srcu_gp_seq_needed_exp))) return 0; return SRCU_INTERVAL; } /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */ void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced) { int cpu; if (WARN_ON(!srcu_get_delay(sp))) return; /* Just leak it! */ if (WARN_ON(srcu_readers_active(sp))) return; /* Just leak it! */ if (quiesced) { if (WARN_ON(delayed_work_pending(&sp->work))) return; /* Just leak it! */ } else { flush_delayed_work(&sp->work); } for_each_possible_cpu(cpu) if (quiesced) { if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work))) return; /* Just leak it! */ } else { flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); } if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || WARN_ON(srcu_readers_active(sp))) { pr_info("%s: Active srcu_struct %p state: %d\n", __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); return; /* Caller forgot to stop doing call_srcu()? */ } free_percpu(sp->sda); sp->sda = NULL; } EXPORT_SYMBOL_GPL(_cleanup_srcu_struct); /* * Counts the new reader in the appropriate per-CPU element of the * srcu_struct. * Returns an index that must be passed to the matching srcu_read_unlock(). */ int __srcu_read_lock(struct srcu_struct *sp) { int idx; idx = READ_ONCE(sp->srcu_idx) & 0x1; this_cpu_inc(sp->sda->srcu_lock_count[idx]); smp_mb(); /* B */ /* Avoid leaking the critical section. */ return idx; } EXPORT_SYMBOL_GPL(__srcu_read_lock); /* * Removes the count for the old reader from the appropriate per-CPU * element of the srcu_struct. Note that this may well be a different * CPU than that which was incremented by the corresponding srcu_read_lock(). */ void __srcu_read_unlock(struct srcu_struct *sp, int idx) { smp_mb(); /* C */ /* Avoid leaking the critical section. */ this_cpu_inc(sp->sda->srcu_unlock_count[idx]); } EXPORT_SYMBOL_GPL(__srcu_read_unlock); /* * We use an adaptive strategy for synchronize_srcu() and especially for * synchronize_srcu_expedited(). We spin for a fixed time period * (defined below) to allow SRCU readers to exit their read-side critical * sections. If there are still some readers after a few microseconds, * we repeatedly block for 1-millisecond time periods. */ #define SRCU_RETRY_CHECK_DELAY 5 /* * Start an SRCU grace period. */ static void srcu_gp_start(struct srcu_struct *sp) { struct srcu_data *sdp = this_cpu_ptr(sp->sda); int state; lockdep_assert_held(&ACCESS_PRIVATE(sp, lock)); WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); rcu_segcblist_advance(&sdp->srcu_cblist, rcu_seq_current(&sp->srcu_gp_seq)); (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, rcu_seq_snap(&sp->srcu_gp_seq)); smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ rcu_seq_start(&sp->srcu_gp_seq); state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); WARN_ON_ONCE(state != SRCU_STATE_SCAN1); } /* * Track online CPUs to guide callback workqueue placement. */ DEFINE_PER_CPU(bool, srcu_online); void srcu_online_cpu(unsigned int cpu) { WRITE_ONCE(per_cpu(srcu_online, cpu), true); } void srcu_offline_cpu(unsigned int cpu) { WRITE_ONCE(per_cpu(srcu_online, cpu), false); } /* * Place the workqueue handler on the specified CPU if online, otherwise * just run it whereever. This is useful for placing workqueue handlers * that are to invoke the specified CPU's callbacks. */ static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { bool ret; preempt_disable(); if (READ_ONCE(per_cpu(srcu_online, cpu))) ret = queue_delayed_work_on(cpu, wq, dwork, delay); else ret = queue_delayed_work(wq, dwork, delay); preempt_enable(); return ret; } /* * Schedule callback invocation for the specified srcu_data structure, * if possible, on the corresponding CPU. */ static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) { srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay); } /* * Schedule callback invocation for all srcu_data structures associated * with the specified srcu_node structure that have callbacks for the * just-completed grace period, the one corresponding to idx. If possible, * schedule this invocation on the corresponding CPUs. */ static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, unsigned long mask, unsigned long delay) { int cpu; for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { if (!(mask & (1 << (cpu - snp->grplo)))) continue; srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); } } /* * Note the end of an SRCU grace period. Initiates callback invocation * and starts a new grace period if needed. * * The ->srcu_cb_mutex acquisition does not protect any data, but * instead prevents more than one grace period from starting while we * are initiating callback invocation. This allows the ->srcu_have_cbs[] * array to have a finite number of elements. */ static void srcu_gp_end(struct srcu_struct *sp) { unsigned long cbdelay; bool cbs; bool last_lvl; int cpu; unsigned long flags; unsigned long gpseq; int idx; unsigned long mask; struct srcu_data *sdp; struct srcu_node *snp; /* Prevent more than one additional grace period. */ mutex_lock(&sp->srcu_cb_mutex); /* End the current grace period. */ spin_lock_irq_rcu_node(sp); idx = rcu_seq_state(sp->srcu_gp_seq); WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); cbdelay = srcu_get_delay(sp); sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); rcu_seq_end(&sp->srcu_gp_seq); gpseq = rcu_seq_current(&sp->srcu_gp_seq); if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) sp->srcu_gp_seq_needed_exp = gpseq; spin_unlock_irq_rcu_node(sp); mutex_unlock(&sp->srcu_gp_mutex); /* A new grace period can start at this point. But only one. */ /* Initiate callback invocation as needed. */ idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); rcu_for_each_node_breadth_first(sp, snp) { spin_lock_irq_rcu_node(snp); cbs = false; last_lvl = snp >= sp->level[rcu_num_lvls - 1]; if (last_lvl) cbs = snp->srcu_have_cbs[idx] == gpseq; snp->srcu_have_cbs[idx] = gpseq; rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) snp->srcu_gp_seq_needed_exp = gpseq; mask = snp->srcu_data_have_cbs[idx]; snp->srcu_data_have_cbs[idx] = 0; spin_unlock_irq_rcu_node(snp); if (cbs) srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); /* Occasionally prevent srcu_data counter wrap. */ if (!(gpseq & counter_wrap_check) && last_lvl) for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { sdp = per_cpu_ptr(sp->sda, cpu); spin_lock_irqsave_rcu_node(sdp, flags); if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) sdp->srcu_gp_seq_needed = gpseq; if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) sdp->srcu_gp_seq_needed_exp = gpseq; spin_unlock_irqrestore_rcu_node(sdp, flags); } } /* Callback initiation done, allow grace periods after next. */ mutex_unlock(&sp->srcu_cb_mutex); /* Start a new grace period if needed. */ spin_lock_irq_rcu_node(sp); gpseq = rcu_seq_current(&sp->srcu_gp_seq); if (!rcu_seq_state(gpseq) && ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { srcu_gp_start(sp); spin_unlock_irq_rcu_node(sp); srcu_reschedule(sp, 0); } else { spin_unlock_irq_rcu_node(sp); } } /* * Funnel-locking scheme to scalably mediate many concurrent expedited * grace-period requests. This function is invoked for the first known * expedited request for a grace period that has already been requested, * but without expediting. To start a completely new grace period, * whether expedited or not, use srcu_funnel_gp_start() instead. */ static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, unsigned long s) { unsigned long flags; for (; snp != NULL; snp = snp->srcu_parent) { if (rcu_seq_done(&sp->srcu_gp_seq, s) || ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) return; spin_lock_irqsave_rcu_node(snp, flags); if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { spin_unlock_irqrestore_rcu_node(snp, flags); return; } WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); spin_unlock_irqrestore_rcu_node(snp, flags); } spin_lock_irqsave_rcu_node(sp, flags); if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) sp->srcu_gp_seq_needed_exp = s; spin_unlock_irqrestore_rcu_node(sp, flags); } /* * Funnel-locking scheme to scalably mediate many concurrent grace-period * requests. The winner has to do the work of actually starting grace * period s. Losers must either ensure that their desired grace-period * number is recorded on at least their leaf srcu_node structure, or they * must take steps to invoke their own callbacks. * * Note that this function also does the work of srcu_funnel_exp_start(), * in some cases by directly invoking it. */ static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, unsigned long s, bool do_norm) { unsigned long flags; int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); struct srcu_node *snp = sdp->mynode; unsigned long snp_seq; /* Each pass through the loop does one level of the srcu_node tree. */ for (; snp != NULL; snp = snp->srcu_parent) { if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) return; /* GP already done and CBs recorded. */ spin_lock_irqsave_rcu_node(snp, flags); if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { snp_seq = snp->srcu_have_cbs[idx]; if (snp == sdp->mynode && snp_seq == s) snp->srcu_data_have_cbs[idx] |= sdp->grpmask; spin_unlock_irqrestore_rcu_node(snp, flags); if (snp == sdp->mynode && snp_seq != s) { srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); return; } if (!do_norm) srcu_funnel_exp_start(sp, snp, s); return; } snp->srcu_have_cbs[idx] = s; if (snp == sdp->mynode) snp->srcu_data_have_cbs[idx] |= sdp->grpmask; if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) snp->srcu_gp_seq_needed_exp = s; spin_unlock_irqrestore_rcu_node(snp, flags); } /* Top of tree, must ensure the grace period will be started. */ spin_lock_irqsave_rcu_node(sp, flags); if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { /* * Record need for grace period s. Pair with load * acquire setting up for initialization. */ smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ } if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) sp->srcu_gp_seq_needed_exp = s; /* If grace period not already done and none in progress, start it. */ if (!rcu_seq_done(&sp->srcu_gp_seq, s) && rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); srcu_gp_start(sp); queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp)); } spin_unlock_irqrestore_rcu_node(sp, flags); } /* * Wait until all readers counted by array index idx complete, but * loop an additional time if there is an expedited grace period pending. * The caller must ensure that ->srcu_idx is not changed while checking. */ static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) { for (;;) { if (srcu_readers_active_idx_check(sp, idx)) return true; if (--trycount + !srcu_get_delay(sp) <= 0) return false; udelay(SRCU_RETRY_CHECK_DELAY); } } /* * Increment the ->srcu_idx counter so that future SRCU readers will * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows * us to wait for pre-existing readers in a starvation-free manner. */ static void srcu_flip(struct srcu_struct *sp) { /* * Ensure that if this updater saw a given reader's increment * from __srcu_read_lock(), that reader was using an old value * of ->srcu_idx. Also ensure that if a given reader sees the * new value of ->srcu_idx, this updater's earlier scans cannot * have seen that reader's increments (which is OK, because this * grace period need not wait on that reader). */ smp_mb(); /* E */ /* Pairs with B and C. */ WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); /* * Ensure that if the updater misses an __srcu_read_unlock() * increment, that task's next __srcu_read_lock() will see the * above counter update. Note that both this memory barrier * and the one in srcu_readers_active_idx_check() provide the * guarantee for __srcu_read_lock(). */ smp_mb(); /* D */ /* Pairs with C. */ } /* * If SRCU is likely idle, return true, otherwise return false. * * Note that it is OK for several current from-idle requests for a new * grace period from idle to specify expediting because they will all end * up requesting the same grace period anyhow. So no loss. * * Note also that if any CPU (including the current one) is still invoking * callbacks, this function will nevertheless say "idle". This is not * ideal, but the overhead of checking all CPUs' callback lists is even * less ideal, especially on large systems. Furthermore, the wakeup * can happen before the callback is fully removed, so we have no choice * but to accept this type of error. * * This function is also subject to counter-wrap errors, but let's face * it, if this function was preempted for enough time for the counters * to wrap, it really doesn't matter whether or not we expedite the grace * period. The extra overhead of a needlessly expedited grace period is * negligible when amoritized over that time period, and the extra latency * of a needlessly non-expedited grace period is similarly negligible. */ static bool srcu_might_be_idle(struct srcu_struct *sp) { unsigned long curseq; unsigned long flags; struct srcu_data *sdp; unsigned long t; /* If the local srcu_data structure has callbacks, not idle. */ local_irq_save(flags); sdp = this_cpu_ptr(sp->sda); if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { local_irq_restore(flags); return false; /* Callbacks already present, so not idle. */ } local_irq_restore(flags); /* * No local callbacks, so probabalistically probe global state. * Exact information would require acquiring locks, which would * kill scalability, hence the probabalistic nature of the probe. */ /* First, see if enough time has passed since the last GP. */ t = ktime_get_mono_fast_ns(); if (exp_holdoff == 0 || time_in_range_open(t, sp->srcu_last_gp_end, sp->srcu_last_gp_end + exp_holdoff)) return false; /* Too soon after last GP. */ /* Next, check for probable idleness. */ curseq = rcu_seq_current(&sp->srcu_gp_seq); smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) return false; /* Grace period in progress, so not idle. */ smp_mb(); /* Order ->srcu_gp_seq with prior access. */ if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) return false; /* GP # changed, so not idle. */ return true; /* With reasonable probability, idle! */ } /* * SRCU callback function to leak a callback. */ static void srcu_leak_callback(struct rcu_head *rhp) { } /* * Enqueue an SRCU callback on the srcu_data structure associated with * the current CPU and the specified srcu_struct structure, initiating * grace-period processing if it is not already running. * * Note that all CPUs must agree that the grace period extended beyond * all pre-existing SRCU read-side critical section. On systems with * more than one CPU, this means that when "func()" is invoked, each CPU * is guaranteed to have executed a full memory barrier since the end of * its last corresponding SRCU read-side critical section whose beginning * preceded the call to call_srcu(). It also means that each CPU executing * an SRCU read-side critical section that continues beyond the start of * "func()" must have executed a memory barrier after the call_srcu() * but before the beginning of that SRCU read-side critical section. * Note that these guarantees include CPUs that are offline, idle, or * executing in user mode, as well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the * resulting SRCU callback function "func()", then both CPU A and CPU * B are guaranteed to execute a full memory barrier during the time * interval between the call to call_srcu() and the invocation of "func()". * This guarantee applies even if CPU A and CPU B are the same CPU (but * again only if the system has more than one CPU). * * Of course, these guarantees apply only for invocations of call_srcu(), * srcu_read_lock(), and srcu_read_unlock() that are all passed the same * srcu_struct structure. */ void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, rcu_callback_t func, bool do_norm) { unsigned long flags; bool needexp = false; bool needgp = false; unsigned long s; struct srcu_data *sdp; check_init_srcu_struct(sp); if (debug_rcu_head_queue(rhp)) { /* Probable double call_srcu(), so leak the callback. */ WRITE_ONCE(rhp->func, srcu_leak_callback); WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); return; } rhp->func = func; local_irq_save(flags); sdp = this_cpu_ptr(sp->sda); spin_lock_rcu_node(sdp); rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); rcu_segcblist_advance(&sdp->srcu_cblist, rcu_seq_current(&sp->srcu_gp_seq)); s = rcu_seq_snap(&sp->srcu_gp_seq); (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { sdp->srcu_gp_seq_needed = s; needgp = true; } if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { sdp->srcu_gp_seq_needed_exp = s; needexp = true; } spin_unlock_irqrestore_rcu_node(sdp, flags); if (needgp) srcu_funnel_gp_start(sp, sdp, s, do_norm); else if (needexp) srcu_funnel_exp_start(sp, sdp->mynode, s); } /** * call_srcu() - Queue a callback for invocation after an SRCU grace period * @sp: srcu_struct in queue the callback * @rhp: structure to be used for queueing the SRCU callback. * @func: function to be invoked after the SRCU grace period * * The callback function will be invoked some time after a full SRCU * grace period elapses, in other words after all pre-existing SRCU * read-side critical sections have completed. However, the callback * function might well execute concurrently with other SRCU read-side * critical sections that started after call_srcu() was invoked. SRCU * read-side critical sections are delimited by srcu_read_lock() and * srcu_read_unlock(), and may be nested. * * The callback will be invoked from process context, but must nevertheless * be fast and must not block. */ void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, rcu_callback_t func) { __call_srcu(sp, rhp, func, true); } EXPORT_SYMBOL_GPL(call_srcu); /* * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). */ static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) { struct rcu_synchronize rcu; RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) return; might_sleep(); check_init_srcu_struct(sp); init_completion(&rcu.completion); init_rcu_head_on_stack(&rcu.head); __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); wait_for_completion(&rcu.completion); destroy_rcu_head_on_stack(&rcu.head); /* * Make sure that later code is ordered after the SRCU grace * period. This pairs with the spin_lock_irq_rcu_node() * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed * because the current CPU might have been totally uninvolved with * (and thus unordered against) that grace period. */ smp_mb(); } /** * synchronize_srcu_expedited - Brute-force SRCU grace period * @sp: srcu_struct with which to synchronize. * * Wait for an SRCU grace period to elapse, but be more aggressive about * spinning rather than blocking when waiting. * * Note that synchronize_srcu_expedited() has the same deadlock and * memory-ordering properties as does synchronize_srcu(). */ void synchronize_srcu_expedited(struct srcu_struct *sp) { __synchronize_srcu(sp, rcu_gp_is_normal()); } EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); /** * synchronize_srcu - wait for prior SRCU read-side critical-section completion * @sp: srcu_struct with which to synchronize. * * Wait for the count to drain to zero of both indexes. To avoid the * possible starvation of synchronize_srcu(), it waits for the count of * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, * and then flip the srcu_idx and wait for the count of the other index. * * Can block; must be called from process context. * * Note that it is illegal to call synchronize_srcu() from the corresponding * SRCU read-side critical section; doing so will result in deadlock. * However, it is perfectly legal to call synchronize_srcu() on one * srcu_struct from some other srcu_struct's read-side critical section, * as long as the resulting graph of srcu_structs is acyclic. * * There are memory-ordering constraints implied by synchronize_srcu(). * On systems with more than one CPU, when synchronize_srcu() returns, * each CPU is guaranteed to have executed a full memory barrier since * the end of its last corresponding SRCU-sched read-side critical section * whose beginning preceded the call to synchronize_srcu(). In addition, * each CPU having an SRCU read-side critical section that extends beyond * the return from synchronize_srcu() is guaranteed to have executed a * full memory barrier after the beginning of synchronize_srcu() and before * the beginning of that SRCU read-side critical section. Note that these * guarantees include CPUs that are offline, idle, or executing in user mode, * as well as CPUs that are executing in the kernel. * * Furthermore, if CPU A invoked synchronize_srcu(), which returned * to its caller on CPU B, then both CPU A and CPU B are guaranteed * to have executed a full memory barrier during the execution of * synchronize_srcu(). This guarantee applies even if CPU A and CPU B * are the same CPU, but again only if the system has more than one CPU. * * Of course, these memory-ordering guarantees apply only when * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are * passed the same srcu_struct structure. * * If SRCU is likely idle, expedite the first request. This semantic * was provided by Classic SRCU, and is relied upon by its users, so TREE * SRCU must also provide it. Note that detecting idleness is heuristic * and subject to both false positives and negatives. */ void synchronize_srcu(struct srcu_struct *sp) { if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) synchronize_srcu_expedited(sp); else __synchronize_srcu(sp, true); } EXPORT_SYMBOL_GPL(synchronize_srcu); /* * Callback function for srcu_barrier() use. */ static void srcu_barrier_cb(struct rcu_head *rhp) { struct srcu_data *sdp; struct srcu_struct *sp; sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); sp = sdp->sp; if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) complete(&sp->srcu_barrier_completion); } /** * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. * @sp: srcu_struct on which to wait for in-flight callbacks. */ void srcu_barrier(struct srcu_struct *sp) { int cpu; struct srcu_data *sdp; unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); check_init_srcu_struct(sp); mutex_lock(&sp->srcu_barrier_mutex); if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { smp_mb(); /* Force ordering following return. */ mutex_unlock(&sp->srcu_barrier_mutex); return; /* Someone else did our work for us. */ } rcu_seq_start(&sp->srcu_barrier_seq); init_completion(&sp->srcu_barrier_completion); /* Initial count prevents reaching zero until all CBs are posted. */ atomic_set(&sp->srcu_barrier_cpu_cnt, 1); /* * Each pass through this loop enqueues a callback, but only * on CPUs already having callbacks enqueued. Note that if * a CPU already has callbacks enqueue, it must have already * registered the need for a future grace period, so all we * need do is enqueue a callback that will use the same * grace period as the last callback already in the queue. */ for_each_possible_cpu(cpu) { sdp = per_cpu_ptr(sp->sda, cpu); spin_lock_irq_rcu_node(sdp); atomic_inc(&sp->srcu_barrier_cpu_cnt); sdp->srcu_barrier_head.func = srcu_barrier_cb; debug_rcu_head_queue(&sdp->srcu_barrier_head); if (!rcu_segcblist_entrain(&sdp->srcu_cblist, &sdp->srcu_barrier_head, 0)) { debug_rcu_head_unqueue(&sdp->srcu_barrier_head); atomic_dec(&sp->srcu_barrier_cpu_cnt); } spin_unlock_irq_rcu_node(sdp); } /* Remove the initial count, at which point reaching zero can happen. */ if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) complete(&sp->srcu_barrier_completion); wait_for_completion(&sp->srcu_barrier_completion); rcu_seq_end(&sp->srcu_barrier_seq); mutex_unlock(&sp->srcu_barrier_mutex); } EXPORT_SYMBOL_GPL(srcu_barrier); /** * srcu_batches_completed - return batches completed. * @sp: srcu_struct on which to report batch completion. * * Report the number of batches, correlated with, but not necessarily * precisely the same as, the number of grace periods that have elapsed. */ unsigned long srcu_batches_completed(struct srcu_struct *sp) { return sp->srcu_idx; } EXPORT_SYMBOL_GPL(srcu_batches_completed); /* * Core SRCU state machine. Push state bits of ->srcu_gp_seq * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has * completed in that state. */ static void srcu_advance_state(struct srcu_struct *sp) { int idx; mutex_lock(&sp->srcu_gp_mutex); /* * Because readers might be delayed for an extended period after * fetching ->srcu_idx for their index, at any point in time there * might well be readers using both idx=0 and idx=1. We therefore * need to wait for readers to clear from both index values before * invoking a callback. * * The load-acquire ensures that we see the accesses performed * by the prior grace period. */ idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ if (idx == SRCU_STATE_IDLE) { spin_lock_irq_rcu_node(sp); if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); spin_unlock_irq_rcu_node(sp); mutex_unlock(&sp->srcu_gp_mutex); return; } idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); if (idx == SRCU_STATE_IDLE) srcu_gp_start(sp); spin_unlock_irq_rcu_node(sp); if (idx != SRCU_STATE_IDLE) { mutex_unlock(&sp->srcu_gp_mutex); return; /* Someone else started the grace period. */ } } if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { idx = 1 ^ (sp->srcu_idx & 1); if (!try_check_zero(sp, idx, 1)) { mutex_unlock(&sp->srcu_gp_mutex); return; /* readers present, retry later. */ } srcu_flip(sp); rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); } if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { /* * SRCU read-side critical sections are normally short, * so check at least twice in quick succession after a flip. */ idx = 1 ^ (sp->srcu_idx & 1); if (!try_check_zero(sp, idx, 2)) { mutex_unlock(&sp->srcu_gp_mutex); return; /* readers present, retry later. */ } srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ } } /* * Invoke a limited number of SRCU callbacks that have passed through * their grace period. If there are more to do, SRCU will reschedule * the workqueue. Note that needed memory barriers have been executed * in this task's context by srcu_readers_active_idx_check(). */ static void srcu_invoke_callbacks(struct work_struct *work) { bool more; struct rcu_cblist ready_cbs; struct rcu_head *rhp; struct srcu_data *sdp; struct srcu_struct *sp; sdp = container_of(work, struct srcu_data, work.work); sp = sdp->sp; rcu_cblist_init(&ready_cbs); spin_lock_irq_rcu_node(sdp); rcu_segcblist_advance(&sdp->srcu_cblist, rcu_seq_current(&sp->srcu_gp_seq)); if (sdp->srcu_cblist_invoking || !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { spin_unlock_irq_rcu_node(sdp); return; /* Someone else on the job or nothing to do. */ } /* We are on the job! Extract and invoke ready callbacks. */ sdp->srcu_cblist_invoking = true; rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); spin_unlock_irq_rcu_node(sdp); rhp = rcu_cblist_dequeue(&ready_cbs); for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { debug_rcu_head_unqueue(rhp); local_bh_disable(); rhp->func(rhp); local_bh_enable(); } /* * Update counts, accelerate new callbacks, and if needed, * schedule another round of callback invocation. */ spin_lock_irq_rcu_node(sdp); rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, rcu_seq_snap(&sp->srcu_gp_seq)); sdp->srcu_cblist_invoking = false; more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); spin_unlock_irq_rcu_node(sdp); if (more) srcu_schedule_cbs_sdp(sdp, 0); } /* * Finished one round of SRCU grace period. Start another if there are * more SRCU callbacks queued, otherwise put SRCU into not-running state. */ static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) { bool pushgp = true; spin_lock_irq_rcu_node(sp); if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { /* All requests fulfilled, time to go idle. */ pushgp = false; } } else if (!rcu_seq_state(sp->srcu_gp_seq)) { /* Outstanding request and no GP. Start one. */ srcu_gp_start(sp); } spin_unlock_irq_rcu_node(sp); if (pushgp) queue_delayed_work(rcu_gp_wq, &sp->work, delay); } /* * This is the work-queue function that handles SRCU grace periods. */ static void process_srcu(struct work_struct *work) { struct srcu_struct *sp; sp = container_of(work, struct srcu_struct, work.work); srcu_advance_state(sp); srcu_reschedule(sp, srcu_get_delay(sp)); } void srcutorture_get_gp_data(enum rcutorture_type test_type, struct srcu_struct *sp, int *flags, unsigned long *gp_seq) { if (test_type != SRCU_FLAVOR) return; *flags = 0; *gp_seq = rcu_seq_current(&sp->srcu_gp_seq); } EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) { int cpu; int idx; unsigned long s0 = 0, s1 = 0; idx = sp->srcu_idx & 0x1; pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", tt, tf, rcu_seq_current(&sp->srcu_gp_seq), idx); for_each_possible_cpu(cpu) { unsigned long l0, l1; unsigned long u0, u1; long c0, c1; struct srcu_data *sdp; sdp = per_cpu_ptr(sp->sda, cpu); u0 = sdp->srcu_unlock_count[!idx]; u1 = sdp->srcu_unlock_count[idx]; /* * Make sure that a lock is always counted if the corresponding * unlock is counted. */ smp_rmb(); l0 = sdp->srcu_lock_count[!idx]; l1 = sdp->srcu_lock_count[idx]; c0 = l0 - u0; c1 = l1 - u1; pr_cont(" %d(%ld,%ld %1p)", cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist)); s0 += c0; s1 += c1; } pr_cont(" T(%ld,%ld)\n", s0, s1); } EXPORT_SYMBOL_GPL(srcu_torture_stats_print); static int __init srcu_bootup_announce(void) { pr_info("Hierarchical SRCU implementation.\n"); if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); return 0; } early_initcall(srcu_bootup_announce);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1