Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mathieu Desnoyers | 827 | 99.76% | 6 | 85.71% |
Ingo Molnar | 2 | 0.24% | 1 | 14.29% |
Total | 829 | 7 |
/* * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com> * * membarrier system call * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "sched.h" /* * Bitmask made from a "or" of all commands within enum membarrier_cmd, * except MEMBARRIER_CMD_QUERY. */ #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \ (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE) #else #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0 #endif #define MEMBARRIER_CMD_BITMASK \ (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \ | MEMBARRIER_CMD_PRIVATE_EXPEDITED \ | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \ | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK) static void ipi_mb(void *info) { smp_mb(); /* IPIs should be serializing but paranoid. */ } static int membarrier_global_expedited(void) { int cpu; bool fallback = false; cpumask_var_t tmpmask; if (num_online_cpus() == 1) return 0; /* * Matches memory barriers around rq->curr modification in * scheduler. */ smp_mb(); /* system call entry is not a mb. */ /* * Expedited membarrier commands guarantee that they won't * block, hence the GFP_NOWAIT allocation flag and fallback * implementation. */ if (!zalloc_cpumask_var(&tmpmask, GFP_NOWAIT)) { /* Fallback for OOM. */ fallback = true; } cpus_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; /* * Skipping the current CPU is OK even through we can be * migrated at any point. The current CPU, at the point * where we read raw_smp_processor_id(), is ensured to * be in program order with respect to the caller * thread. Therefore, we can skip this CPU from the * iteration. */ if (cpu == raw_smp_processor_id()) continue; rcu_read_lock(); p = task_rcu_dereference(&cpu_rq(cpu)->curr); if (p && p->mm && (atomic_read(&p->mm->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED)) { if (!fallback) __cpumask_set_cpu(cpu, tmpmask); else smp_call_function_single(cpu, ipi_mb, NULL, 1); } rcu_read_unlock(); } if (!fallback) { preempt_disable(); smp_call_function_many(tmpmask, ipi_mb, NULL, 1); preempt_enable(); free_cpumask_var(tmpmask); } cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers around * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int membarrier_private_expedited(int flags) { int cpu; bool fallback = false; cpumask_var_t tmpmask; if (flags & MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; if (!(atomic_read(¤t->mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY)) return -EPERM; } else { if (!(atomic_read(¤t->mm->membarrier_state) & MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY)) return -EPERM; } if (num_online_cpus() == 1) return 0; /* * Matches memory barriers around rq->curr modification in * scheduler. */ smp_mb(); /* system call entry is not a mb. */ /* * Expedited membarrier commands guarantee that they won't * block, hence the GFP_NOWAIT allocation flag and fallback * implementation. */ if (!zalloc_cpumask_var(&tmpmask, GFP_NOWAIT)) { /* Fallback for OOM. */ fallback = true; } cpus_read_lock(); for_each_online_cpu(cpu) { struct task_struct *p; /* * Skipping the current CPU is OK even through we can be * migrated at any point. The current CPU, at the point * where we read raw_smp_processor_id(), is ensured to * be in program order with respect to the caller * thread. Therefore, we can skip this CPU from the * iteration. */ if (cpu == raw_smp_processor_id()) continue; rcu_read_lock(); p = task_rcu_dereference(&cpu_rq(cpu)->curr); if (p && p->mm == current->mm) { if (!fallback) __cpumask_set_cpu(cpu, tmpmask); else smp_call_function_single(cpu, ipi_mb, NULL, 1); } rcu_read_unlock(); } if (!fallback) { preempt_disable(); smp_call_function_many(tmpmask, ipi_mb, NULL, 1); preempt_enable(); free_cpumask_var(tmpmask); } cpus_read_unlock(); /* * Memory barrier on the caller thread _after_ we finished * waiting for the last IPI. Matches memory barriers around * rq->curr modification in scheduler. */ smp_mb(); /* exit from system call is not a mb */ return 0; } static int membarrier_register_global_expedited(void) { struct task_struct *p = current; struct mm_struct *mm = p->mm; if (atomic_read(&mm->membarrier_state) & MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY) return 0; atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state); if (atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1) { /* * For single mm user, single threaded process, we can * simply issue a memory barrier after setting * MEMBARRIER_STATE_GLOBAL_EXPEDITED to guarantee that * no memory access following registration is reordered * before registration. */ smp_mb(); } else { /* * For multi-mm user threads, we need to ensure all * future scheduler executions will observe the new * thread flag state for this mm. */ synchronize_sched(); } atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY, &mm->membarrier_state); return 0; } static int membarrier_register_private_expedited(int flags) { struct task_struct *p = current; struct mm_struct *mm = p->mm; int state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY; if (flags & MEMBARRIER_FLAG_SYNC_CORE) { if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE)) return -EINVAL; state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY; } /* * We need to consider threads belonging to different thread * groups, which use the same mm. (CLONE_VM but not * CLONE_THREAD). */ if (atomic_read(&mm->membarrier_state) & state) return 0; atomic_or(MEMBARRIER_STATE_PRIVATE_EXPEDITED, &mm->membarrier_state); if (flags & MEMBARRIER_FLAG_SYNC_CORE) atomic_or(MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE, &mm->membarrier_state); if (!(atomic_read(&mm->mm_users) == 1 && get_nr_threads(p) == 1)) { /* * Ensure all future scheduler executions will observe the * new thread flag state for this process. */ synchronize_sched(); } atomic_or(state, &mm->membarrier_state); return 0; } /** * sys_membarrier - issue memory barriers on a set of threads * @cmd: Takes command values defined in enum membarrier_cmd. * @flags: Currently needs to be 0. For future extensions. * * If this system call is not implemented, -ENOSYS is returned. If the * command specified does not exist, not available on the running * kernel, or if the command argument is invalid, this system call * returns -EINVAL. For a given command, with flags argument set to 0, * this system call is guaranteed to always return the same value until * reboot. * * All memory accesses performed in program order from each targeted thread * is guaranteed to be ordered with respect to sys_membarrier(). If we use * the semantic "barrier()" to represent a compiler barrier forcing memory * accesses to be performed in program order across the barrier, and * smp_mb() to represent explicit memory barriers forcing full memory * ordering across the barrier, we have the following ordering table for * each pair of barrier(), sys_membarrier() and smp_mb(): * * The pair ordering is detailed as (O: ordered, X: not ordered): * * barrier() smp_mb() sys_membarrier() * barrier() X X O * smp_mb() X O O * sys_membarrier() O O O */ SYSCALL_DEFINE2(membarrier, int, cmd, int, flags) { if (unlikely(flags)) return -EINVAL; switch (cmd) { case MEMBARRIER_CMD_QUERY: { int cmd_mask = MEMBARRIER_CMD_BITMASK; if (tick_nohz_full_enabled()) cmd_mask &= ~MEMBARRIER_CMD_GLOBAL; return cmd_mask; } case MEMBARRIER_CMD_GLOBAL: /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */ if (tick_nohz_full_enabled()) return -EINVAL; if (num_online_cpus() > 1) synchronize_sched(); return 0; case MEMBARRIER_CMD_GLOBAL_EXPEDITED: return membarrier_global_expedited(); case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED: return membarrier_register_global_expedited(); case MEMBARRIER_CMD_PRIVATE_EXPEDITED: return membarrier_private_expedited(0); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED: return membarrier_register_private_expedited(0); case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE: return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE); default: return -EINVAL; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1