Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ingo Molnar | 345 | 27.36% | 4 | 9.52% |
Nico Pitre | 269 | 21.33% | 1 | 2.38% |
Peter Zijlstra | 232 | 18.40% | 5 | 11.90% |
Rafael J. Wysocki | 216 | 17.13% | 14 | 33.33% |
Daniel Lezcano | 81 | 6.42% | 4 | 9.52% |
Chris Metcalf | 38 | 3.01% | 1 | 2.38% |
Josh Poimboeuf | 15 | 1.19% | 1 | 2.38% |
Andrew Lutomirski | 11 | 0.87% | 1 | 2.38% |
Lucas Stach | 10 | 0.79% | 1 | 2.38% |
Jacob jun Pan | 10 | 0.79% | 1 | 2.38% |
Preeti U. Murthy | 7 | 0.56% | 1 | 2.38% |
Cheng Jian | 7 | 0.56% | 1 | 2.38% |
Daniel Bristot de Oliveira | 6 | 0.48% | 1 | 2.38% |
Thomas Gleixner | 6 | 0.48% | 2 | 4.76% |
Paul E. McKenney | 4 | 0.32% | 1 | 2.38% |
Catalin Marinas | 2 | 0.16% | 1 | 2.38% |
Sudeep Holla | 1 | 0.08% | 1 | 2.38% |
Steven Rostedt | 1 | 0.08% | 1 | 2.38% |
Total | 1261 | 42 |
/* * Generic entry points for the idle threads and * implementation of the idle task scheduling class. * * (NOTE: these are not related to SCHED_IDLE batch scheduled * tasks which are handled in sched/fair.c ) */ #include "sched.h" #include <trace/events/power.h> /* Linker adds these: start and end of __cpuidle functions */ extern char __cpuidle_text_start[], __cpuidle_text_end[]; /** * sched_idle_set_state - Record idle state for the current CPU. * @idle_state: State to record. */ void sched_idle_set_state(struct cpuidle_state *idle_state) { idle_set_state(this_rq(), idle_state); } static int __read_mostly cpu_idle_force_poll; void cpu_idle_poll_ctrl(bool enable) { if (enable) { cpu_idle_force_poll++; } else { cpu_idle_force_poll--; WARN_ON_ONCE(cpu_idle_force_poll < 0); } } #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP static int __init cpu_idle_poll_setup(char *__unused) { cpu_idle_force_poll = 1; return 1; } __setup("nohlt", cpu_idle_poll_setup); static int __init cpu_idle_nopoll_setup(char *__unused) { cpu_idle_force_poll = 0; return 1; } __setup("hlt", cpu_idle_nopoll_setup); #endif static noinline int __cpuidle cpu_idle_poll(void) { rcu_idle_enter(); trace_cpu_idle_rcuidle(0, smp_processor_id()); local_irq_enable(); stop_critical_timings(); while (!tif_need_resched() && (cpu_idle_force_poll || tick_check_broadcast_expired())) cpu_relax(); start_critical_timings(); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); rcu_idle_exit(); return 1; } /* Weak implementations for optional arch specific functions */ void __weak arch_cpu_idle_prepare(void) { } void __weak arch_cpu_idle_enter(void) { } void __weak arch_cpu_idle_exit(void) { } void __weak arch_cpu_idle_dead(void) { } void __weak arch_cpu_idle(void) { cpu_idle_force_poll = 1; local_irq_enable(); } /** * default_idle_call - Default CPU idle routine. * * To use when the cpuidle framework cannot be used. */ void __cpuidle default_idle_call(void) { if (current_clr_polling_and_test()) { local_irq_enable(); } else { stop_critical_timings(); arch_cpu_idle(); start_critical_timings(); } } static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, int next_state) { /* * The idle task must be scheduled, it is pointless to go to idle, just * update no idle residency and return. */ if (current_clr_polling_and_test()) { dev->last_residency = 0; local_irq_enable(); return -EBUSY; } /* * Enter the idle state previously returned by the governor decision. * This function will block until an interrupt occurs and will take * care of re-enabling the local interrupts */ return cpuidle_enter(drv, dev, next_state); } /** * cpuidle_idle_call - the main idle function * * NOTE: no locks or semaphores should be used here * * On archs that support TIF_POLLING_NRFLAG, is called with polling * set, and it returns with polling set. If it ever stops polling, it * must clear the polling bit. */ static void cpuidle_idle_call(void) { struct cpuidle_device *dev = cpuidle_get_device(); struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); int next_state, entered_state; /* * Check if the idle task must be rescheduled. If it is the * case, exit the function after re-enabling the local irq. */ if (need_resched()) { local_irq_enable(); return; } /* * The RCU framework needs to be told that we are entering an idle * section, so no more rcu read side critical sections and one more * step to the grace period */ if (cpuidle_not_available(drv, dev)) { tick_nohz_idle_stop_tick(); rcu_idle_enter(); default_idle_call(); goto exit_idle; } /* * Suspend-to-idle ("s2idle") is a system state in which all user space * has been frozen, all I/O devices have been suspended and the only * activity happens here and in iterrupts (if any). In that case bypass * the cpuidle governor and go stratight for the deepest idle state * available. Possibly also suspend the local tick and the entire * timekeeping to prevent timer interrupts from kicking us out of idle * until a proper wakeup interrupt happens. */ if (idle_should_enter_s2idle() || dev->use_deepest_state) { if (idle_should_enter_s2idle()) { rcu_idle_enter(); entered_state = cpuidle_enter_s2idle(drv, dev); if (entered_state > 0) { local_irq_enable(); goto exit_idle; } rcu_idle_exit(); } tick_nohz_idle_stop_tick(); rcu_idle_enter(); next_state = cpuidle_find_deepest_state(drv, dev); call_cpuidle(drv, dev, next_state); } else { bool stop_tick = true; /* * Ask the cpuidle framework to choose a convenient idle state. */ next_state = cpuidle_select(drv, dev, &stop_tick); if (stop_tick || tick_nohz_tick_stopped()) tick_nohz_idle_stop_tick(); else tick_nohz_idle_retain_tick(); rcu_idle_enter(); entered_state = call_cpuidle(drv, dev, next_state); /* * Give the governor an opportunity to reflect on the outcome */ cpuidle_reflect(dev, entered_state); } exit_idle: __current_set_polling(); /* * It is up to the idle functions to reenable local interrupts */ if (WARN_ON_ONCE(irqs_disabled())) local_irq_enable(); rcu_idle_exit(); } /* * Generic idle loop implementation * * Called with polling cleared. */ static void do_idle(void) { int cpu = smp_processor_id(); /* * If the arch has a polling bit, we maintain an invariant: * * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != * rq->idle). This means that, if rq->idle has the polling bit set, * then setting need_resched is guaranteed to cause the CPU to * reschedule. */ __current_set_polling(); tick_nohz_idle_enter(); while (!need_resched()) { check_pgt_cache(); rmb(); if (cpu_is_offline(cpu)) { tick_nohz_idle_stop_tick_protected(); cpuhp_report_idle_dead(); arch_cpu_idle_dead(); } local_irq_disable(); arch_cpu_idle_enter(); /* * In poll mode we reenable interrupts and spin. Also if we * detected in the wakeup from idle path that the tick * broadcast device expired for us, we don't want to go deep * idle as we know that the IPI is going to arrive right away. */ if (cpu_idle_force_poll || tick_check_broadcast_expired()) { tick_nohz_idle_restart_tick(); cpu_idle_poll(); } else { cpuidle_idle_call(); } arch_cpu_idle_exit(); } /* * Since we fell out of the loop above, we know TIF_NEED_RESCHED must * be set, propagate it into PREEMPT_NEED_RESCHED. * * This is required because for polling idle loops we will not have had * an IPI to fold the state for us. */ preempt_set_need_resched(); tick_nohz_idle_exit(); __current_clr_polling(); /* * We promise to call sched_ttwu_pending() and reschedule if * need_resched() is set while polling is set. That means that clearing * polling needs to be visible before doing these things. */ smp_mb__after_atomic(); sched_ttwu_pending(); schedule_idle(); if (unlikely(klp_patch_pending(current))) klp_update_patch_state(current); } bool cpu_in_idle(unsigned long pc) { return pc >= (unsigned long)__cpuidle_text_start && pc < (unsigned long)__cpuidle_text_end; } struct idle_timer { struct hrtimer timer; int done; }; static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) { struct idle_timer *it = container_of(timer, struct idle_timer, timer); WRITE_ONCE(it->done, 1); set_tsk_need_resched(current); return HRTIMER_NORESTART; } void play_idle(unsigned long duration_ms) { struct idle_timer it; /* * Only FIFO tasks can disable the tick since they don't need the forced * preemption. */ WARN_ON_ONCE(current->policy != SCHED_FIFO); WARN_ON_ONCE(current->nr_cpus_allowed != 1); WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); WARN_ON_ONCE(!duration_ms); rcu_sleep_check(); preempt_disable(); current->flags |= PF_IDLE; cpuidle_use_deepest_state(true); it.done = 0; hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); it.timer.function = idle_inject_timer_fn; hrtimer_start(&it.timer, ms_to_ktime(duration_ms), HRTIMER_MODE_REL_PINNED); while (!READ_ONCE(it.done)) do_idle(); cpuidle_use_deepest_state(false); current->flags &= ~PF_IDLE; preempt_fold_need_resched(); preempt_enable(); } EXPORT_SYMBOL_GPL(play_idle); void cpu_startup_entry(enum cpuhp_state state) { /* * This #ifdef needs to die, but it's too late in the cycle to * make this generic (ARM and SH have never invoked the canary * init for the non boot CPUs!). Will be fixed in 3.11 */ #ifdef CONFIG_X86 /* * If we're the non-boot CPU, nothing set the stack canary up * for us. The boot CPU already has it initialized but no harm * in doing it again. This is a good place for updating it, as * we wont ever return from this function (so the invalid * canaries already on the stack wont ever trigger). */ boot_init_stack_canary(); #endif arch_cpu_idle_prepare(); cpuhp_online_idle(state); while (1) do_idle(); } /* * idle-task scheduling class. */ #ifdef CONFIG_SMP static int select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags) { return task_cpu(p); /* IDLE tasks as never migrated */ } #endif /* * Idle tasks are unconditionally rescheduled: */ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) { resched_curr(rq); } static struct task_struct * pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) { put_prev_task(rq, prev); update_idle_core(rq); schedstat_inc(rq->sched_goidle); return rq->idle; } /* * It is not legal to sleep in the idle task - print a warning * message if some code attempts to do it: */ static void dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) { raw_spin_unlock_irq(&rq->lock); printk(KERN_ERR "bad: scheduling from the idle thread!\n"); dump_stack(); raw_spin_lock_irq(&rq->lock); } static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) { } /* * scheduler tick hitting a task of our scheduling class. * * NOTE: This function can be called remotely by the tick offload that * goes along full dynticks. Therefore no local assumption can be made * and everything must be accessed through the @rq and @curr passed in * parameters. */ static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) { } static void set_curr_task_idle(struct rq *rq) { } static void switched_to_idle(struct rq *rq, struct task_struct *p) { BUG(); } static void prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio) { BUG(); } static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task) { return 0; } static void update_curr_idle(struct rq *rq) { } /* * Simple, special scheduling class for the per-CPU idle tasks: */ const struct sched_class idle_sched_class = { /* .next is NULL */ /* no enqueue/yield_task for idle tasks */ /* dequeue is not valid, we print a debug message there: */ .dequeue_task = dequeue_task_idle, .check_preempt_curr = check_preempt_curr_idle, .pick_next_task = pick_next_task_idle, .put_prev_task = put_prev_task_idle, #ifdef CONFIG_SMP .select_task_rq = select_task_rq_idle, .set_cpus_allowed = set_cpus_allowed_common, #endif .set_curr_task = set_curr_task_idle, .task_tick = task_tick_idle, .get_rr_interval = get_rr_interval_idle, .prio_changed = prio_changed_idle, .switched_to = switched_to_idle, .update_curr = update_curr_idle, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1